/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "threads.h" #include "image.h" #include "strategyselector.h" #include #include #include #include #include #include "checkpoint.h" #include "sao.h" /** * \brief Allocate a new image. * \return image pointer or NULL on failure */ kvz_picture *kvz_image_alloc(const int32_t width, const int32_t height) { //Assert that we have a well defined image assert((width % 2) == 0); assert((height % 2) == 0); kvz_picture *im = MALLOC(kvz_picture, 1); if (!im) return NULL; unsigned int luma_size = width * height; unsigned int chroma_size = luma_size / 4; //Allocate memory im->fulldata = MALLOC(kvz_pixel, (luma_size + 2 * chroma_size)); if (!im->fulldata) { free(im); return NULL; } im->base_image = im; im->refcount = 1; //We give a reference to caller im->width = width; im->height = height; im->stride = width; im->y = im->data[COLOR_Y] = &im->fulldata[0]; im->u = im->data[COLOR_U] = &im->fulldata[luma_size]; im->v = im->data[COLOR_V] = &im->fulldata[luma_size + chroma_size]; im->pts = 0; im->dts = 0; return im; } /** * \brief Free an image. * * Decrement reference count of the image and deallocate associated memory * if no references exist any more. * * \param im image to free */ void kvz_image_free(kvz_picture *const im) { if (im == NULL) return; int32_t new_refcount = KVZ_ATOMIC_DEC(&(im->refcount)); if (new_refcount > 0) { // There are still references so we don't free the data yet. return; } if (im->base_image != im) { // Free our reference to the base image. kvz_image_free(im->base_image); } else { free(im->fulldata); } // Make sure freed data won't be used. im->base_image = NULL; im->fulldata = NULL; im->y = im->u = im->v = NULL; im->data[COLOR_Y] = im->data[COLOR_U] = im->data[COLOR_V] = NULL; free(im); } /** * \brief Get a new pointer to an image. * * Increment reference count and return the image. */ kvz_picture *kvz_image_copy_ref(kvz_picture *im) { // The caller should have had another reference. assert(im->refcount > 0); KVZ_ATOMIC_INC(&(im->refcount)); return im; } kvz_picture *kvz_image_make_subimage(kvz_picture *const orig_image, const unsigned x_offset, const unsigned y_offset, const unsigned width, const unsigned height) { // Assert that we have a well defined image assert((width % 2) == 0); assert((height % 2) == 0); assert((x_offset % 2) == 0); assert((y_offset % 2) == 0); assert(x_offset + width <= orig_image->width); assert(y_offset + height <= orig_image->height); kvz_picture *im = MALLOC(kvz_picture, 1); if (!im) return NULL; im->base_image = kvz_image_copy_ref(orig_image->base_image); im->refcount = 1; // We give a reference to caller im->width = width; im->height = height; im->stride = orig_image->stride; im->y = im->data[COLOR_Y] = &orig_image->y[x_offset + y_offset * orig_image->stride]; im->u = im->data[COLOR_U] = &orig_image->u[x_offset/2 + y_offset/2 * orig_image->stride/2]; im->v = im->data[COLOR_V] = &orig_image->v[x_offset/2 + y_offset/2 * orig_image->stride/2]; im->pts = 0; im->dts = 0; return im; } yuv_t * kvz_yuv_t_alloc(int luma_size) { // Get buffers with separate mallocs in order to take advantage of // automatic buffer overrun checks. yuv_t *yuv = (yuv_t *)malloc(sizeof(*yuv)); yuv->y = (kvz_pixel *)malloc(luma_size * sizeof(*yuv->y)); yuv->u = (kvz_pixel *)malloc(luma_size / 2 * sizeof(*yuv->u)); yuv->v = (kvz_pixel *)malloc(luma_size / 2 * sizeof(*yuv->v)); yuv->size = luma_size; return yuv; } void kvz_yuv_t_free(yuv_t * yuv) { free(yuv->y); free(yuv->u); free(yuv->v); free(yuv); } hi_prec_buf_t * kvz_hi_prec_buf_t_alloc(int luma_size) { // Get buffers with separate mallocs in order to take advantage of // automatic buffer overrun checks. hi_prec_buf_t *yuv = (hi_prec_buf_t *)malloc(sizeof(*yuv)); yuv->y = (int16_t *)malloc(luma_size * sizeof(*yuv->y)); yuv->u = (int16_t *)malloc(luma_size / 2 * sizeof(*yuv->u)); yuv->v = (int16_t *)malloc(luma_size / 2 * sizeof(*yuv->v)); yuv->size = luma_size; return yuv; } void kvz_hi_prec_buf_t_free(hi_prec_buf_t * yuv) { free(yuv->y); free(yuv->u); free(yuv->v); free(yuv); } /** * \brief Diagonally interpolate SAD outside the frame. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param width Width of the pixel array. * * \returns Sum of Absolute Differences */ static unsigned cor_sad(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int block_width, int block_height, unsigned pic_stride) { kvz_pixel ref = *ref_data; int x, y; unsigned sad = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sad += abs(pic_data[y * pic_stride + x] - ref); } } return sad; } /** * \brief Vertically interpolate SAD outside the frame. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param width Width of the pixel array. * * \returns Sum of Absolute Differences */ static unsigned ver_sad(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int block_width, int block_height, unsigned pic_stride) { int x, y; unsigned sad = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sad += abs(pic_data[y * pic_stride + x] - ref_data[x]); } } return sad; } /** * \brief Horizontally interpolate SAD outside the frame. * * \param data1 Starting point of the first picture. * \param data2 Starting point of the second picture. * \param width Width of the region for which SAD is calculated. * \param height Height of the region for which SAD is calculated. * \param width Width of the pixel array. * * \returns Sum of Absolute Differences */ static unsigned hor_sad(const kvz_pixel *pic_data, const kvz_pixel *ref_data, int block_width, int block_height, unsigned pic_stride, unsigned ref_stride) { int x, y; unsigned sad = 0; for (y = 0; y < block_height; ++y) { for (x = 0; x < block_width; ++x) { sad += abs(pic_data[y * pic_stride + x] - ref_data[y * ref_stride]); } } return sad; } /** * \brief Handle special cases of comparing blocks that are not completely * inside the frame. * * \param pic First frame. * \param ref Second frame. * \param pic_x X coordinate of the first block. * \param pic_y Y coordinate of the first block. * \param ref_x X coordinate of the second block. * \param ref_y Y coordinate of the second block. * \param block_width Width of the blocks. * \param block_height Height of the blocks. */ static unsigned image_interpolated_sad(const kvz_picture *pic, const kvz_picture *ref, int pic_x, int pic_y, int ref_x, int ref_y, int block_width, int block_height) { kvz_pixel *pic_data, *ref_data; int left, right, top, bottom; int result = 0; // Change the movement vector to point right next to the frame. This doesn't // affect the result but removes some special cases. if (ref_x > ref->width) ref_x = ref->width; if (ref_y > ref->height) ref_y = ref->height; if (ref_x + block_width < 0) ref_x = -block_width; if (ref_y + block_height < 0) ref_y = -block_height; // These are the number of pixels by how far the movement vector points // outside the frame. They are always >= 0. If all of them are 0, the // movement vector doesn't point outside the frame. left = (ref_x < 0) ? -ref_x : 0; top = (ref_y < 0) ? -ref_y : 0; right = (ref_x + block_width > ref->width) ? ref_x + block_width - ref->width : 0; bottom = (ref_y + block_height > ref->height) ? ref_y + block_height - ref->height : 0; // Center picture to the current block and reference to the point where // movement vector is pointing to. That point might be outside the buffer, // but that is ok because we project the movement vector to the buffer // before dereferencing the pointer. pic_data = &pic->y[pic_y * pic->stride + pic_x]; ref_data = &ref->y[ref_y * ref->stride + ref_x]; // The handling of movement vectors that point outside the picture is done // in the following way. // - Correct the index of ref_data so that it points to the top-left // of the area we want to compare against. // - Correct the index of pic_data to point inside the current block, so // that we compare the right part of the block to the ref_data. // - Reduce block_width and block_height so that the the size of the area // being compared is correct. if (top && left) { result += cor_sad(pic_data, &ref_data[top * ref->stride + left], left, top, pic->stride); result += ver_sad(&pic_data[left], &ref_data[top * ref->stride + left], block_width - left, top, pic->stride); result += hor_sad(&pic_data[top * pic->stride], &ref_data[top * ref->stride + left], left, block_height - top, pic->stride, ref->stride); result += kvz_reg_sad(&pic_data[top * pic->stride + left], &ref_data[top * ref->stride + left], block_width - left, block_height - top, pic->stride, ref->stride); } else if (top && right) { result += ver_sad(pic_data, &ref_data[top * ref->stride], block_width - right, top, pic->stride); result += cor_sad(&pic_data[block_width - right], &ref_data[top * ref->stride + (block_width - right - 1)], right, top, pic->stride); result += kvz_reg_sad(&pic_data[top * pic->stride], &ref_data[top * ref->stride], block_width - right, block_height - top, pic->stride, ref->stride); result += hor_sad(&pic_data[top * pic->stride + (block_width - right)], &ref_data[top * ref->stride + (block_width - right - 1)], right, block_height - top, pic->stride, ref->stride); } else if (bottom && left) { result += hor_sad(pic_data, &ref_data[left], left, block_height - bottom, pic->stride, ref->stride); result += kvz_reg_sad(&pic_data[left], &ref_data[left], block_width - left, block_height - bottom, pic->stride, ref->stride); result += cor_sad(&pic_data[(block_height - bottom) * pic->stride], &ref_data[(block_height - bottom - 1) * ref->stride + left], left, bottom, pic->stride); result += ver_sad(&pic_data[(block_height - bottom) * pic->stride + left], &ref_data[(block_height - bottom - 1) * ref->stride + left], block_width - left, bottom, pic->stride); } else if (bottom && right) { result += kvz_reg_sad(pic_data, ref_data, block_width - right, block_height - bottom, pic->stride, ref->stride); result += hor_sad(&pic_data[block_width - right], &ref_data[block_width - right - 1], right, block_height - bottom, pic->stride, ref->stride); result += ver_sad(&pic_data[(block_height - bottom) * pic->stride], &ref_data[(block_height - bottom - 1) * ref->stride], block_width - right, bottom, pic->stride); result += cor_sad(&pic_data[(block_height - bottom) * pic->stride + block_width - right], &ref_data[(block_height - bottom - 1) * ref->stride + block_width - right - 1], right, bottom, pic->stride); } else if (top) { result += ver_sad(pic_data, &ref_data[top * ref->stride], block_width, top, pic->stride); result += kvz_reg_sad(&pic_data[top * pic->stride], &ref_data[top * ref->stride], block_width, block_height - top, pic->stride, ref->stride); } else if (bottom) { result += kvz_reg_sad(pic_data, ref_data, block_width, block_height - bottom, pic->stride, ref->stride); result += ver_sad(&pic_data[(block_height - bottom) * pic->stride], &ref_data[(block_height - bottom - 1) * ref->stride], block_width, bottom, pic->stride); } else if (left) { result += hor_sad(pic_data, &ref_data[left], left, block_height, pic->stride, ref->stride); result += kvz_reg_sad(&pic_data[left], &ref_data[left], block_width - left, block_height, pic->stride, ref->stride); } else if (right) { result += kvz_reg_sad(pic_data, ref_data, block_width - right, block_height, pic->stride, ref->stride); result += hor_sad(&pic_data[block_width - right], &ref_data[block_width - right - 1], right, block_height, pic->stride, ref->stride); } else { result += kvz_reg_sad(pic_data, ref_data, block_width, block_height, pic->stride, ref->stride); } return result; } /** * \brief Calculate interpolated SAD between two blocks. * * \param pic Image for the block we are trying to find. * \param ref Image where we are trying to find the block. * * \returns */ unsigned kvz_image_calc_sad(const kvz_picture *pic, const kvz_picture *ref, int pic_x, int pic_y, int ref_x, int ref_y, int block_width, int block_height, int max_lcu_below) { assert(pic_x >= 0 && pic_x <= pic->width - block_width); assert(pic_y >= 0 && pic_y <= pic->height - block_height); // Check that we are not referencing pixels that are not final. if (max_lcu_below >= 0) { // When SAO is off, row is considered reconstructed when the last LCU // is done, although the bottom 2 pixels might still need deblocking. // To work around this, add 2 luma pixels to the reach of the mv // in order to avoid referencing those possibly non-deblocked pixels. int mv_lcu_row_reach = (ref_y + block_height - 1 + 2) / LCU_WIDTH; int cur_lcu_row = pic_y / LCU_WIDTH; if (mv_lcu_row_reach > cur_lcu_row + max_lcu_below) { //printf("OOB %d %d -> %d\n", ref_y + block_height, pic_y, ref_y + block_height - pic_y); return INT_MAX; } } if (ref_x >= 0 && ref_x <= ref->width - block_width && ref_y >= 0 && ref_y <= ref->height - block_height) { // Reference block is completely inside the frame, so just calculate the // SAD directly. This is the most common case, which is why it's first. const kvz_pixel *pic_data = &pic->y[pic_y * pic->stride + pic_x]; const kvz_pixel *ref_data = &ref->y[ref_y * ref->stride + ref_x]; return kvz_reg_sad(pic_data, ref_data, block_width, block_height, pic->stride, ref->stride)>>(KVZ_BIT_DEPTH-8); } else { // Call a routine that knows how to interpolate pixels outside the frame. return image_interpolated_sad(pic, ref, pic_x, pic_y, ref_x, ref_y, block_width, block_height) >> (KVZ_BIT_DEPTH - 8); } } unsigned kvz_pixels_calc_ssd(const kvz_pixel *const ref, const kvz_pixel *const rec, const int ref_stride, const int rec_stride, const int width) { int ssd = 0; int y, x; for (y = 0; y < width; ++y) { for (x = 0; x < width; ++x) { int diff = ref[x + y * ref_stride] - rec[x + y * rec_stride]; ssd += diff * diff; } } return ssd; }