/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ #include "encoderstate.h" #include #include #include #include #include "cabac.h" #include "context.h" #include "encode_coding_tree.h" #include "encoder_state-bitstream.h" #include "filter.h" #include "image.h" #include "rate_control.h" #include "sao.h" #include "search.h" #include "tables.h" #include "threadqueue.h" #include "alf.h" #include "strategies/strategies-picture.h" int kvz_encoder_state_match_children_of_previous_frame(encoder_state_t * const state) { int i; for (i = 0; state->children[i].encoder_control; ++i) { //Child should also exist for previous encoder assert(state->previous_encoder_state->children[i].encoder_control); state->children[i].previous_encoder_state = &state->previous_encoder_state->children[i]; kvz_encoder_state_match_children_of_previous_frame(&state->children[i]); } return 1; } /** * \brief Save edge pixels before SAO to buffers. * * Copies pixels at the edges of the area that will be filtered with SAO to * the given buffers. If deblocking is enabled, the pixels must have been * deblocked before this. * * The saved pixels will be needed later when doing SAO for the neighboring * areas. */ static void encoder_state_recdata_before_sao_to_bufs( encoder_state_t * const state, const lcu_order_element_t * const lcu, yuv_t * const hor_buf, yuv_t * const ver_buf) { videoframe_t* const frame = state->tile->frame; if (hor_buf && lcu->below) { // Copy the bottommost row that will be filtered with SAO to the // horizontal buffer. vector2d_t pos = { .x = lcu->position_px.x, .y = lcu->position_px.y + LCU_WIDTH - SAO_DELAY_PX - 1, }; // Copy all pixels that have been deblocked. int length = lcu->size.x - DEBLOCK_DELAY_PX; if (!lcu->right) { // If there is no LCU to the right, the last pixels will be // filtered too. length += DEBLOCK_DELAY_PX; } if (lcu->left) { // The rightmost pixels of the CTU to the left will also be filtered. pos.x -= DEBLOCK_DELAY_PX; length += DEBLOCK_DELAY_PX; } const unsigned from_index = pos.x + pos.y * frame->rec->stride; // NOTE: The horizontal buffer is indexed by // x_px + y_lcu * frame->width // where x_px is in pixels and y_lcu in number of LCUs. const unsigned to_index = pos.x + lcu->position.y * frame->width; kvz_pixels_blit(&frame->rec->y[from_index], &hor_buf->y[to_index], length, 1, frame->rec->stride, frame->width); if (state->encoder_control->chroma_format != KVZ_CSP_400) { const unsigned from_index_c = (pos.x / 2) + (pos.y / 2) * frame->rec->stride / 2; const unsigned to_index_c = (pos.x / 2) + lcu->position.y * frame->width / 2; kvz_pixels_blit(&frame->rec->u[from_index_c], &hor_buf->u[to_index_c], length / 2, 1, frame->rec->stride / 2, frame->width / 2); kvz_pixels_blit(&frame->rec->v[from_index_c], &hor_buf->v[to_index_c], length / 2, 1, frame->rec->stride / 2, frame->width / 2); } } if (ver_buf && lcu->right) { // Copy the rightmost column that will be filtered with SAO to the // vertical buffer. vector2d_t pos = { .x = lcu->position_px.x + LCU_WIDTH - SAO_DELAY_PX - 1, .y = lcu->position_px.y, }; int length = lcu->size.y - DEBLOCK_DELAY_PX; if (!lcu->below) { // If there is no LCU below, the last pixels will be filtered too. length += DEBLOCK_DELAY_PX; } if (lcu->above) { // The bottommost pixels of the CTU above will also be filtered. pos.y -= DEBLOCK_DELAY_PX; length += DEBLOCK_DELAY_PX; } const unsigned from_index = pos.x + pos.y * frame->rec->stride; // NOTE: The vertical buffer is indexed by // x_lcu * frame->height + y_px // where x_lcu is in number of LCUs and y_px in pixels. const unsigned to_index = lcu->position.x * frame->height + pos.y; kvz_pixels_blit(&frame->rec->y[from_index], &ver_buf->y[to_index], 1, length, frame->rec->stride, 1); if (state->encoder_control->chroma_format != KVZ_CSP_400) { const unsigned from_index_c = (pos.x / 2) + (pos.y / 2) * frame->rec->stride / 2; const unsigned to_index_c = lcu->position.x * frame->height / 2 + pos.y / 2; kvz_pixels_blit(&frame->rec->u[from_index_c], &ver_buf->u[to_index_c], 1, length / 2, frame->rec->stride / 2, 1); kvz_pixels_blit(&frame->rec->v[from_index_c], &ver_buf->v[to_index_c], 1, length / 2, frame->rec->stride / 2, 1); } } } static void encoder_state_recdata_to_bufs(encoder_state_t * const state, const lcu_order_element_t * const lcu, yuv_t * const hor_buf, yuv_t * const ver_buf) { videoframe_t* const frame = state->tile->frame; if (hor_buf) { //Copy the bottom row of this LCU to the horizontal buffer vector2d_t bottom = { lcu->position_px.x, lcu->position_px.y + lcu->size.y - 1 }; const int lcu_row = lcu->position.y; unsigned from_index = bottom.y * frame->rec->stride + bottom.x; unsigned to_index = lcu->position_px.x + lcu_row * frame->width; kvz_pixels_blit(&frame->rec->y[from_index], &hor_buf->y[to_index], lcu->size.x, 1, frame->rec->stride, frame->width); if (state->encoder_control->chroma_format != KVZ_CSP_400) { unsigned from_index_c = (bottom.y / 2) * frame->rec->stride / 2 + (bottom.x / 2); unsigned to_index_c = lcu->position_px.x / 2 + lcu_row * frame->width / 2; kvz_pixels_blit(&frame->rec->u[from_index_c], &hor_buf->u[to_index_c], lcu->size.x / 2, 1, frame->rec->stride / 2, frame->width / 2); kvz_pixels_blit(&frame->rec->v[from_index_c], &hor_buf->v[to_index_c], lcu->size.x / 2, 1, frame->rec->stride / 2, frame->width / 2); } } if (ver_buf) { //Copy the right row of this LCU to the vertical buffer. const int lcu_col = lcu->position.x; vector2d_t left = { lcu->position_px.x + lcu->size.x - 1, lcu->position_px.y }; kvz_pixels_blit(&frame->rec->y[left.y * frame->rec->stride + left.x], &ver_buf->y[lcu->position_px.y + lcu_col * frame->height], 1, lcu->size.y, frame->rec->stride, 1); if (state->encoder_control->chroma_format != KVZ_CSP_400) { unsigned from_index = (left.y / 2) * frame->rec->stride / 2 + (left.x / 2); unsigned to_index = lcu->position_px.y / 2 + lcu_col * frame->height / 2; kvz_pixels_blit(&frame->rec->u[from_index], &ver_buf->u[to_index], 1, lcu->size.y / 2, frame->rec->stride / 2, 1); kvz_pixels_blit(&frame->rec->v[from_index], &ver_buf->v[to_index], 1, lcu->size.y / 2, frame->rec->stride / 2, 1); } } } /** * \brief Do SAO reconstuction for all available pixels. * * Does SAO reconstruction for all pixels that are available after the * given LCU has been deblocked. This means the following pixels: * - bottom-right block of SAO_DELAY_PX times SAO_DELAY_PX in the lcu to * the left and up * - the rightmost SAO_DELAY_PX pixels of the LCU to the left (excluding * the bottommost pixel) * - the bottommost SAO_DELAY_PX pixels of the LCU above (excluding the * rightmost pixels) * - all pixels inside the LCU, excluding the rightmost SAO_DELAY_PX and * bottommost SAO_DELAY_PX */ static void encoder_sao_reconstruct(const encoder_state_t *const state, const lcu_order_element_t *const lcu) { videoframe_t *const frame = state->tile->frame; // Temporary buffers for SAO input pixels. The buffers cover the pixels // inside the LCU (LCU_WIDTH x LCU_WIDTH), SAO_DELAY_PX wide bands to the // left and above the LCU, and one pixel border on the left and top // sides. We add two extra pixels to the buffers because the AVX2 SAO // reconstruction reads up to two extra bytes when using edge SAO in the // horizontal direction. #define SAO_BUF_WIDTH (1 + SAO_DELAY_PX + LCU_WIDTH) #define SAO_BUF_WIDTH_C (1 + SAO_DELAY_PX/2 + LCU_WIDTH_C) kvz_pixel sao_buf_y_array[SAO_BUF_WIDTH * SAO_BUF_WIDTH + 2]; kvz_pixel sao_buf_u_array[SAO_BUF_WIDTH_C * SAO_BUF_WIDTH_C + 2]; kvz_pixel sao_buf_v_array[SAO_BUF_WIDTH_C * SAO_BUF_WIDTH_C + 2]; // Pointers to the top-left pixel of the LCU in the buffers. kvz_pixel *const sao_buf_y = &sao_buf_y_array[(SAO_DELAY_PX + 1) * (SAO_BUF_WIDTH + 1)]; kvz_pixel *const sao_buf_u = &sao_buf_u_array[(SAO_DELAY_PX/2 + 1) * (SAO_BUF_WIDTH_C + 1)]; kvz_pixel *const sao_buf_v = &sao_buf_v_array[(SAO_DELAY_PX/2 + 1) * (SAO_BUF_WIDTH_C + 1)]; const int x_offsets[3] = { // If there is an lcu to the left, we need to filter its rightmost // pixels. lcu->left ? -SAO_DELAY_PX : 0, 0, // If there is an lcu to the right, the rightmost pixels of this LCU // are filtered when filtering that LCU. Otherwise we filter them now. lcu->size.x - (lcu->right ? SAO_DELAY_PX : 0), }; const int y_offsets[3] = { // If there is an lcu above, we need to filter its bottommost pixels. lcu->above ? -SAO_DELAY_PX : 0, 0, // If there is an lcu below, the bottommost pixels of this LCU are // filtered when filtering that LCU. Otherwise we filter them now. lcu->size.y - (lcu->below ? SAO_DELAY_PX : 0), }; // Number of pixels around the block that need to be copied to the // buffers. const int border_left = lcu->left ? 1 : 0; const int border_right = lcu->right ? 1 : 0; const int border_above = lcu->above ? 1 : 0; const int border_below = lcu->below ? 1 : 0; // Index of the pixel at the intersection of the top and left borders. const int border_index = (x_offsets[0] - border_left) + (y_offsets[0] - border_above) * SAO_BUF_WIDTH; const int border_index_c = (x_offsets[0]/2 - border_left) + (y_offsets[0]/2 - border_above) * SAO_BUF_WIDTH_C; // Width and height of the whole area to filter. const int width = x_offsets[2] - x_offsets[0]; const int height = y_offsets[2] - y_offsets[0]; // Copy bordering pixels from above and left to buffers. if (lcu->above) { const int from_index = (lcu->position_px.x + x_offsets[0] - border_left) + (lcu->position.y - 1) * frame->width; kvz_pixels_blit(&state->tile->hor_buf_before_sao->y[from_index], &sao_buf_y[border_index], width + border_left + border_right, 1, frame->width, SAO_BUF_WIDTH); if (state->encoder_control->chroma_format != KVZ_CSP_400) { const int from_index_c = (lcu->position_px.x + x_offsets[0])/2 - border_left + (lcu->position.y - 1) * frame->width/2; kvz_pixels_blit(&state->tile->hor_buf_before_sao->u[from_index_c], &sao_buf_u[border_index_c], width/2 + border_left + border_right, 1, frame->width/2, SAO_BUF_WIDTH_C); kvz_pixels_blit(&state->tile->hor_buf_before_sao->v[from_index_c], &sao_buf_v[border_index_c], width/2 + border_left + border_right, 1, frame->width/2, SAO_BUF_WIDTH_C); } } if (lcu->left) { const int from_index = (lcu->position.x - 1) * frame->height + (lcu->position_px.y + y_offsets[0] - border_above); kvz_pixels_blit(&state->tile->ver_buf_before_sao->y[from_index], &sao_buf_y[border_index], 1, height + border_above + border_below, 1, SAO_BUF_WIDTH); if (state->encoder_control->chroma_format != KVZ_CSP_400) { const int from_index_c = (lcu->position.x - 1) * frame->height/2 + (lcu->position_px.y + y_offsets[0])/2 - border_above; kvz_pixels_blit(&state->tile->ver_buf_before_sao->u[from_index_c], &sao_buf_u[border_index_c], 1, height/2 + border_above + border_below, 1, SAO_BUF_WIDTH_C); kvz_pixels_blit(&state->tile->ver_buf_before_sao->v[from_index_c], &sao_buf_v[border_index_c], 1, height/2 + border_above + border_below, 1, SAO_BUF_WIDTH_C); } } // Copy pixels that will be filtered and bordering pixels from right and // below. const int from_index = (lcu->position_px.x + x_offsets[0]) + (lcu->position_px.y + y_offsets[0]) * frame->rec->stride; const int to_index = x_offsets[0] + y_offsets[0] * SAO_BUF_WIDTH; kvz_pixels_blit(&frame->rec->y[from_index], &sao_buf_y[to_index], width + border_right, height + border_below, frame->rec->stride, SAO_BUF_WIDTH); if (state->encoder_control->chroma_format != KVZ_CSP_400) { const int from_index_c = (lcu->position_px.x + x_offsets[0])/2 + (lcu->position_px.y + y_offsets[0])/2 * frame->rec->stride/2; const int to_index_c = x_offsets[0]/2 + y_offsets[0]/2 * SAO_BUF_WIDTH_C; kvz_pixels_blit(&frame->rec->u[from_index_c], &sao_buf_u[to_index_c], width/2 + border_right, height/2 + border_below, frame->rec->stride/2, SAO_BUF_WIDTH_C); kvz_pixels_blit(&frame->rec->v[from_index_c], &sao_buf_v[to_index_c], width/2 + border_right, height/2 + border_below, frame->rec->stride/2, SAO_BUF_WIDTH_C); } // We filter the pixels in four parts: // 1. Pixels that belong to the LCU above and to the left // 2. Pixels that belong to the LCU above // 3. Pixels that belong to the LCU to the left // 4. Pixels that belong to the current LCU for (int y_offset_index = 0; y_offset_index < 2; y_offset_index++) { for (int x_offset_index = 0; x_offset_index < 2; x_offset_index++) { const int x = x_offsets[x_offset_index]; const int y = y_offsets[y_offset_index]; const int width = x_offsets[x_offset_index + 1] - x; const int height = y_offsets[y_offset_index + 1] - y; if (width == 0 || height == 0) continue; const int lcu_x = (lcu->position_px.x + x) >> LOG2_LCU_WIDTH; const int lcu_y = (lcu->position_px.y + y) >> LOG2_LCU_WIDTH; const int lcu_index = lcu_x + lcu_y * frame->width_in_lcu; const sao_info_t *sao_luma = &frame->sao_luma[lcu_index]; const sao_info_t *sao_chroma = &frame->sao_chroma[lcu_index]; kvz_sao_reconstruct(state, &sao_buf_y[x + y * SAO_BUF_WIDTH], SAO_BUF_WIDTH, lcu->position_px.x + x, lcu->position_px.y + y, width, height, sao_luma, COLOR_Y); if (state->encoder_control->chroma_format != KVZ_CSP_400) { // Coordinates in chroma pixels. int x_c = x >> 1; int y_c = y >> 1; kvz_sao_reconstruct(state, &sao_buf_u[x_c + y_c * SAO_BUF_WIDTH_C], SAO_BUF_WIDTH_C, lcu->position_px.x / 2 + x_c, lcu->position_px.y / 2 + y_c, width / 2, height / 2, sao_chroma, COLOR_U); kvz_sao_reconstruct(state, &sao_buf_v[x_c + y_c * SAO_BUF_WIDTH_C], SAO_BUF_WIDTH_C, lcu->position_px.x / 2 + x_c, lcu->position_px.y / 2 + y_c, width / 2, height / 2, sao_chroma, COLOR_V); } } } } static void encode_sao_color(encoder_state_t * const state, sao_info_t *sao, color_t color_i) { cabac_data_t * const cabac = &state->cabac; sao_eo_cat i; int offset_index = (color_i == COLOR_V) ? 5 : 0; // Skip colors with no SAO. //FIXME: for now, we always have SAO for all channels if (color_i == COLOR_Y && 0) return; if (color_i != COLOR_Y && 0) return; /// sao_type_idx_luma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass} /// sao_type_idx_chroma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass} // Encode sao_type_idx for Y and U+V. if (color_i != COLOR_V) { cabac->cur_ctx = &(cabac->ctx.sao_type_idx_model); CABAC_BIN(cabac, sao->type != SAO_TYPE_NONE, "sao_type_idx"); if (sao->type == SAO_TYPE_BAND) { CABAC_BIN_EP(cabac, 0, "sao_type_idx_ep"); } else if (sao->type == SAO_TYPE_EDGE) { CABAC_BIN_EP(cabac, 1, "sao_type_idx_ep"); } } if (sao->type == SAO_TYPE_NONE) return; /// sao_offset_abs[][][][]: TR, cMax = (1 << (Min(bitDepth, 10) - 5)) - 1, /// cRiceParam = 0, bins = {bypass x N} for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) { kvz_cabac_write_unary_max_symbol_ep(cabac, abs(sao->offsets[i + offset_index]), SAO_ABS_OFFSET_MAX); } /// sao_offset_sign[][][][]: FL, cMax = 1, bins = {bypass} /// sao_band_position[][][]: FL, cMax = 31, bins = {bypass x N} /// sao_eo_class_luma: FL, cMax = 3, bins = {bypass x 3} /// sao_eo_class_chroma: FL, cMax = 3, bins = {bypass x 3} if (sao->type == SAO_TYPE_BAND) { for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) { // Positive sign is coded as 0. if (sao->offsets[i + offset_index] != 0) { CABAC_BIN_EP(cabac, sao->offsets[i + offset_index] < 0 ? 1 : 0, "sao_offset_sign"); } } // TODO: sao_band_position // FL cMax=31 (5 bits) CABAC_BINS_EP(cabac, sao->band_position[color_i == COLOR_V ? 1:0], 5, "sao_band_position"); } else if (color_i != COLOR_V) { CABAC_BINS_EP(cabac, sao->eo_class, 2, "sao_eo_class"); } } static void encode_sao_merge_flags(encoder_state_t * const state, sao_info_t *sao, unsigned x_ctb, unsigned y_ctb) { cabac_data_t * const cabac = &state->cabac; // SAO merge flags are not present for the first row and column. if (x_ctb > 0) { cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model); CABAC_BIN(cabac, sao->merge_left_flag, "sao_merge_left_flag"); } if (y_ctb > 0 && !sao->merge_left_flag) { cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model); CABAC_BIN(cabac, sao->merge_up_flag, "sao_merge_up_flag"); } } /** * \brief Encode SAO information. */ static void encode_sao(encoder_state_t * const state, unsigned x_lcu, uint16_t y_lcu, sao_info_t *sao_luma, sao_info_t *sao_chroma) { // TODO: transmit merge flags outside sao_info encode_sao_merge_flags(state, sao_luma, x_lcu, y_lcu); // If SAO is merged, nothing else needs to be coded. if (!sao_luma->merge_left_flag && !sao_luma->merge_up_flag) { encode_sao_color(state, sao_luma, COLOR_Y); if (state->encoder_control->chroma_format != KVZ_CSP_400) { encode_sao_color(state, sao_chroma, COLOR_U); encode_sao_color(state, sao_chroma, COLOR_V); } } } /** * \brief Sets the QP for each CU in state->tile->frame->cu_array. * * The QPs are used in deblocking and QP prediction. * * The QP delta for a quantization group is coded when the first CU with * coded block flag set is encountered. Hence, for the purposes of * deblocking and QP prediction, all CUs in before the first one that has * cbf set use the QP predictor and all CUs after that use (QP predictor * + QP delta). * * \param state encoder state * \param x x-coordinate of the left edge of the root CU * \param y y-coordinate of the top edge of the root CU * \param depth depth in the CU quadtree * \param last_qp QP of the last CU in the last quantization group * \param prev_qp -1 if QP delta has not been coded in current QG, * otherwise the QP of the current QG */ static void set_cu_qps(encoder_state_t *state, int x, int y, int depth, int *last_qp, int *prev_qp) { // Stop recursion if the CU is completely outside the frame. if (x >= state->tile->frame->width || y >= state->tile->frame->height) return; cu_info_t *cu = kvz_cu_array_at(state->tile->frame->cu_array, x, y); const int cu_width = LCU_WIDTH >> depth; if (depth <= state->encoder_control->max_qp_delta_depth) { *prev_qp = -1; } if (cu->depth > depth) { // Recursively process sub-CUs. const int d = cu_width >> 1; set_cu_qps(state, x, y, depth + 1, last_qp, prev_qp); set_cu_qps(state, x + d, y, depth + 1, last_qp, prev_qp); set_cu_qps(state, x, y + d, depth + 1, last_qp, prev_qp); set_cu_qps(state, x + d, y + d, depth + 1, last_qp, prev_qp); } else { bool cbf_found = *prev_qp >= 0; if (cu->tr_depth > depth) { // The CU is split into smaller transform units. Check whether coded // block flag is set for any of the TUs. const int tu_width = LCU_WIDTH >> cu->tr_depth; for (int y_scu = y; !cbf_found && y_scu < y + cu_width; y_scu += tu_width) { for (int x_scu = x; !cbf_found && x_scu < x + cu_width; x_scu += tu_width) { cu_info_t *tu = kvz_cu_array_at(state->tile->frame->cu_array, x_scu, y_scu); if (cbf_is_set_any(tu->cbf, cu->depth)) { cbf_found = true; } } } } else if (cbf_is_set_any(cu->cbf, cu->depth)) { cbf_found = true; } int8_t qp; if (cbf_found) { *prev_qp = qp = cu->qp; } else { qp = kvz_get_cu_ref_qp(state, x, y, *last_qp); } // Set the correct QP for all state->tile->frame->cu_array elements in // the area covered by the CU. for (int y_scu = y; y_scu < y + cu_width; y_scu += SCU_WIDTH) { for (int x_scu = x; x_scu < x + cu_width; x_scu += SCU_WIDTH) { kvz_cu_array_at(state->tile->frame->cu_array, x_scu, y_scu)->qp = qp; } } if (is_last_cu_in_qg(state, x, y, depth)) { *last_qp = cu->qp; } } } static void encoder_state_worker_encode_lcu(void * opaque) { const lcu_order_element_t * const lcu = opaque; encoder_state_t *state = lcu->encoder_state; const encoder_control_t * const encoder = state->encoder_control; videoframe_t* const frame = state->tile->frame; encoder_state_config_slice_t *slice = state->slice; switch (encoder->cfg.rc_algorithm) { case KVZ_NO_RC: case KVZ_LAMBDA: kvz_set_lcu_lambda_and_qp(state, lcu->position); break; case KVZ_OBA: kvz_set_ctu_qp_lambda(state, lcu->position); break; default: assert(0); } lcu_coeff_t coeff; state->coeff = &coeff; //This part doesn't write to bitstream, it's only search, deblock and sao kvz_search_lcu(state, lcu->position_px.x, lcu->position_px.y, state->tile->hor_buf_search, state->tile->ver_buf_search); encoder_state_recdata_to_bufs(state, lcu, state->tile->hor_buf_search, state->tile->ver_buf_search); if (encoder->max_qp_delta_depth >= 0) { int last_qp = state->last_qp; int prev_qp = -1; set_cu_qps(state, lcu->position_px.x, lcu->position_px.y, 0, &last_qp, &prev_qp); } if (encoder->cfg.deblock_enable) { kvz_filter_deblock_lcu(state, lcu->position_px.x, lcu->position_px.y); } if (encoder->cfg.sao_type) { // Save the post-deblocking but pre-SAO pixels of the LCU to a buffer // so that they can be used in SAO reconstruction later. encoder_state_recdata_before_sao_to_bufs(state, lcu, state->tile->hor_buf_before_sao, state->tile->ver_buf_before_sao); kvz_sao_search_lcu(state, lcu->position.x, lcu->position.y); encoder_sao_reconstruct(state, lcu); } //Now write data to bitstream (required to have a correct CABAC state) const uint64_t existing_bits = kvz_bitstream_tell(&state->stream); //Encode SAO if (encoder->cfg.sao_type) { encode_sao(state, lcu->position.x, lcu->position.y, &frame->sao_luma[lcu->position.y * frame->width_in_lcu + lcu->position.x], &frame->sao_chroma[lcu->position.y * frame->width_in_lcu + lcu->position.x]); } //Tests //alf_info_t *alf = &frame->alf_info[lcu->position.y * frame->rec->stride + lcu->position.x]; //kvz_alf_enc_process(state, lcu); if (encoder->cfg.alf_enable) { kvz_alf_enc_create(state, lcu); kvz_alf_init(state, slice); kvz_alf_enc_process(state, lcu); kvz_frame_end(state, frame, lcu); //kvz_alf_enc_destroy(state, frame, lcu); } //Encode coding tree kvz_encode_coding_tree(state, lcu->position.x * LCU_WIDTH, lcu->position.y * LCU_WIDTH, 0); // Coeffs are not needed anymore. state->coeff = NULL; bool end_of_slice_segment_flag; if (state->encoder_control->cfg.slices & KVZ_SLICES_WPP) { // Slice segments end after each WPP row. end_of_slice_segment_flag = lcu->last_column; } else if (state->encoder_control->cfg.slices & KVZ_SLICES_TILES) { // Slices end after each tile. end_of_slice_segment_flag = lcu->last_column && lcu->last_row; } else { // Slice ends after the last row of the last tile. int last_tile_id = -1 + encoder->cfg.tiles_width_count * encoder->cfg.tiles_height_count; bool is_last_tile = state->tile->id == last_tile_id; end_of_slice_segment_flag = is_last_tile && lcu->last_column && lcu->last_row; } //kvz_cabac_encode_bin_trm(&state->cabac, end_of_slice_segment_flag); { const bool end_of_tile = lcu->last_column && lcu->last_row; const bool end_of_wpp_row = encoder->cfg.wpp && lcu->last_column; if (end_of_tile || end_of_wpp_row) { // end_of_sub_stream_one_bit kvz_cabac_encode_bin_trm(&state->cabac, 1); // Finish the substream by writing out remaining state. kvz_cabac_finish(&state->cabac); // Write a rbsp_trailing_bits or a byte_alignment. The first one is used // for ending a slice_segment_layer_rbsp and the second one for ending // a substream. They are identical and align the byte stream. kvz_bitstream_put(state->cabac.stream, 1, 1); kvz_bitstream_align_zero(state->cabac.stream); kvz_cabac_start(&state->cabac); kvz_crypto_delete(&state->crypto_hdl); } } pthread_mutex_lock(&state->frame->rc_lock); const uint32_t bits = kvz_bitstream_tell(&state->stream) - existing_bits; state->frame->cur_frame_bits_coded += bits; // This variable is used differently by intra and inter frames and shouldn't // be touched in intra frames here state->frame->remaining_weight -= !state->frame->is_irap ? kvz_get_lcu_stats(state, lcu->position.x, lcu->position.y)->original_weight : 0; pthread_mutex_unlock(&state->frame->rc_lock); kvz_get_lcu_stats(state, lcu->position.x, lcu->position.y)->bits = bits; uint8_t not_skip = false; for(int y = 0; y < 64 && !not_skip; y+=8) { for(int x = 0; x < 64 && !not_skip; x+=8) { not_skip |= !kvz_cu_array_at_const(state->tile->frame->cu_array, lcu->position_px.x + x, lcu->position_px.y + y)->skipped; } } kvz_get_lcu_stats(state, lcu->position.x, lcu->position.y)->skipped = !not_skip; //Wavefronts need the context to be copied to the next row if (state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW && lcu->index == 0) { int j; //Find next encoder (next row) for (j=0; state->parent->children[j].encoder_control; ++j) { if (state->parent->children[j].wfrow->lcu_offset_y == state->wfrow->lcu_offset_y + 1) { //And copy context kvz_context_copy(&state->parent->children[j], state); } } } } static void encoder_state_encode_leaf(encoder_state_t * const state) { assert(state->is_leaf); assert(state->lcu_order_count > 0); const encoder_control_t *ctrl = state->encoder_control; const kvz_config *cfg = &ctrl->cfg; // Signaled slice QP may be different to frame QP with set-qp-in-cu enabled. state->last_qp = ctrl->cfg.set_qp_in_cu ? 26 : state->frame->QP; if (cfg->crypto_features) { state->crypto_hdl = kvz_crypto_create(cfg); state->crypto_prev_pos = 0; } // Select whether to encode the frame/tile in current thread or to define // wavefront jobs for other threads to handle. bool wavefront = state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW; bool use_parallel_encoding = (wavefront && state->parent->children[1].encoder_control); if (!use_parallel_encoding) { // Encode every LCU in order and perform SAO reconstruction after every // frame is encoded. Deblocking and SAO search is done during LCU encoding. for (int i = 0; i < state->lcu_order_count; ++i) { encoder_state_worker_encode_lcu(&state->lcu_order[i]); } } else { // Add each LCU in the wavefront row as it's own job to the queue. // Select which frame dependancies should be set to. const encoder_state_t * ref_state = NULL; if (state->frame->slicetype == KVZ_SLICE_I) { // I-frames have no references. ref_state = NULL; } else if (cfg->gop_lowdelay && cfg->gop_len > 0 && state->previous_encoder_state != state) { // For LP-gop, depend on the state of the first reference. int ref_neg = cfg->gop[state->frame->gop_offset].ref_neg[0]; if (ref_neg > cfg->owf) { // If frame is not within OWF range, it's already done. ref_state = NULL; } else { ref_state = state->previous_encoder_state; while (ref_neg > 1) { ref_neg -= 1; ref_state = ref_state->previous_encoder_state; } } } else { // Otherwise, depend on the previous frame. ref_state = state->previous_encoder_state; } for (int i = 0; i < state->lcu_order_count; ++i) { const lcu_order_element_t * const lcu = &state->lcu_order[i]; kvz_threadqueue_free_job(&state->tile->wf_jobs[lcu->id]); state->tile->wf_jobs[lcu->id] = kvz_threadqueue_job_create(encoder_state_worker_encode_lcu, (void*)lcu); threadqueue_job_t **job = &state->tile->wf_jobs[lcu->id]; // If job object was returned, add dependancies and allow it to run. if (job[0]) { // Add inter frame dependancies when ecoding more than one frame at // once. The added dependancy is for the first LCU of each wavefront // row to depend on the reconstruction status of the row below in the // previous frame. if (ref_state != NULL && state->previous_encoder_state->tqj_recon_done && state->frame->slicetype != KVZ_SLICE_I) { // We need to wait until the CTUs whose pixels we refer to are // done before we can start this CTU. const lcu_order_element_t *dep_lcu = lcu; for (int i = 0; dep_lcu->below && i < ctrl->max_inter_ref_lcu.down; i++) { dep_lcu = dep_lcu->below; } for (int i = 0; dep_lcu->right && i < ctrl->max_inter_ref_lcu.right; i++) { dep_lcu = dep_lcu->right; } kvz_threadqueue_job_dep_add(job[0], ref_state->tile->wf_jobs[dep_lcu->id]); //TODO: Preparation for the lock free implementation of the new rc if (ref_state->frame->slicetype == KVZ_SLICE_I && ref_state->frame->num != 0 && state->encoder_control->cfg.owf > 1 && true) { kvz_threadqueue_job_dep_add(job[0], ref_state->previous_encoder_state->tile->wf_jobs[dep_lcu->id]); } // Very spesific bug that happens when owf length is longer than the // gop length. Takes care of that. if(!state->encoder_control->cfg.gop_lowdelay && state->encoder_control->cfg.open_gop && state->encoder_control->cfg.gop_len != 0 && state->encoder_control->cfg.owf > state->encoder_control->cfg.gop_len && ref_state->frame->slicetype == KVZ_SLICE_I && ref_state->frame->num != 0){ while (ref_state->frame->poc != state->frame->poc - state->encoder_control->cfg.gop_len){ ref_state = ref_state->previous_encoder_state; } kvz_threadqueue_job_dep_add(job[0], ref_state->tile->wf_jobs[dep_lcu->id]); } } // Add local WPP dependancy to the LCU on the left. if (lcu->left) { kvz_threadqueue_job_dep_add(job[0], job[-1]); } // Add local WPP dependancy to the LCU on the top. if (lcu->above) { kvz_threadqueue_job_dep_add(job[0], job[-state->tile->frame->width_in_lcu]); } kvz_threadqueue_submit(state->encoder_control->threadqueue, state->tile->wf_jobs[lcu->id]); // The wavefront row is done when the last LCU in the row is done. if (i + 1 == state->lcu_order_count) { assert(!state->tqj_recon_done); state->tqj_recon_done = kvz_threadqueue_copy_ref(state->tile->wf_jobs[lcu->id]); } } } } } static void encoder_state_encode(encoder_state_t * const main_state); static void encoder_state_worker_encode_children(void * opaque) { encoder_state_t *sub_state = opaque; encoder_state_encode(sub_state); if (sub_state->is_leaf && sub_state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) { // Set the last wavefront job of this row as the job that completes // the bitstream for this wavefront row state. int wpp_row = sub_state->wfrow->lcu_offset_y; int tile_width = sub_state->tile->frame->width_in_lcu; int end_of_row = (wpp_row + 1) * tile_width - 1; assert(!sub_state->tqj_bitstream_written); if (sub_state->tile->wf_jobs[end_of_row]) { sub_state->tqj_bitstream_written = kvz_threadqueue_copy_ref(sub_state->tile->wf_jobs[end_of_row]); } } } static int encoder_state_tree_is_a_chain(const encoder_state_t * const state) { if (!state->children[0].encoder_control) return 1; if (state->children[1].encoder_control) return 0; return encoder_state_tree_is_a_chain(&state->children[0]); } static void encoder_state_encode(encoder_state_t * const main_state) { //If we have children, encode at child level if (main_state->children[0].encoder_control) { //If we have only one child, than it cannot be the last split in tree int node_is_the_last_split_in_tree = (main_state->children[1].encoder_control != 0); for (int i = 0; main_state->children[i].encoder_control; ++i) { encoder_state_t *sub_state = &(main_state->children[i]); if (sub_state->tile != main_state->tile) { const int offset_x = sub_state->tile->offset_x; const int offset_y = sub_state->tile->offset_y; const int width = MIN(sub_state->tile->frame->width_in_lcu * LCU_WIDTH, main_state->tile->frame->width - offset_x); const int height = MIN(sub_state->tile->frame->height_in_lcu * LCU_WIDTH, main_state->tile->frame->height - offset_y); kvz_image_free(sub_state->tile->frame->source); sub_state->tile->frame->source = NULL; kvz_image_free(sub_state->tile->frame->rec); sub_state->tile->frame->rec = NULL; kvz_cu_array_free(&sub_state->tile->frame->cu_array); sub_state->tile->frame->source = kvz_image_make_subimage( main_state->tile->frame->source, offset_x, offset_y, width, height ); sub_state->tile->frame->rec = kvz_image_make_subimage( main_state->tile->frame->rec, offset_x, offset_y, width, height ); sub_state->tile->frame->cu_array = kvz_cu_subarray( main_state->tile->frame->cu_array, offset_x, offset_y, sub_state->tile->frame->width_in_lcu * LCU_WIDTH, sub_state->tile->frame->height_in_lcu * LCU_WIDTH ); } //To be the last split, we require that every child is a chain node_is_the_last_split_in_tree = node_is_the_last_split_in_tree && encoder_state_tree_is_a_chain(&main_state->children[i]); } //If it's the latest split point if (node_is_the_last_split_in_tree) { for (int i = 0; main_state->children[i].encoder_control; ++i) { //If we don't have wavefronts, parallelize encoding of children. if (main_state->children[i].type != ENCODER_STATE_TYPE_WAVEFRONT_ROW) { kvz_threadqueue_free_job(&main_state->children[i].tqj_recon_done); main_state->children[i].tqj_recon_done = kvz_threadqueue_job_create(encoder_state_worker_encode_children, &main_state->children[i]); if (main_state->children[i].previous_encoder_state != &main_state->children[i] && main_state->children[i].previous_encoder_state->tqj_recon_done && !main_state->children[i].frame->is_irap) { #if 0 // Disabled due to non-determinism. if (main_state->encoder_control->cfg->mv_constraint == KVZ_MV_CONSTRAIN_FRAME_AND_TILE_MARGIN) { // When MV's don't cross tile boundaries, add dependancy only to the same tile. kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[i].previous_encoder_state->tqj_recon_done); } else #endif { // Add dependancy to each child in the previous frame. for (int child_id = 0; main_state->children[child_id].encoder_control; ++child_id) { kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[child_id].previous_encoder_state->tqj_recon_done); } } } kvz_threadqueue_submit(main_state->encoder_control->threadqueue, main_state->children[i].tqj_recon_done); } else { //Wavefront rows have parallelism at LCU level, so we should not launch multiple threads here! //FIXME: add an assert: we can only have wavefront children encoder_state_worker_encode_children(&(main_state->children[i])); } } } else { for (int i = 0; main_state->children[i].encoder_control; ++i) { encoder_state_worker_encode_children(&(main_state->children[i])); } } } else { switch (main_state->type) { case ENCODER_STATE_TYPE_TILE: case ENCODER_STATE_TYPE_SLICE: case ENCODER_STATE_TYPE_WAVEFRONT_ROW: encoder_state_encode_leaf(main_state); break; default: fprintf(stderr, "Unsupported leaf type %c!\n", main_state->type); assert(0); } } } static void encoder_ref_insertion_sort(const encoder_state_t *const state, uint8_t reflist[16], uint8_t length, bool reverse) { for (uint8_t i = 1; i < length; ++i) { const uint8_t cur_idx = reflist[i]; const int32_t cur_poc = state->frame->ref->pocs[cur_idx]; int8_t j = i; while ((j > 0 && !reverse && cur_poc > state->frame->ref->pocs[reflist[j - 1]]) || (j > 0 && reverse && cur_poc < state->frame->ref->pocs[reflist[j - 1]])) { reflist[j] = reflist[j - 1]; --j; } reflist[j] = cur_idx; } } /** * \brief Generate reference picture lists. * * \param state main encoder state */ void kvz_encoder_create_ref_lists(const encoder_state_t *const state) { const kvz_config *cfg = &state->encoder_control->cfg; FILL_ARRAY(state->frame->ref_LX_size, 0, 2); int num_negative = 0; int num_positive = 0; // Add positive references to L1 list for (int i = 0; i < state->frame->ref->used_size; i++) { if (state->frame->ref->pocs[i] > state->frame->poc) { state->frame->ref_LX[1][state->frame->ref_LX_size[1]] = i; state->frame->ref_LX_size[1] += 1; num_positive++; } } // Add negative references to L1 list when bipred is enabled and GOP is // either disabled or does not use picture reordering. bool l1_negative_refs = (cfg->bipred && (cfg->gop_len == 0 || cfg->gop_lowdelay)); // Add negative references to L0 and L1 lists. for (int i = 0; i < state->frame->ref->used_size; i++) { if (state->frame->ref->pocs[i] < state->frame->poc) { state->frame->ref_LX[0][state->frame->ref_LX_size[0]] = i; state->frame->ref_LX_size[0] += 1; if (l1_negative_refs) { state->frame->ref_LX[1][state->frame->ref_LX_size[1]] = i; state->frame->ref_LX_size[1] += 1; } num_negative++; } } // Fill the rest with -1. for (int i = state->frame->ref_LX_size[0]; i < 16; i++) { state->frame->ref_LX[0][i] = 0xff; } for (int i = state->frame->ref_LX_size[1]; i < 16; i++) { state->frame->ref_LX[1][i] = 0xff; } // Sort reference lists. encoder_ref_insertion_sort(state, state->frame->ref_LX[0], num_negative, false); encoder_ref_insertion_sort(state, state->frame->ref_LX[1], num_positive, true); if (l1_negative_refs) { encoder_ref_insertion_sort(state, state->frame->ref_LX[1] + num_positive, num_negative, false); } } /** * \brief Remove any references that should no longer be used. */ static void encoder_state_remove_refs(encoder_state_t *state) { const encoder_control_t * const encoder = state->encoder_control; int neg_refs = encoder->cfg.gop[state->frame->gop_offset].ref_neg_count; int pos_refs = encoder->cfg.gop[state->frame->gop_offset].ref_pos_count; unsigned target_ref_num; if (encoder->cfg.gop_len) { target_ref_num = neg_refs + pos_refs; } else { target_ref_num = encoder->cfg.ref_frames; } if (state->frame->pictype == KVZ_NAL_IDR_W_RADL || state->frame->pictype == KVZ_NAL_IDR_N_LP) { target_ref_num = 0; } if (encoder->cfg.gop_len && target_ref_num > 0) { // With GOP in use, go through all the existing reference pictures and // remove any picture that is not referenced by the current picture. for (int ref = state->frame->ref->used_size - 1; ref >= 0; --ref) { bool is_referenced = false; int ref_poc = state->frame->ref->pocs[ref]; for (int i = 0; i < neg_refs; i++) { int ref_relative_poc = -encoder->cfg.gop[state->frame->gop_offset].ref_neg[i]; if (ref_poc == state->frame->poc + ref_relative_poc) { is_referenced = true; break; } } for (int i = 0; i < pos_refs; i++) { int ref_relative_poc = encoder->cfg.gop[state->frame->gop_offset].ref_pos[i]; if (ref_poc == state->frame->poc + ref_relative_poc) { is_referenced = true; break; } } if (ref_poc < state->frame->irap_poc && state->frame->irap_poc < state->frame->poc) { // Trailing frames cannot refer to leading frames. is_referenced = false; } if (encoder->cfg.intra_period > 0 && ref_poc < state->frame->irap_poc - encoder->cfg.intra_period) { // No frame can refer past the two preceding IRAP frames. is_referenced = false; } if (!is_referenced) { // This reference is not referred to by this frame, it must be removed. kvz_image_list_rem(state->frame->ref, ref); } } } else { // Without GOP, remove the oldest picture. while (state->frame->ref->used_size > target_ref_num) { int8_t oldest_ref = state->frame->ref->used_size - 1; kvz_image_list_rem(state->frame->ref, oldest_ref); } } assert(state->frame->ref->used_size <= target_ref_num); } static void encoder_set_source_picture(encoder_state_t * const state, kvz_picture* frame) { assert(!state->tile->frame->source); assert(!state->tile->frame->rec); state->tile->frame->source = frame; if (state->encoder_control->cfg.lossless) { // In lossless mode, the reconstruction is equal to the source frame. state->tile->frame->rec = kvz_image_copy_ref(frame); } else { state->tile->frame->rec = kvz_image_alloc(state->encoder_control->chroma_format, frame->width, frame->height); state->tile->frame->rec->dts = frame->dts; state->tile->frame->rec->pts = frame->pts; } kvz_videoframe_set_poc(state->tile->frame, state->frame->poc); } static void encoder_state_init_children(encoder_state_t * const state) { kvz_bitstream_clear(&state->stream); if (state->is_leaf) { //Leaf states have cabac and context kvz_cabac_start(&state->cabac); kvz_init_contexts(state, state->encoder_control->cfg.set_qp_in_cu ? 26 : state->frame->QP, state->frame->slicetype); } //Clear the jobs kvz_threadqueue_free_job(&state->tqj_bitstream_written); kvz_threadqueue_free_job(&state->tqj_recon_done); //Copy the constraint pointer // TODO: Try to do it in the if (state->is_leaf) //if (state->parent != NULL) { // state->constraint = state->parent->constraint; //} for (int i = 0; state->children[i].encoder_control; ++i) { encoder_state_init_children(&state->children[i]); } } static void normalize_lcu_weights(encoder_state_t * const state) { if (state->frame->num == 0) return; const uint32_t num_lcus = state->encoder_control->in.width_in_lcu * state->encoder_control->in.height_in_lcu; double sum = 0.0; for (uint32_t i = 0; i < num_lcus; i++) { sum += state->frame->lcu_stats[i].weight; } for (uint32_t i = 0; i < num_lcus; i++) { state->frame->lcu_stats[i].weight /= sum; } } // Check if lcu is edge lcu. Return false if frame dimensions are 64 divisible static bool edge_lcu(int id, int lcus_x, int lcus_y, bool xdiv64, bool ydiv64) { if (xdiv64 && ydiv64) { return false; } int last_row_first_id = (lcus_y - 1) * lcus_x; if ((id % lcus_x == lcus_x - 1 && !xdiv64) || (id >= last_row_first_id && !ydiv64)) { return true; } else { return false; } } static void encoder_state_init_new_frame(encoder_state_t * const state, kvz_picture* frame) { assert(state->type == ENCODER_STATE_TYPE_MAIN); const kvz_config * const cfg = &state->encoder_control->cfg; encoder_set_source_picture(state, frame); assert(!state->tile->frame->cu_array); state->tile->frame->cu_array = kvz_cu_array_alloc( state->tile->frame->width, state->tile->frame->height ); // Variance adaptive quantization if (cfg->vaq) { const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400; double d = cfg->vaq * 0.1; // Empirically decided constant. Affects delta-QP strength // Calculate frame pixel variance uint32_t len = state->tile->frame->width * state->tile->frame->height; uint32_t c_len = len / 4; double frame_var = kvz_pixel_var(state->tile->frame->source->y, len); if (has_chroma) { frame_var += kvz_pixel_var(state->tile->frame->source->u, c_len); frame_var += kvz_pixel_var(state->tile->frame->source->v, c_len); } // Loop through LCUs // For each LCU calculate: D * (log(LCU pixel variance) - log(frame pixel variance)) unsigned x_lim = state->tile->frame->width_in_lcu; unsigned y_lim = state->tile->frame->height_in_lcu; unsigned id = 0; for (int y = 0; y < y_lim; ++y) { for (int x = 0; x < x_lim; ++x) { kvz_pixel tmp[LCU_LUMA_SIZE]; int pxl_x = x * LCU_WIDTH; int pxl_y = y * LCU_WIDTH; int x_max = MIN(pxl_x + LCU_WIDTH, frame->width) - pxl_x; int y_max = MIN(pxl_y + LCU_WIDTH, frame->height) - pxl_y; bool xdiv64 = false; bool ydiv64 = false; if (frame->width % 64 == 0) xdiv64 = true; if (frame->height % 64 == 0) ydiv64 = true; // Luma variance if (!edge_lcu(id, x_lim, y_lim, xdiv64, ydiv64)) { kvz_pixels_blit(&state->tile->frame->source->y[pxl_x + pxl_y * state->tile->frame->source->stride], tmp, x_max, y_max, state->tile->frame->source->stride, LCU_WIDTH); } else { // Extend edge pixels for edge lcus for (int y = 0; y < LCU_WIDTH; y++) { for (int x = 0; x < LCU_WIDTH; x++) { int src_y = CLIP(0, frame->height - 1, pxl_y + y); int src_x = CLIP(0, frame->width - 1, pxl_x + x); tmp[y * LCU_WIDTH + x] = state->tile->frame->source->y[src_y * state->tile->frame->source->stride + src_x]; } } } double lcu_var = kvz_pixel_var(tmp, LCU_LUMA_SIZE); if (has_chroma) { // Add chroma variance if not monochrome int32_t c_stride = state->tile->frame->source->stride >> 1; kvz_pixel chromau_tmp[LCU_CHROMA_SIZE]; kvz_pixel chromav_tmp[LCU_CHROMA_SIZE]; int lcu_chroma_width = LCU_WIDTH >> 1; int c_pxl_x = x * lcu_chroma_width; int c_pxl_y = y * lcu_chroma_width; int c_x_max = MIN(c_pxl_x + lcu_chroma_width, frame->width >> 1) - c_pxl_x; int c_y_max = MIN(c_pxl_y + lcu_chroma_width, frame->height >> 1) - c_pxl_y; if (!edge_lcu(id, x_lim, y_lim, xdiv64, ydiv64)) { kvz_pixels_blit(&state->tile->frame->source->u[c_pxl_x + c_pxl_y * c_stride], chromau_tmp, c_x_max, c_y_max, c_stride, lcu_chroma_width); kvz_pixels_blit(&state->tile->frame->source->v[c_pxl_x + c_pxl_y * c_stride], chromav_tmp, c_x_max, c_y_max, c_stride, lcu_chroma_width); } else { for (int y = 0; y < lcu_chroma_width; y++) { for (int x = 0; x < lcu_chroma_width; x++) { int src_y = CLIP(0, (frame->height >> 1) - 1, c_pxl_y + y); int src_x = CLIP(0, (frame->width >> 1) - 1, c_pxl_x + x); chromau_tmp[y * lcu_chroma_width + x] = state->tile->frame->source->u[src_y * c_stride + src_x]; chromav_tmp[y * lcu_chroma_width + x] = state->tile->frame->source->v[src_y * c_stride + src_x]; } } } lcu_var += kvz_pixel_var(chromau_tmp, LCU_CHROMA_SIZE); lcu_var += kvz_pixel_var(chromav_tmp, LCU_CHROMA_SIZE); } state->frame->aq_offsets[id] = d * (log(lcu_var) - log(frame_var)); id++; } } } // Variance adaptive quantization - END // Use this flag to handle closed gop irap picture selection. // If set to true, irap is already set and we avoid // setting it based on the intra period bool is_closed_normal_gop = false; encoder_state_t *previous = state->previous_encoder_state; int owf = MIN(state->encoder_control->cfg.owf, state->frame->num); const int layer = state->encoder_control->cfg.gop[state->frame->gop_offset].layer; while (--owf > 0 && layer != state->encoder_control->cfg.gop[previous->frame->gop_offset].layer) { previous = previous->previous_encoder_state; } if (owf == 0) previous = state; state->frame->previous_layer_state = previous; // Set POC. if (state->frame->num == 0) { state->frame->poc = 0; } else if (cfg->gop_len && !cfg->gop_lowdelay) { int32_t framenum = state->frame->num - 1; // Handle closed GOP // Closed GOP structure has an extra IDR between the GOPs if (cfg->intra_period > 0 && !cfg->open_gop) { is_closed_normal_gop = true; if (framenum % (cfg->intra_period + 1) == cfg->intra_period) { // Insert IDR before each new GOP after intra period in closed GOP configuration state->frame->poc = 0; } else { // Calculate frame number again and use that for the POC framenum = framenum % (cfg->intra_period + 1); int32_t poc_offset = cfg->gop[state->frame->gop_offset].poc_offset; state->frame->poc = framenum - framenum % cfg->gop_len + poc_offset; // This should not be an irap picture in closed GOP state->frame->is_irap = false; } } else { // Open GOP // Calculate POC according to the global frame counter and GOP structure int32_t poc_offset = cfg->gop[state->frame->gop_offset].poc_offset; state->frame->poc = framenum - framenum % cfg->gop_len + poc_offset; } kvz_videoframe_set_poc(state->tile->frame, state->frame->poc); } else if (cfg->intra_period > 1) { state->frame->poc = state->frame->num % cfg->intra_period; } else { state->frame->poc = state->frame->num; } // Check whether the frame is a keyframe or not. if (state->frame->num == 0 || state->frame->poc == 0) { state->frame->is_irap = true; } else if(!is_closed_normal_gop) { // In closed-GOP IDR frames are poc==0 so skip this check state->frame->is_irap = cfg->intra_period > 0 && (state->frame->poc % cfg->intra_period) == 0; } if (state->frame->is_irap) { state->frame->irap_poc = state->frame->poc; } // Set pictype. if (state->frame->is_irap) { if (state->frame->num == 0 || cfg->intra_period == 1 || cfg->gop_len == 0 || cfg->gop_lowdelay || !cfg->open_gop) // Closed GOP uses IDR pictures { state->frame->pictype = KVZ_NAL_IDR_N_LP; if (cfg->intra_period == 1 && state->frame->num > 0) state->frame->pictype = KVZ_NAL_IDR_W_RADL; } else { state->frame->pictype = KVZ_NAL_CRA_NUT; } } else if (state->frame->poc < state->frame->irap_poc) { state->frame->pictype = KVZ_NAL_RASL; } else { state->frame->pictype = KVZ_NAL_TRAIL; } encoder_state_remove_refs(state); kvz_encoder_create_ref_lists(state); // Set slicetype. if (state->frame->is_irap) { state->frame->slicetype = KVZ_SLICE_I; } else if (state->frame->ref_LX_size[1] > 0) { state->frame->slicetype = KVZ_SLICE_B; } else { state->frame->slicetype = KVZ_SLICE_P; } if (cfg->target_bitrate > 0 && state->frame->num > cfg->owf) { normalize_lcu_weights(state); } state->frame->cur_frame_bits_coded = 0; switch (state->encoder_control->cfg.rc_algorithm) { case KVZ_NO_RC: case KVZ_LAMBDA: kvz_set_picture_lambda_and_qp(state); break; case KVZ_OBA: kvz_estimate_pic_lambda(state); break; default: assert(0); } encoder_state_init_children(state); } static void _encode_one_frame_add_bitstream_deps(const encoder_state_t * const state, threadqueue_job_t * const job) { int i; for (i = 0; state->children[i].encoder_control; ++i) { _encode_one_frame_add_bitstream_deps(&state->children[i], job); } if (state->tqj_bitstream_written) { kvz_threadqueue_job_dep_add(job, state->tqj_bitstream_written); } if (state->tqj_recon_done) { kvz_threadqueue_job_dep_add(job, state->tqj_recon_done); } } void kvz_encode_one_frame(encoder_state_t * const state, kvz_picture* frame) { #if KVZ_DEBUG_PRINT_CABAC == 1 kvz_cabac_bins_count = 0; if (state->frame->num == 0) kvz_cabac_bins_verbose = true; else kvz_cabac_bins_verbose = false; #endif encoder_state_init_new_frame(state, frame); encoder_state_encode(state); threadqueue_job_t *job = kvz_threadqueue_job_create(kvz_encoder_state_worker_write_bitstream, state); _encode_one_frame_add_bitstream_deps(state, job); if (state->previous_encoder_state != state && state->previous_encoder_state->tqj_bitstream_written) { //We need to depend on previous bitstream generation kvz_threadqueue_job_dep_add(job, state->previous_encoder_state->tqj_bitstream_written); } kvz_threadqueue_submit(state->encoder_control->threadqueue, job); assert(!state->tqj_bitstream_written); state->tqj_bitstream_written = job; state->frame->done = 0; } /** * Prepare the encoder state for encoding the next frame. * * - Add the previous reconstructed picture as a reference, if needed. * - Free the previous reconstructed and source pictures. * - Create a new cu array, if needed. * - Update frame count and POC. */ void kvz_encoder_prepare(encoder_state_t *state) { const encoder_control_t * const encoder = state->encoder_control; // The previous frame must be done before the next one is started. assert(state->frame->done); if (state->frame->num == -1) { // We're at the first frame, so don't care about all this stuff. state->frame->num = 0; state->frame->poc = 0; state->frame->irap_poc = 0; assert(!state->tile->frame->source); assert(!state->tile->frame->rec); assert(!state->tile->frame->cu_array); state->frame->prepared = 1; return; } // NOTE: prev_state is equal to state when OWF is zero encoder_state_t *prev_state = state->previous_encoder_state; if (state->previous_encoder_state != state) { kvz_cu_array_free(&state->tile->frame->cu_array); unsigned width = state->tile->frame->width_in_lcu * LCU_WIDTH; unsigned height = state->tile->frame->height_in_lcu * LCU_WIDTH; state->tile->frame->cu_array = kvz_cu_array_alloc(width, height); kvz_image_list_copy_contents(state->frame->ref, prev_state->frame->ref); kvz_encoder_create_ref_lists(state); } if (!encoder->cfg.gop_len || !prev_state->frame->poc || encoder->cfg.gop[prev_state->frame->gop_offset].is_ref) { // Store current list of POCs for use in TMVP derivation memcpy(prev_state->tile->frame->rec->ref_pocs, state->frame->ref->pocs, sizeof(int32_t)*state->frame->ref->used_size); // Add previous reconstructed picture as a reference kvz_image_list_add(state->frame->ref, prev_state->tile->frame->rec, prev_state->tile->frame->cu_array, prev_state->frame->poc, prev_state->frame->ref_LX); kvz_cu_array_free(&state->tile->frame->cu_array); unsigned height = state->tile->frame->height_in_lcu * LCU_WIDTH; unsigned width = state->tile->frame->width_in_lcu * LCU_WIDTH; state->tile->frame->cu_array = kvz_cu_array_alloc(width, height); } // Remove source and reconstructed picture. kvz_image_free(state->tile->frame->source); state->tile->frame->source = NULL; kvz_image_free(state->tile->frame->rec); state->tile->frame->rec = NULL; kvz_cu_array_free(&state->tile->frame->cu_array); // Update POC and frame count. state->frame->num = prev_state->frame->num + 1; state->frame->poc = prev_state->frame->poc + 1; state->frame->irap_poc = prev_state->frame->irap_poc; state->frame->prepared = 1; } coeff_scan_order_t kvz_get_scan_order(int8_t cu_type, int intra_mode, int depth) { // Scan mode is diagonal, except for 4x4+8x8 luma and 4x4 chroma, where: // - angular 6-14 = vertical // - angular 22-30 = horizontal #if HEVC_USE_MDCS if (cu_type == CU_INTRA && depth >= 3) { if (intra_mode >= 6 && intra_mode <= 14) { return SCAN_VER; } else if (intra_mode >= 22 && intra_mode <= 30) { return SCAN_HOR; } } #endif return SCAN_DIAG; } lcu_stats_t* kvz_get_lcu_stats(encoder_state_t *state, int lcu_x, int lcu_y) { const int index = lcu_x + state->tile->lcu_offset_x + (lcu_y + state->tile->lcu_offset_y) * state->encoder_control->in.width_in_lcu; return &state->frame->lcu_stats[index]; } int kvz_get_cu_ref_qp(const encoder_state_t *state, int x, int y, int last_qp) { const encoder_control_t *ctrl = state->encoder_control; const cu_array_t *cua = state->tile->frame->cu_array; // Quantization group width const int qg_width = LCU_WIDTH >> MIN(ctrl->max_qp_delta_depth, kvz_cu_array_at_const(cua, x, y)->depth); // Coordinates of the top-left corner of the quantization group const int x_qg = x & ~(qg_width - 1); const int y_qg = y & ~(qg_width - 1); int qp_pred_a = last_qp; if (x_qg % LCU_WIDTH > 0) { qp_pred_a = kvz_cu_array_at_const(cua, x_qg - 1, y_qg)->qp; } int qp_pred_b = last_qp; if (y_qg % LCU_WIDTH > 0) { qp_pred_b = kvz_cu_array_at_const(cua, x_qg, y_qg - 1)->qp; } return ((qp_pred_a + qp_pred_b + 1) >> 1); }