/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*/
#include "encoderstate.h"
#include
#include
#include
#include
#include "tables.h"
#include "config.h"
#include "cabac.h"
#include "image.h"
#include "nal.h"
#include "context.h"
#include "transform.h"
#include "intra.h"
#include "inter.h"
#include "filter.h"
#include "search.h"
#include "sao.h"
#include "rdo.h"
#include "rate_control.h"
#include "yuv_input.h"
int encoder_state_match_children_of_previous_frame(encoder_state_t * const state) {
int i;
for (i = 0; state->children[i].encoder_control; ++i) {
//Child should also exist for previous encoder
assert(state->previous_encoder_state->children[i].encoder_control);
state->children[i].previous_encoder_state = &state->previous_encoder_state->children[i];
encoder_state_match_children_of_previous_frame(&state->children[i]);
}
return 1;
}
static void encoder_state_recdata_to_bufs(encoder_state_t * const state, const lcu_order_element_t * const lcu, yuv_t * const hor_buf, yuv_t * const ver_buf) {
videoframe_t* const frame = state->tile->frame;
if (hor_buf) {
const int rdpx = lcu->position_px.x;
const int rdpy = lcu->position_px.y + lcu->size.y - 1;
const int by = lcu->position.y;
//Copy the bottom row of this LCU to the horizontal buffer
pixels_blit(&frame->rec->y[rdpy * frame->rec->stride + rdpx],
&hor_buf->y[lcu->position_px.x + by * frame->width],
lcu->size.x, 1, frame->rec->stride, frame->width);
pixels_blit(&frame->rec->u[(rdpy/2) * frame->rec->stride/2 + (rdpx/2)],
&hor_buf->u[lcu->position_px.x / 2 + by * frame->width / 2],
lcu->size.x / 2, 1, frame->rec->stride / 2, frame->width / 2);
pixels_blit(&frame->rec->v[(rdpy/2) * frame->rec->stride/2 + (rdpx/2)],
&hor_buf->v[lcu->position_px.x / 2 + by * frame->width / 2],
lcu->size.x / 2, 1, frame->rec->stride / 2, frame->width / 2);
}
if (ver_buf) {
const int rdpx = lcu->position_px.x + lcu->size.x - 1;
const int rdpy = lcu->position_px.y;
const int bx = lcu->position.x;
//Copy the right row of this LCU to the vertical buffer.
pixels_blit(&frame->rec->y[rdpy * frame->rec->stride + rdpx],
&ver_buf->y[lcu->position_px.y + bx * frame->height],
1, lcu->size.y, frame->rec->stride, 1);
pixels_blit(&frame->rec->u[(rdpy/2) * frame->rec->stride/2 + (rdpx/2)],
&ver_buf->u[lcu->position_px.y / 2 + bx * frame->height / 2],
1, lcu->size.y / 2, frame->rec->stride / 2, 1);
pixels_blit(&frame->rec->v[(rdpy/2) * frame->rec->stride/2 + (rdpx/2)],
&ver_buf->v[lcu->position_px.y / 2 + bx * frame->height / 2],
1, lcu->size.y / 2, frame->rec->stride / 2, 1);
}
}
static void encode_sao_color(encoder_state_t * const state, sao_info_t *sao,
color_t color_i)
{
cabac_data_t * const cabac = &state->cabac;
sao_eo_cat i;
int offset_index = (color_i == COLOR_V) ? 5 : 0;
// Skip colors with no SAO.
//FIXME: for now, we always have SAO for all channels
if (color_i == COLOR_Y && 0) return;
if (color_i != COLOR_Y && 0) return;
/// sao_type_idx_luma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass}
/// sao_type_idx_chroma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass}
// Encode sao_type_idx for Y and U+V.
if (color_i != COLOR_V) {
cabac->cur_ctx = &(cabac->ctx.sao_type_idx_model);
CABAC_BIN(cabac, sao->type != SAO_TYPE_NONE, "sao_type_idx");
if (sao->type == SAO_TYPE_BAND) {
CABAC_BIN_EP(cabac, 0, "sao_type_idx_ep");
} else if (sao->type == SAO_TYPE_EDGE) {
CABAC_BIN_EP(cabac, 1, "sao_type_idx_ep");
}
}
if (sao->type == SAO_TYPE_NONE) return;
/// sao_offset_abs[][][][]: TR, cMax = (1 << (Min(bitDepth, 10) - 5)) - 1,
/// cRiceParam = 0, bins = {bypass x N}
for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) {
cabac_write_unary_max_symbol_ep(cabac, abs(sao->offsets[i + offset_index]), SAO_ABS_OFFSET_MAX);
}
/// sao_offset_sign[][][][]: FL, cMax = 1, bins = {bypass}
/// sao_band_position[][][]: FL, cMax = 31, bins = {bypass x N}
/// sao_eo_class_luma: FL, cMax = 3, bins = {bypass x 3}
/// sao_eo_class_chroma: FL, cMax = 3, bins = {bypass x 3}
if (sao->type == SAO_TYPE_BAND) {
for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) {
// Positive sign is coded as 0.
if (sao->offsets[i + offset_index] != 0) {
CABAC_BIN_EP(cabac, sao->offsets[i + offset_index] < 0 ? 1 : 0, "sao_offset_sign");
}
}
// TODO: sao_band_position
// FL cMax=31 (5 bits)
CABAC_BINS_EP(cabac, sao->band_position[color_i == COLOR_V ? 1:0], 5, "sao_band_position");
} else if (color_i != COLOR_V) {
CABAC_BINS_EP(cabac, sao->eo_class, 2, "sao_eo_class");
}
}
static void encode_sao_merge_flags(encoder_state_t * const state, sao_info_t *sao, unsigned x_ctb, unsigned y_ctb)
{
cabac_data_t * const cabac = &state->cabac;
// SAO merge flags are not present for the first row and column.
if (x_ctb > 0) {
cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model);
CABAC_BIN(cabac, sao->merge_left_flag, "sao_merge_left_flag");
}
if (y_ctb > 0 && !sao->merge_left_flag) {
cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model);
CABAC_BIN(cabac, sao->merge_up_flag, "sao_merge_up_flag");
}
}
/**
* \brief Encode SAO information.
*/
static void encode_sao(encoder_state_t * const state,
unsigned x_lcu, uint16_t y_lcu,
sao_info_t *sao_luma, sao_info_t *sao_chroma)
{
// TODO: transmit merge flags outside sao_info
encode_sao_merge_flags(state, sao_luma, x_lcu, y_lcu);
// If SAO is merged, nothing else needs to be coded.
if (!sao_luma->merge_left_flag && !sao_luma->merge_up_flag) {
encode_sao_color(state, sao_luma, COLOR_Y);
encode_sao_color(state, sao_chroma, COLOR_U);
encode_sao_color(state, sao_chroma, COLOR_V);
}
}
static void encoder_state_worker_encode_lcu(void * opaque) {
const lcu_order_element_t * const lcu = opaque;
encoder_state_t *state = lcu->encoder_state;
const encoder_control_t * const encoder = state->encoder_control;
videoframe_t* const frame = state->tile->frame;
//This part doesn't write to bitstream, it's only search, deblock and sao
search_lcu(state, lcu->position_px.x, lcu->position_px.y, state->tile->hor_buf_search, state->tile->ver_buf_search);
encoder_state_recdata_to_bufs(state, lcu, state->tile->hor_buf_search, state->tile->ver_buf_search);
if (encoder->deblock_enable) {
filter_deblock_lcu(state, lcu->position_px.x, lcu->position_px.y);
}
if (encoder->sao_enable) {
const int stride = frame->width_in_lcu;
int32_t merge_cost_luma[3] = { INT32_MAX };
int32_t merge_cost_chroma[3] = { INT32_MAX };
sao_info_t *sao_luma = &frame->sao_luma[lcu->position.y * stride + lcu->position.x];
sao_info_t *sao_chroma = &frame->sao_chroma[lcu->position.y * stride + lcu->position.x];
// Merge candidates
sao_info_t *sao_top_luma = lcu->position.y != 0 ? &frame->sao_luma[(lcu->position.y - 1) * stride + lcu->position.x] : NULL;
sao_info_t *sao_left_luma = lcu->position.x != 0 ? &frame->sao_luma[lcu->position.y * stride + lcu->position.x - 1] : NULL;
sao_info_t *sao_top_chroma = lcu->position.y != 0 ? &frame->sao_chroma[(lcu->position.y - 1) * stride + lcu->position.x] : NULL;
sao_info_t *sao_left_chroma = lcu->position.x != 0 ? &frame->sao_chroma[lcu->position.y * stride + lcu->position.x - 1] : NULL;
sao_search_luma(state, frame, lcu->position.x, lcu->position.y, sao_luma, sao_top_luma, sao_left_luma, merge_cost_luma);
sao_search_chroma(state, frame, lcu->position.x, lcu->position.y, sao_chroma, sao_top_chroma, sao_left_chroma, merge_cost_chroma);
sao_luma->merge_up_flag = sao_luma->merge_left_flag = 0;
// Check merge costs
if (sao_top_luma) {
// Merge up if cost is equal or smaller to the searched mode cost
if (merge_cost_luma[2] + merge_cost_chroma[2] <= merge_cost_luma[0] + merge_cost_chroma[0]) {
*sao_luma = *sao_top_luma;
*sao_chroma = *sao_top_chroma;
sao_luma->merge_up_flag = 1;
sao_luma->merge_left_flag = 0;
}
}
if (sao_left_luma) {
// Merge left if cost is equal or smaller to the searched mode cost
// AND smaller than merge up cost, if merge up was already chosen
if (merge_cost_luma[1] + merge_cost_chroma[1] <= merge_cost_luma[0] + merge_cost_chroma[0]) {
if (!sao_luma->merge_up_flag || merge_cost_luma[1] + merge_cost_chroma[1] < merge_cost_luma[2] + merge_cost_chroma[2]) {
*sao_luma = *sao_left_luma;
*sao_chroma = *sao_left_chroma;
sao_luma->merge_left_flag = 1;
sao_luma->merge_up_flag = 0;
}
}
}
assert(sao_luma->eo_class < SAO_NUM_EO);
assert(sao_chroma->eo_class < SAO_NUM_EO);
CHECKPOINT_SAO_INFO("sao_luma", *sao_luma);
CHECKPOINT_SAO_INFO("sao_chroma", *sao_chroma);
}
// Copy LCU cu_array to main states cu_array, because that is the only one
// which is given to the next frame through image_list_t.
{
encoder_state_t *main_state = state;
while (main_state->parent) main_state = main_state->parent;
assert(main_state != state);
unsigned child_width_in_scu = state->tile->frame->width_in_lcu << MAX_DEPTH;
unsigned child_height_in_scu = state->tile->frame->height_in_lcu << MAX_DEPTH;
unsigned main_width_in_scu = main_state->tile->frame->width_in_lcu << MAX_DEPTH;
unsigned tile_x = state->tile->lcu_offset_x;
unsigned tile_y = state->tile->lcu_offset_y;
for (unsigned y = 0; y < child_height_in_scu; ++y) {
cu_info_t *main_row = &main_state->tile->frame->cu_array->data[tile_x + (tile_y + y) * main_width_in_scu];
cu_info_t *child_row = &state->tile->frame->cu_array->data[y * child_width_in_scu];
memcpy(main_row, child_row, sizeof(cu_info_t) * child_width_in_scu);
}
}
//Now write data to bitstream (required to have a correct CABAC state)
//First LCU, and we are in a slice. We need a slice header
if (state->type == ENCODER_STATE_TYPE_SLICE && lcu->index == 0) {
encoder_state_write_bitstream_slice_header(state);
bitstream_align(&state->stream);
}
//Encode SAO
if (encoder->sao_enable) {
encode_sao(state, lcu->position.x, lcu->position.y, &frame->sao_luma[lcu->position.y * frame->width_in_lcu + lcu->position.x], &frame->sao_chroma[lcu->position.y * frame->width_in_lcu + lcu->position.x]);
}
//Encode coding tree
encode_coding_tree(state, lcu->position.x << MAX_DEPTH, lcu->position.y << MAX_DEPTH, 0);
//Terminator
if (lcu->index < state->lcu_order_count - 1) {
//Since we don't handle slice segments, end of slice segment == end of slice
//Always 0 since otherwise it would be split
cabac_encode_bin_trm(&state->cabac, 0); // end_of_slice_segment_flag
}
//Wavefronts need the context to be copied to the next row
if (state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW && lcu->index == 1) {
int j;
//Find next encoder (next row)
for (j=0; state->parent->children[j].encoder_control; ++j) {
if (state->parent->children[j].wfrow->lcu_offset_y == state->wfrow->lcu_offset_y + 1) {
//And copy context
context_copy(&state->parent->children[j], state);
}
}
}
if (encoder->sao_enable && lcu->above) {
//If we're not the first in the row
if (lcu->above->left) {
encoder_state_recdata_to_bufs(state, lcu->above->left, state->tile->hor_buf_before_sao, NULL);
}
//Latest LCU in the row, copy the data from the one above also
if (!lcu->right) {
encoder_state_recdata_to_bufs(state, lcu->above, state->tile->hor_buf_before_sao, NULL);
}
}
}
static void encoder_state_encode_leaf(encoder_state_t * const state) {
assert(state->is_leaf);
assert(state->lcu_order_count > 0);
// Select whether to encode the frame/tile in current thread or to define
// wavefront jobs for other threads to handle.
bool wavefront = state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW;
bool use_parallel_encoding = (wavefront && state->parent->children[1].encoder_control);
if (!use_parallel_encoding) {
// Encode every LCU in order and perform SAO reconstruction after every
// frame is encoded. Deblocking and SAO search is done during LCU encoding.
for (int i = 0; i < state->lcu_order_count; ++i) {
PERFORMANCE_MEASURE_START(_DEBUG_PERF_ENCODE_LCU);
encoder_state_worker_encode_lcu(&state->lcu_order[i]);
#ifdef _DEBUG
{
const lcu_order_element_t * const lcu = &state->lcu_order[i];
PERFORMANCE_MEASURE_END(_DEBUG_PERF_ENCODE_LCU, state->encoder_control->threadqueue, "type=encode_lcu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", state->global->frame, state->tile->id, state->slice->id, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH + lcu->size.x - 1, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH + lcu->size.y - 1);
}
#endif //_DEBUG
}
if (state->encoder_control->sao_enable) {
PERFORMANCE_MEASURE_START(_DEBUG_PERF_SAO_RECONSTRUCT_FRAME);
sao_reconstruct_frame(state);
PERFORMANCE_MEASURE_END(_DEBUG_PERF_SAO_RECONSTRUCT_FRAME, state->encoder_control->threadqueue, "type=sao_reconstruct_frame,frame=%d,tile=%d,slice=%d,row=%d-%d,px_x=%d-%d,px_y=%d-%d", state->global->frame, state->tile->id, state->slice->id, state->lcu_order[0].position.y + state->tile->lcu_offset_y, state->lcu_order[state->lcu_order_count-1].position.y + state->tile->lcu_offset_y,
state->tile->lcu_offset_x * LCU_WIDTH, state->tile->frame->width + state->tile->lcu_offset_x * LCU_WIDTH - 1,
state->tile->lcu_offset_y * LCU_WIDTH, state->tile->frame->height + state->tile->lcu_offset_y * LCU_WIDTH - 1
);
}
} else {
// Add each LCU in the wavefront row as it's own job to the queue.
for (int i = 0; i < state->lcu_order_count; ++i) {
const lcu_order_element_t * const lcu = &state->lcu_order[i];
#ifdef _DEBUG
char job_description[256];
sprintf(job_description, "type=encode_lcu,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", state->global->frame, state->tile->id, state->slice->id, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH, lcu->position_px.x + state->tile->lcu_offset_x * LCU_WIDTH + lcu->size.x - 1, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH, lcu->position_px.y + state->tile->lcu_offset_y * LCU_WIDTH + lcu->size.y - 1);
#else
char* job_description = NULL;
#endif
state->tile->wf_jobs[lcu->id] = threadqueue_submit(state->encoder_control->threadqueue, encoder_state_worker_encode_lcu, (void*)lcu, 1, job_description);
// If job object was returned, add dependancies and allow it to run.
if (state->tile->wf_jobs[lcu->id]) {
// Add inter frame dependancies when ecoding more than one frame at
// once. The added dependancy is for the first LCU of each wavefront
// row to depend on the reconstruction status of the row below in the
// previous frame.
if (state->previous_encoder_state != state && state->previous_encoder_state->tqj_recon_done && state->global->slicetype != SLICE_I) {
if (!lcu->left) {
if (lcu->below) {
threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], lcu->below->encoder_state->previous_encoder_state->tqj_recon_done);
} else {
threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], lcu->encoder_state->previous_encoder_state->tqj_recon_done);
}
}
}
// Add local WPP dependancy to the LCU on the left.
if (lcu->left) {
threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - 1]);
}
// Add local WPP dependancy to the LCU on the top right.
if (lcu->above) {
if (lcu->above->right) {
threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - state->tile->frame->width_in_lcu + 1]);
} else {
threadqueue_job_dep_add(state->tile->wf_jobs[lcu->id], state->tile->wf_jobs[lcu->id - state->tile->frame->width_in_lcu]);
}
}
threadqueue_job_unwait_job(state->encoder_control->threadqueue, state->tile->wf_jobs[lcu->id]);
}
// In the case where SAO is not enabled, the wavefront row is
// done when the last LCU in the row is done.
if (!state->encoder_control->sao_enable && i + 1 == state->lcu_order_count) {
assert(!state->tqj_recon_done);
state->tqj_recon_done = state->tile->wf_jobs[lcu->id];
}
}
}
}
static void encoder_state_encode(encoder_state_t * const main_state);
static void encoder_state_worker_encode_children(void * opaque) {
encoder_state_t *sub_state = opaque;
encoder_state_encode(sub_state);
if (sub_state->is_leaf) {
if (sub_state->type != ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
PERFORMANCE_MEASURE_START(_DEBUG_PERF_WRITE_BITSTREAM_LEAF);
encoder_state_write_bitstream_leaf(sub_state);
PERFORMANCE_MEASURE_END(_DEBUG_PERF_WRITE_BITSTREAM_LEAF, sub_state->encoder_control->threadqueue, "type=encoder_state_write_bitstream_leaf,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", sub_state->global->frame, sub_state->tile->id, sub_state->slice->id, sub_state->lcu_order[0].position_px.x + sub_state->tile->lcu_offset_x * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count-1].position_px.x + sub_state->lcu_order[sub_state->lcu_order_count-1].size.x + sub_state->tile->lcu_offset_x * LCU_WIDTH - 1, sub_state->lcu_order[0].position_px.y + sub_state->tile->lcu_offset_y * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count-1].position_px.y + sub_state->lcu_order[sub_state->lcu_order_count-1].size.y + sub_state->tile->lcu_offset_y * LCU_WIDTH - 1);
} else {
threadqueue_job_t *job;
#ifdef _DEBUG
char job_description[256];
sprintf(job_description, "type=encoder_state_write_bitstream_leaf,frame=%d,tile=%d,slice=%d,px_x=%d-%d,px_y=%d-%d", sub_state->global->frame, sub_state->tile->id, sub_state->slice->id, sub_state->lcu_order[0].position_px.x + sub_state->tile->lcu_offset_x * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count-1].position_px.x + sub_state->lcu_order[sub_state->lcu_order_count-1].size.x + sub_state->tile->lcu_offset_x * LCU_WIDTH - 1, sub_state->lcu_order[0].position_px.y + sub_state->tile->lcu_offset_y * LCU_WIDTH, sub_state->lcu_order[sub_state->lcu_order_count-1].position_px.y + sub_state->lcu_order[sub_state->lcu_order_count-1].size.y + sub_state->tile->lcu_offset_y * LCU_WIDTH - 1);
#else
char* job_description = NULL;
#endif
job = threadqueue_submit(sub_state->encoder_control->threadqueue, encoder_state_worker_write_bitstream_leaf, sub_state, 1, job_description);
threadqueue_job_dep_add(job, sub_state->tile->wf_jobs[sub_state->wfrow->lcu_offset_y * sub_state->tile->frame->width_in_lcu + sub_state->lcu_order_count - 1]);
threadqueue_job_unwait_job(sub_state->encoder_control->threadqueue, job);
assert(!sub_state->tqj_bitstream_written);
//Bitstream is written for the row, if we're at the last LCU
sub_state->tqj_bitstream_written = job;
return;
}
}
}
typedef struct {
int y;
const encoder_state_t * encoder_state;
} worker_sao_reconstruct_lcu_data;
static void encoder_state_worker_sao_reconstruct_lcu(void *opaque) {
worker_sao_reconstruct_lcu_data *data = opaque;
videoframe_t * const frame = data->encoder_state->tile->frame;
unsigned stride = frame->width_in_lcu;
int x;
//TODO: copy only needed data
pixel_t *new_y_data = MALLOC(pixel_t, frame->width * frame->height);
pixel_t *new_u_data = MALLOC(pixel_t, (frame->width * frame->height) >> 2);
pixel_t *new_v_data = MALLOC(pixel_t, (frame->width * frame->height) >> 2);
const int offset = frame->width * (data->y*LCU_WIDTH);
const int offset_c = frame->width/2 * (data->y*LCU_WIDTH_C);
int num_pixels = frame->width * (LCU_WIDTH + 2);
if (num_pixels + offset > frame->width * frame->height) {
num_pixels = frame->width * frame->height - offset;
}
memcpy(&new_y_data[offset], &frame->rec->y[offset], sizeof(pixel_t) * num_pixels);
memcpy(&new_u_data[offset_c], &frame->rec->u[offset_c], sizeof(pixel_t) * num_pixels >> 2);
memcpy(&new_v_data[offset_c], &frame->rec->v[offset_c], sizeof(pixel_t) * num_pixels >> 2);
if (data->y>0) {
//copy first row from buffer
memcpy(&new_y_data[frame->width * (data->y*LCU_WIDTH-1)], &data->encoder_state->tile->hor_buf_before_sao->y[frame->width * (data->y-1)], frame->width * sizeof(pixel_t));
memcpy(&new_u_data[frame->width/2 * (data->y*LCU_WIDTH_C-1)], &data->encoder_state->tile->hor_buf_before_sao->u[frame->width/2 * (data->y-1)], frame->width/2 * sizeof(pixel_t));
memcpy(&new_v_data[frame->width/2 * (data->y*LCU_WIDTH_C-1)], &data->encoder_state->tile->hor_buf_before_sao->v[frame->width/2 * (data->y-1)], frame->width/2 * sizeof(pixel_t));
}
for (x = 0; x < frame->width_in_lcu; x++) {
// sao_do_rdo(encoder, lcu.x, lcu.y, sao_luma, sao_chroma);
sao_info_t *sao_luma = &frame->sao_luma[data->y * stride + x];
sao_info_t *sao_chroma = &frame->sao_chroma[data->y * stride + x];
sao_reconstruct(data->encoder_state->encoder_control, frame, new_y_data, x, data->y, sao_luma, COLOR_Y);
sao_reconstruct(data->encoder_state->encoder_control, frame, new_u_data, x, data->y, sao_chroma, COLOR_U);
sao_reconstruct(data->encoder_state->encoder_control, frame, new_v_data, x, data->y, sao_chroma, COLOR_V);
}
free(new_y_data);
free(new_u_data);
free(new_v_data);
free(opaque);
}
static int encoder_state_tree_is_a_chain(const encoder_state_t * const state) {
if (!state->children[0].encoder_control) return 1;
if (state->children[1].encoder_control) return 0;
return encoder_state_tree_is_a_chain(&state->children[0]);
}
static void encoder_state_encode(encoder_state_t * const main_state) {
//If we have children, encode at child level
if (main_state->children[0].encoder_control) {
int i=0;
//If we have only one child, than it cannot be the last split in tree
int node_is_the_last_split_in_tree = (main_state->children[1].encoder_control != 0);
for (i=0; main_state->children[i].encoder_control; ++i) {
encoder_state_t *sub_state = &(main_state->children[i]);
if (sub_state->tile != main_state->tile) {
const int offset_x = sub_state->tile->lcu_offset_x * LCU_WIDTH;
const int offset_y = sub_state->tile->lcu_offset_y * LCU_WIDTH;
const int width = MIN(sub_state->tile->frame->width_in_lcu * LCU_WIDTH, main_state->tile->frame->width - offset_x);
const int height = MIN(sub_state->tile->frame->height_in_lcu * LCU_WIDTH, main_state->tile->frame->height - offset_y);
if (sub_state->tile->frame->source) {
image_free(sub_state->tile->frame->source);
sub_state->tile->frame->source = NULL;
}
if (sub_state->tile->frame->rec) {
image_free(sub_state->tile->frame->rec);
sub_state->tile->frame->rec = NULL;
}
assert(!sub_state->tile->frame->source);
assert(!sub_state->tile->frame->rec);
sub_state->tile->frame->source = image_make_subimage(main_state->tile->frame->source, offset_x, offset_y, width, height);
sub_state->tile->frame->rec = image_make_subimage(main_state->tile->frame->rec, offset_x, offset_y, width, height);
}
//To be the last split, we require that every child is a chain
node_is_the_last_split_in_tree = node_is_the_last_split_in_tree && encoder_state_tree_is_a_chain(&main_state->children[i]);
}
//If it's the latest split point
if (node_is_the_last_split_in_tree) {
for (i=0; main_state->children[i].encoder_control; ++i) {
//If we don't have wavefronts, parallelize encoding of children.
if (main_state->children[i].type != ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
#ifdef _DEBUG
char job_description[256];
switch (main_state->children[i].type) {
case ENCODER_STATE_TYPE_TILE:
sprintf(job_description, "type=encode_child,frame=%d,tile=%d,row=%d-%d,px_x=%d-%d,px_y=%d-%d", main_state->children[i].global->frame, main_state->children[i].tile->id, main_state->children[i].lcu_order[0].position.y + main_state->children[i].tile->lcu_offset_y, main_state->children[i].lcu_order[0].position.y + main_state->children[i].tile->lcu_offset_y,
main_state->children[i].lcu_order[0].position_px.x + main_state->children[i].tile->lcu_offset_x * LCU_WIDTH, main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].position_px.x + main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].size.x + main_state->children[i].tile->lcu_offset_x * LCU_WIDTH - 1,
main_state->children[i].lcu_order[0].position_px.y + main_state->children[i].tile->lcu_offset_y * LCU_WIDTH, main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].position_px.y + main_state->children[i].lcu_order[main_state->children[i].lcu_order_count-1].size.y + main_state->children[i].tile->lcu_offset_y * LCU_WIDTH - 1);
break;
case ENCODER_STATE_TYPE_SLICE:
sprintf(job_description, "type=encode_child,frame=%d,slice=%d,start_in_ts=%d", main_state->children[i].global->frame, main_state->children[i].slice->id, main_state->children[i].slice->start_in_ts);
break;
default:
sprintf(job_description, "type=encode_child,frame=%d,invalid", main_state->children[i].global->frame);
break;
}
#else
char* job_description = NULL;
#endif
main_state->children[i].tqj_recon_done = threadqueue_submit(main_state->encoder_control->threadqueue, encoder_state_worker_encode_children, &(main_state->children[i]), 1, job_description);
if (main_state->children[i].previous_encoder_state != &main_state->children[i] && main_state->children[i].previous_encoder_state->tqj_recon_done && !main_state->children[i].global->is_idr_frame) {
// Add dependancy to each child in the previous frame.
// TODO: Make it so that only adjacent tiles are dependet upon and search is constrained to those?
for (int child_id = 0; main_state->children[child_id].encoder_control; ++child_id) {
threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[child_id].previous_encoder_state->tqj_recon_done);
}
}
threadqueue_job_unwait_job(main_state->encoder_control->threadqueue, main_state->children[i].tqj_recon_done);
} else {
//Wavefront rows have parallelism at LCU level, so we should not launch multiple threads here!
//FIXME: add an assert: we can only have wavefront children
encoder_state_worker_encode_children(&(main_state->children[i]));
}
}
//If children are wavefront, we need to reconstruct SAO
if (main_state->encoder_control->sao_enable && main_state->children[0].type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
int y;
videoframe_t * const frame = main_state->tile->frame;
threadqueue_job_t *previous_job = NULL;
for (y = 0; y < frame->height_in_lcu; ++y) {
worker_sao_reconstruct_lcu_data *data = MALLOC(worker_sao_reconstruct_lcu_data, 1);
threadqueue_job_t *job;
#ifdef _DEBUG
char job_description[256];
sprintf(job_description, "type=sao,frame=%d,tile=%d,px_x=%d-%d,px_y=%d-%d", main_state->global->frame, main_state->tile->id, main_state->tile->lcu_offset_x * LCU_WIDTH, main_state->tile->lcu_offset_x * LCU_WIDTH + main_state->tile->frame->width - 1, (main_state->tile->lcu_offset_y + y) * LCU_WIDTH, MIN(main_state->tile->lcu_offset_y * LCU_WIDTH + main_state->tile->frame->height, (main_state->tile->lcu_offset_y + y + 1) * LCU_WIDTH)-1);
#else
char* job_description = NULL;
#endif
data->y = y;
data->encoder_state = main_state;
job = threadqueue_submit(main_state->encoder_control->threadqueue, encoder_state_worker_sao_reconstruct_lcu, data, 1, job_description);
if (previous_job) {
threadqueue_job_dep_add(job, previous_job);
}
previous_job = job;
if (y < frame->height_in_lcu - 1) {
//Not last row: depend on the last LCU of the row below
threadqueue_job_dep_add(job, main_state->tile->wf_jobs[(y + 1) * frame->width_in_lcu + frame->width_in_lcu - 1]);
} else {
//Last row: depend on the last LCU of the row
threadqueue_job_dep_add(job, main_state->tile->wf_jobs[(y + 0) * frame->width_in_lcu + frame->width_in_lcu - 1]);
}
threadqueue_job_unwait_job(main_state->encoder_control->threadqueue, job);
//Set wfrow recon job
main_state->children[y].tqj_recon_done = job;
if (y == frame->height_in_lcu - 1) {
assert(!main_state->tqj_recon_done);
main_state->tqj_recon_done = job;
}
}
}
} else {
for (i=0; main_state->children[i].encoder_control; ++i) {
encoder_state_worker_encode_children(&(main_state->children[i]));
}
}
} else {
switch (main_state->type) {
case ENCODER_STATE_TYPE_TILE:
case ENCODER_STATE_TYPE_SLICE:
case ENCODER_STATE_TYPE_WAVEFRONT_ROW:
encoder_state_encode_leaf(main_state);
break;
default:
fprintf(stderr, "Unsupported leaf type %c!\n", main_state->type);
assert(0);
}
}
}
void encoder_ref_insertion_sort(int reflist[16], int length) {
for (uint8_t i = 1; i < length; ++i) {
const int16_t cur_poc = reflist[i];
int16_t j = i;
while (j > 0 && cur_poc < reflist[j - 1]) {
reflist[j] = reflist[j - 1];
--j;
}
reflist[j] = cur_poc;
}
}
static void encoder_state_ref_sort(encoder_state_t *state) {
int j, ref_list[2] = { 0, 0 }, ref_list_poc[2][16];
// List all pocs of lists
for (j = 0; j < state->global->ref->used_size; j++) {
if (state->global->ref->images[j]->poc < state->global->poc) {
ref_list_poc[0][ref_list[0]] = state->global->ref->images[j]->poc;
ref_list[0]++;
} else {
ref_list_poc[1][ref_list[1]] = state->global->ref->images[j]->poc;
ref_list[1]++;
}
}
encoder_ref_insertion_sort(ref_list_poc[0], ref_list[0]);
encoder_ref_insertion_sort(ref_list_poc[1], ref_list[1]);
for (j = 0; j < state->global->ref->used_size; j++) {
if (state->global->ref->images[j]->poc < state->global->poc) {
for (int ref_idx = 0; ref_idx < ref_list[0]; ref_idx++) {
if (ref_list_poc[0][ref_idx] == state->global->ref->images[j]->poc) {
state->global->refmap[j].idx = ref_list[0] - ref_idx - 1;
break;
}
}
state->global->refmap[j].list = 1;
} else {
for (int ref_idx = 0; ref_idx < ref_list[1]; ref_idx++) {
if (ref_list_poc[1][ref_idx] == state->global->ref->images[j]->poc) {
state->global->refmap[j].idx = ref_idx;
break;
}
}
state->global->refmap[j].list = 2;
}
state->global->refmap[j].poc = state->global->ref->images[j]->poc;
}
}
static void encoder_state_remove_refs(encoder_state_t *state) {
const encoder_control_t * const encoder = state->encoder_control;
int8_t refnumber = encoder->cfg->ref_frames;
int8_t check_refs = 0;
if (encoder->cfg->gop_len) {
refnumber = encoder->cfg->gop[state->global->gop_offset].ref_neg_count + encoder->cfg->gop[state->global->gop_offset].ref_pos_count;
check_refs = 1;
} else if (state->global->slicetype == SLICE_I) {
refnumber = 1;
}
// Remove the ref pic (if present)
while (check_refs || state->global->ref->used_size > (uint32_t)refnumber) {
int8_t ref_to_remove = state->global->ref->used_size - 1;
if (encoder->cfg->gop_len) {
for (int ref = 0; ref < state->global->ref->used_size; ref++) {
uint8_t found = 0;
for (int i = 0; i < encoder->cfg->gop[state->global->gop_offset].ref_neg_count; i++) {
if (state->global->ref->images[ref]->poc == state->global->poc - encoder->cfg->gop[state->global->gop_offset].ref_neg[i]) {
found = 1;
break;
}
}
if (found) continue;
for (int i = 0; i < encoder->cfg->gop[state->global->gop_offset].ref_pos_count; i++) {
if (state->global->ref->images[ref]->poc == state->global->poc + encoder->cfg->gop[state->global->gop_offset].ref_pos[i]) {
found = 1;
break;
}
}
if (!found) {
image_list_rem(state->global->ref, ref);
ref--;
}
}
check_refs = 0;
} else image_list_rem(state->global->ref, ref_to_remove);
}
}
static void encoder_state_reset_poc(encoder_state_t *state) {
int i;
state->global->poc = 0;
videoframe_set_poc(state->tile->frame, 0);
for (i=0; state->children[i].encoder_control; ++i) {
encoder_state_t *sub_state = &(state->children[i]);
encoder_state_reset_poc(sub_state);
}
}
static void encoder_state_new_frame(encoder_state_t * const state) {
int i;
//FIXME Move this somewhere else!
if (state->type == ENCODER_STATE_TYPE_MAIN) {
const encoder_control_t * const encoder = state->encoder_control;
if (state->global->frame == 0) {
state->global->is_idr_frame = true;
} else if (encoder->cfg->gop_len) {
// Closed GOP / CRA is not yet supported.
state->global->is_idr_frame = false;
// Calculate POC according to the global frame counter and GOP structure
int32_t poc = state->global->frame - 1;
int32_t poc_offset = encoder->cfg->gop[state->global->gop_offset].poc_offset;
state->global->poc = poc - poc % encoder->cfg->gop_len + poc_offset;
videoframe_set_poc(state->tile->frame, state->global->poc);
} else {
bool is_i_idr = (encoder->cfg->intra_period == 1 && state->global->frame % 2 == 0);
bool is_p_idr = (encoder->cfg->intra_period > 1 && (state->global->frame % encoder->cfg->intra_period) == 0);
state->global->is_idr_frame = is_i_idr || is_p_idr;
}
if (state->global->is_idr_frame) {
encoder_state_reset_poc(state);
state->global->slicetype = SLICE_I;
state->global->pictype = NAL_IDR_W_RADL;
} else {
state->global->slicetype = encoder->cfg->intra_period==1 ? SLICE_I : (state->encoder_control->cfg->gop_len?SLICE_B:SLICE_P);
state->global->pictype = NAL_TRAIL_R;
if (state->encoder_control->cfg->gop_len) {
if (encoder->cfg->intra_period > 1 && (state->global->poc % encoder->cfg->intra_period) == 0) {
state->global->slicetype = SLICE_I;
}
}
encoder_state_remove_refs(state);
encoder_state_ref_sort(state);
}
double lambda;
if (encoder->cfg->target_bitrate > 0) {
// Rate control enabled.
lambda = select_picture_lambda(state);
state->global->QP = lambda_to_QP(lambda);
} else {
if (encoder->cfg->gop_len > 0 && state->global->slicetype != SLICE_I) {
gop_config_t const * const gop =
encoder->cfg->gop + state->global->gop_offset;
state->global->QP = encoder->cfg->qp + gop->qp_offset;
state->global->QP_factor = gop->qp_factor;
} else {
state->global->QP = encoder->cfg->qp;
}
lambda = select_picture_lambda_from_qp(state);
}
state->global->cur_lambda_cost = lambda;
state->global->cur_lambda_cost_sqrt = sqrt(lambda);
}
if (state->stream.base.type == BITSTREAM_TYPE_MEMORY) {
//Clear the bitstream if it's not the main encoder
bitstream_clear(&state->stream);
}
if (state->is_leaf) {
//Leaf states have cabac and context
cabac_start(&state->cabac);
init_contexts(state, state->global->QP, state->global->slicetype);
}
//Clear the jobs
state->tqj_bitstream_written = NULL;
state->tqj_recon_done = NULL;
for (i = 0; state->children[i].encoder_control; ++i) {
encoder_state_new_frame(&state->children[i]);
}
}
static void _encode_one_frame_add_bitstream_deps(const encoder_state_t * const state, threadqueue_job_t * const job) {
int i;
for (i = 0; state->children[i].encoder_control; ++i) {
_encode_one_frame_add_bitstream_deps(&state->children[i], job);
}
if (state->tqj_bitstream_written) {
threadqueue_job_dep_add(job, state->tqj_bitstream_written);
}
if (state->tqj_recon_done) {
threadqueue_job_dep_add(job, state->tqj_recon_done);
}
}
void encode_one_frame(encoder_state_t * const state)
{
{
PERFORMANCE_MEASURE_START(_DEBUG_PERF_FRAME_LEVEL);
encoder_state_new_frame(state);
PERFORMANCE_MEASURE_END(_DEBUG_PERF_FRAME_LEVEL, state->encoder_control->threadqueue, "type=new_frame,frame=%d,poc=%d", state->global->frame, state->global->poc);
}
{
PERFORMANCE_MEASURE_START(_DEBUG_PERF_FRAME_LEVEL);
encoder_state_encode(state);
PERFORMANCE_MEASURE_END(_DEBUG_PERF_FRAME_LEVEL, state->encoder_control->threadqueue, "type=encode,frame=%d", state->global->frame);
}
//threadqueue_flush(main_state->encoder_control->threadqueue);
{
threadqueue_job_t *job;
#ifdef _DEBUG
char job_description[256];
sprintf(job_description, "type=write_bitstream,frame=%d", state->global->frame);
#else
char* job_description = NULL;
#endif
state->stats_done = 0;
job = threadqueue_submit(state->encoder_control->threadqueue, encoder_state_worker_write_bitstream, (void*) state, 1, job_description);
_encode_one_frame_add_bitstream_deps(state, job);
if (state->previous_encoder_state != state && state->previous_encoder_state->tqj_bitstream_written) {
//We need to depend on previous bitstream generation
threadqueue_job_dep_add(job, state->previous_encoder_state->tqj_bitstream_written);
}
threadqueue_job_unwait_job(state->encoder_control->threadqueue, job);
assert(!state->tqj_bitstream_written);
state->tqj_bitstream_written = job;
}
//threadqueue_flush(main_state->encoder_control->threadqueue);
}
int read_one_frame(FILE* file, const encoder_state_t * const state, image_t *img_out)
{
unsigned width = state->encoder_control->in.real_width;
unsigned height = state->encoder_control->in.real_height;
unsigned array_width = state->tile->frame->width;
unsigned array_height = state->tile->frame->height;
// storing GOP pictures
static int8_t gop_init = 0;
static int8_t gop_pictures_available = 0;
static videoframe_t gop_pictures[MAX_GOP];
static int8_t gop_skip_frames = 0;
static int8_t gop_skipped = 0;
// Initialize GOP structure when gop is enabled and not initialized
if (state->encoder_control->cfg->gop_len && !gop_init) {
int i;
for (i = 0; i < state->encoder_control->cfg->gop_len; i++) {
gop_pictures[i].source = image_alloc(array_width, array_height, 0);
}
state->global->gop_offset = 0;
gop_init = 1;
}
// If GOP is present but no pictures found
if (state->global->frame &&
state->encoder_control->cfg->gop_len &&
!gop_pictures_available) {
for (int i = 0; i < state->encoder_control->cfg->gop_len; i++, gop_pictures_available++) {
if (state->encoder_control->cfg->frames
&& state->global->frame + gop_pictures_available >= state->encoder_control->cfg->frames) {
if (gop_pictures_available) {
gop_skip_frames = state->encoder_control->cfg->gop_len - gop_pictures_available;
break;
}
else return 0;
}
if (!read_yuv_frame(file, width, height, array_width, array_height, gop_pictures[i].source)) {
if (gop_pictures_available) {
gop_skip_frames = state->encoder_control->cfg->gop_len - gop_pictures_available;
break;
} else {
return 0;
}
}
}
}
// If GOP is present, fetch the data from our GOP picture buffer
if (state->global->frame && state->encoder_control->cfg->gop_len) {
int cur_gop_idx = state->encoder_control->cfg->gop_len - (gop_pictures_available + gop_skip_frames) + gop_skipped;
int cur_gop = state->encoder_control->cfg->gop[cur_gop_idx].poc_offset - 1;
// Special case when end of the sequence and not all pictures are available
if (gop_skip_frames && cur_gop >= state->encoder_control->cfg->gop_len - gop_skip_frames) {
for (; cur_gop >= state->encoder_control->cfg->gop_len - gop_skip_frames; cur_gop_idx++) {
cur_gop = state->encoder_control->cfg->gop[cur_gop_idx].poc_offset - 1;
gop_skipped++;
}
cur_gop_idx--;
gop_skipped--;
}
state->global->gop_offset = cur_gop_idx;
memcpy(img_out->y, gop_pictures[cur_gop].source->y, width * height);
memcpy(img_out->u, gop_pictures[cur_gop].source->u, (width >> 1) * (height >> 1));
memcpy(img_out->v, gop_pictures[cur_gop].source->v, (width >> 1) * (height >> 1));
gop_pictures_available--;
} else {
return read_yuv_frame(file, width, height, array_width, array_height, img_out);
}
return 1;
}
void encoder_compute_stats(encoder_state_t *state, FILE * const recout, double frame_psnr[3], uint64_t *bitstream_length)
{
const encoder_control_t * const encoder = state->encoder_control;
if (state->stats_done) return;
state->stats_done = 1;
//Blocking call
threadqueue_waitfor(encoder->threadqueue, state->tqj_bitstream_written);
if (recout) {
const videoframe_t * const frame = state->tile->frame;
// Write reconstructed frame out.
// Use conformance-window dimensions instead of internal ones.
const int width = frame->width;
const int out_width = encoder->in.real_width;
const int out_height = encoder->in.real_height;
int y;
const pixel_t *y_rec = frame->rec->y;
const pixel_t *u_rec = frame->rec->u;
const pixel_t *v_rec = frame->rec->v;
for (y = 0; y < out_height; ++y) {
fwrite(&y_rec[y * width], sizeof(*y_rec), out_width, recout);
}
for (y = 0; y < out_height / 2; ++y) {
fwrite(&u_rec[y * width / 2], sizeof(*u_rec), out_width / 2, recout);
}
for (y = 0; y < out_height / 2; ++y) {
fwrite(&v_rec[y * width / 2], sizeof(*v_rec), out_width / 2, recout);
}
}
videoframe_compute_psnr(state->tile->frame, frame_psnr);
*bitstream_length += state->stats_bitstream_length;
}
void encoder_next_frame(encoder_state_t *state, image_t *img_in)
{
const encoder_control_t * const encoder = state->encoder_control;
//Blocking call
threadqueue_waitfor(encoder->threadqueue, state->tqj_bitstream_written);
if (state->tile->frame->source) {
image_free(state->tile->frame->source);
}
state->tile->frame->source = image_make_subimage(img_in, 0, 0, state->tile->frame->width, state->tile->frame->height);
state->stats_done = 0;
if (state->global->frame == -1) {
//We're at the first frame, so don't care about all this stuff;
state->global->frame = 0;
state->global->poc = 0;
assert(!state->tile->frame->rec);
state->tile->frame->rec = image_alloc(state->tile->frame->width, state->tile->frame->height, state->global->poc);
return;
}
if (state->previous_encoder_state != state) {
//We have a "real" previous encoder
state->global->frame = state->previous_encoder_state->global->frame + 1;
state->global->poc = state->previous_encoder_state->global->poc + 1;
image_free(state->tile->frame->rec);
cu_array_free(state->tile->frame->cu_array);
state->tile->frame->rec = image_alloc(state->tile->frame->width, state->tile->frame->height, state->global->poc);
{
// Allocate height_in_scu x width_in_scu x sizeof(CU_info)
unsigned height_in_scu = state->tile->frame->height_in_lcu << MAX_DEPTH;
unsigned width_in_scu = state->tile->frame->width_in_lcu << MAX_DEPTH;
state->tile->frame->cu_array = cu_array_alloc(width_in_scu, height_in_scu);
}
videoframe_set_poc(state->tile->frame, state->global->poc);
image_list_copy_contents(state->global->ref, state->previous_encoder_state->global->ref);
if (!encoder->cfg->gop_len || !state->previous_encoder_state->global->poc || encoder->cfg->gop[state->previous_encoder_state->global->gop_offset].is_ref) {
image_list_add(state->global->ref, state->previous_encoder_state->tile->frame->rec, state->previous_encoder_state->tile->frame->cu_array);
}
return;
}
if (!encoder->cfg->gop_len || !state->global->poc || encoder->cfg->gop[state->global->gop_offset].is_ref) {
// Add current reconstructed picture as reference
image_list_add(state->global->ref, state->tile->frame->rec, state->tile->frame->cu_array);
}
state->global->frame++;
state->global->poc++;
//Remove current reconstructed picture, and alloc a new one
image_free(state->tile->frame->rec);
state->tile->frame->rec = image_alloc(state->tile->frame->width, state->tile->frame->height, state->global->poc);
videoframe_set_poc(state->tile->frame, state->global->poc);
}
void encode_coding_tree(encoder_state_t * const state,
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
{
cabac_data_t * const cabac = &state->cabac;
const videoframe_t * const frame = state->tile->frame;
const cu_info_t *cur_cu = videoframe_get_cu_const(frame, x_ctb, y_ctb);
uint8_t split_flag = GET_SPLITDATA(cur_cu, depth);
uint8_t split_model = 0;
//Absolute ctb
uint16_t abs_x_ctb = x_ctb + (state->tile->lcu_offset_x * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH);
uint16_t abs_y_ctb = y_ctb + (state->tile->lcu_offset_y * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH);
// Check for slice border FIXME
uint8_t border_x = ((state->encoder_control->in.width) < (abs_x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_y = ((state->encoder_control->in.height) < (abs_y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_split_x = ((state->encoder_control->in.width) < ((abs_x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border_split_y = ((state->encoder_control->in.height) < ((abs_y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border = border_x | border_y; /*!< are we in any border CU */
// When not in MAX_DEPTH, insert split flag and split the blocks if needed
if (depth != MAX_DEPTH) {
// Implisit split flag when on border
if (!border) {
// Get left and top block split_flags and if they are present and true, increase model number
if (x_ctb > 0 && GET_SPLITDATA(videoframe_get_cu_const(frame, x_ctb - 1, y_ctb), depth) == 1) {
split_model++;
}
if (y_ctb > 0 && GET_SPLITDATA(videoframe_get_cu_const(frame, x_ctb, y_ctb - 1), depth) == 1) {
split_model++;
}
cabac->cur_ctx = &(cabac->ctx.split_flag_model[split_model]);
CABAC_BIN(cabac, split_flag, "SplitFlag");
}
if (split_flag || border) {
// Split blocks and remember to change x and y block positions
uint8_t change = 1<<(MAX_DEPTH-1-depth);
encode_coding_tree(state, x_ctb, y_ctb, depth + 1); // x,y
// TODO: fix when other half of the block would not be completely over the border
if (!border_x || border_split_x) {
encode_coding_tree(state, x_ctb + change, y_ctb, depth + 1);
}
if (!border_y || border_split_y) {
encode_coding_tree(state, x_ctb, y_ctb + change, depth + 1);
}
if (!border || (border_split_x && border_split_y)) {
encode_coding_tree(state, x_ctb + change, y_ctb + change, depth + 1);
}
return;
}
}
// Encode skip flag
if (state->global->slicetype != SLICE_I) {
int8_t ctx_skip = 0; // uiCtxSkip = aboveskipped + leftskipped;
int ui;
int16_t num_cand = MRG_MAX_NUM_CANDS;
// Get left and top skipped flags and if they are present and true, increase context number
if (x_ctb > 0 && (videoframe_get_cu_const(frame, x_ctb - 1, y_ctb))->skipped) {
ctx_skip++;
}
if (y_ctb > 0 && (videoframe_get_cu_const(frame, x_ctb, y_ctb - 1))->skipped) {
ctx_skip++;
}
cabac->cur_ctx = &(cabac->ctx.cu_skip_flag_model[ctx_skip]);
CABAC_BIN(cabac, cur_cu->skipped, "SkipFlag");
// IF SKIP
if (cur_cu->skipped) {
if (num_cand > 1) {
for (ui = 0; ui < num_cand - 1; ui++) {
int32_t symbol = (ui != cur_cu->merge_idx);
if (ui == 0) {
cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model);
CABAC_BIN(cabac, symbol, "MergeIndex");
} else {
CABAC_BIN_EP(cabac,symbol,"MergeIndex");
}
if (symbol == 0) {
break;
}
}
}
return;
}
}
// ENDIF SKIP
// Prediction mode
if (state->global->slicetype != SLICE_I) {
cabac->cur_ctx = &(cabac->ctx.cu_pred_mode_model);
CABAC_BIN(cabac, (cur_cu->type == CU_INTRA), "PredMode");
}
// part_mode
if (cur_cu->type == CU_INTRA) {
if (depth == MAX_DEPTH) {
cabac->cur_ctx = &(cabac->ctx.part_size_model[0]);
if (cur_cu->part_size == SIZE_2Nx2N) {
CABAC_BIN(cabac, 1, "part_mode 2Nx2N");
} else {
CABAC_BIN(cabac, 0, "part_mode NxN");
}
}
} else {
// TODO: Handle inter sizes other than 2Nx2N
cabac->cur_ctx = &(cabac->ctx.part_size_model[0]);
CABAC_BIN(cabac, 1, "part_mode 2Nx2N");
}
//end partsize
if (cur_cu->type == CU_INTER) {
// FOR each part
// Mergeflag
int16_t num_cand = 0;
cabac->cur_ctx = &(cabac->ctx.cu_merge_flag_ext_model);
CABAC_BIN(cabac, cur_cu->merged, "MergeFlag");
num_cand = MRG_MAX_NUM_CANDS;
if (cur_cu->merged) { //merge
if (num_cand > 1) {
int32_t ui;
for (ui = 0; ui < num_cand - 1; ui++) {
int32_t symbol = (ui != cur_cu->merge_idx);
if (ui == 0) {
cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model);
CABAC_BIN(cabac, symbol, "MergeIndex");
} else {
CABAC_BIN_EP(cabac,symbol,"MergeIndex");
}
if (symbol == 0) break;
}
}
} else {
uint32_t ref_list_idx;
uint32_t j;
int ref_list[2] = { 0, 0 };
for (j = 0; j < state->global->ref->used_size; j++) {
if (state->global->ref->images[j]->poc < state->global->poc) {
ref_list[0]++;
} else {
ref_list[1]++;
}
}
// Void TEncSbac::codeInterDir( TComDataCU* pcCU, UInt uiAbsPartIdx )
if (state->global->slicetype == SLICE_B)
{
// Code Inter Dir
uint8_t inter_dir = cur_cu->inter.mv_dir-1;
uint8_t ctx = depth;
if (cur_cu->part_size == SIZE_2Nx2N || (LCU_WIDTH >> depth) != 8)
{
cabac->cur_ctx = &(cabac->ctx.inter_dir[ctx]);
CABAC_BIN(cabac, (inter_dir == 2), "inter_pred_idc");
}
if (inter_dir < 2)
{
cabac->cur_ctx = &(cabac->ctx.inter_dir[4]);
CABAC_BIN(cabac, inter_dir, "inter_pred_idc");
}
}
for (ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) {
if (cur_cu->inter.mv_dir & (1 << ref_list_idx)) {
if (ref_list[ref_list_idx] > 1) {
// parseRefFrmIdx
int32_t ref_frame = cur_cu->inter.mv_ref_coded[ref_list_idx];
cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[0]);
CABAC_BIN(cabac, (ref_frame != 0), "ref_idx_lX");
if (ref_frame > 0) {
int32_t i;
int32_t ref_num = ref_list[ref_list_idx] - 2;
cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[1]);
ref_frame--;
for (i = 0; i < ref_num; ++i) {
const uint32_t symbol = (i == ref_frame) ? 0 : 1;
if (i == 0) {
CABAC_BIN(cabac, symbol, "ref_idx_lX");
} else {
CABAC_BIN_EP(cabac, symbol, "ref_idx_lX");
}
if (symbol == 0) break;
}
}
}
if (!(/*pcCU->getSlice()->getMvdL1ZeroFlag() &&*/ state->global->ref_list == REF_PIC_LIST_1 && cur_cu->inter.mv_dir == 3)) {
const int32_t mvd_hor = cur_cu->inter.mvd[ref_list_idx][0];
const int32_t mvd_ver = cur_cu->inter.mvd[ref_list_idx][1];
const int8_t hor_abs_gr0 = mvd_hor != 0;
const int8_t ver_abs_gr0 = mvd_ver != 0;
const uint32_t mvd_hor_abs = abs(mvd_hor);
const uint32_t mvd_ver_abs = abs(mvd_ver);
cabac->cur_ctx = &(cabac->ctx.cu_mvd_model[0]);
CABAC_BIN(cabac, (mvd_hor != 0), "abs_mvd_greater0_flag_hor");
CABAC_BIN(cabac, (mvd_ver != 0), "abs_mvd_greater0_flag_ver");
cabac->cur_ctx = &(cabac->ctx.cu_mvd_model[1]);
if (hor_abs_gr0) {
CABAC_BIN(cabac, (mvd_hor_abs>1), "abs_mvd_greater1_flag_hor");
}
if (ver_abs_gr0) {
CABAC_BIN(cabac, (mvd_ver_abs>1), "abs_mvd_greater1_flag_ver");
}
if (hor_abs_gr0) {
if (mvd_hor_abs > 1) {
cabac_write_ep_ex_golomb(cabac,mvd_hor_abs-2, 1);
}
CABAC_BIN_EP(cabac, (mvd_hor>0)?0:1, "mvd_sign_flag_hor");
}
if (ver_abs_gr0) {
if (mvd_ver_abs > 1) {
cabac_write_ep_ex_golomb(cabac,mvd_ver_abs-2, 1);
}
CABAC_BIN_EP(cabac, (mvd_ver>0)?0:1, "mvd_sign_flag_ver");
}
}
// Signal which candidate MV to use
cabac_write_unary_max_symbol(cabac, cabac->ctx.mvp_idx_model, cur_cu->inter.mv_cand[ref_list_idx], 1,
AMVP_MAX_NUM_CANDS - 1);
}
} // for ref_list
} // if !merge
{
int cbf = (cbf_is_set(cur_cu->cbf.y, depth) ||
cbf_is_set(cur_cu->cbf.u, depth) ||
cbf_is_set(cur_cu->cbf.v, depth));
// Only need to signal coded block flag if not skipped or merged
// skip = no coded residual, merge = coded residual
if (!cur_cu->merged) {
cabac->cur_ctx = &(cabac->ctx.cu_qt_root_cbf_model);
CABAC_BIN(cabac, cbf, "rqt_root_cbf");
}
// Code (possible) coeffs to bitstream
if (cbf) {
encode_transform_coeff(state, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0);
}
}
// END for each part
} else if (cur_cu->type == CU_INTRA) {
uint8_t intra_pred_mode[4] = {
cur_cu->intra[0].mode, cur_cu->intra[1].mode,
cur_cu->intra[2].mode, cur_cu->intra[3].mode };
uint8_t intra_pred_mode_chroma = cur_cu->intra[0].mode_chroma;
int8_t intra_preds[4][3] = {{-1, -1, -1},{-1, -1, -1},{-1, -1, -1},{-1, -1, -1}};
int8_t mpm_preds[4] = {-1, -1, -1, -1};
int i, j;
uint32_t flag[4];
int num_pred_units = (cur_cu->part_size == SIZE_2Nx2N ? 1 : 4);
#if ENABLE_PCM == 1
// Code must start after variable initialization
cabac_encode_bin_trm(cabac, 0); // IPCMFlag == 0
#endif
// PREDINFO CODING
// If intra prediction mode is found from the predictors,
// it can be signaled with two EP's. Otherwise we can send
// 5 EP bins with the full predmode
for (j = 0; j < num_pred_units; ++j) {
static const vector2d_t offset[4] = {{0,0},{1,0},{0,1},{1,1}};
const cu_info_t *left_cu = NULL;
const cu_info_t *above_cu = NULL;
if (x_ctb > 0) {
left_cu = videoframe_get_cu_const(frame, x_ctb - 1, y_ctb);
}
// Don't take the above CU across the LCU boundary.
if (y_ctb > 0 && (y_ctb & 7) != 0) {
above_cu = videoframe_get_cu_const(frame, x_ctb, y_ctb - 1);
}
intra_get_dir_luma_predictor((x_ctb<<3) + (offset[j].x<<2),
(y_ctb<<3) + (offset[j].y<<2),
intra_preds[j], cur_cu,
left_cu, above_cu);
for (i = 0; i < 3; i++) {
if (intra_preds[j][i] == intra_pred_mode[j]) {
mpm_preds[j] = (int8_t)i;
break;
}
}
flag[j] = (mpm_preds[j] == -1) ? 0 : 1;
}
cabac->cur_ctx = &(cabac->ctx.intra_mode_model);
for (j = 0; j < num_pred_units; ++j) {
CABAC_BIN(cabac, flag[j], "prev_intra_luma_pred_flag");
}
for (j = 0; j < num_pred_units; ++j) {
// Signal index of the prediction mode in the prediction list.
if (flag[j]) {
CABAC_BIN_EP(cabac, (mpm_preds[j] == 0 ? 0 : 1), "mpm_idx");
if (mpm_preds[j] != 0) {
CABAC_BIN_EP(cabac, (mpm_preds[j] == 1 ? 0 : 1), "mpm_idx");
}
} else {
// Signal the actual prediction mode.
int32_t tmp_pred = intra_pred_mode[j];
// Sort prediction list from lowest to highest.
if (intra_preds[j][0] > intra_preds[j][1]) SWAP(intra_preds[j][0], intra_preds[j][1], int8_t);
if (intra_preds[j][0] > intra_preds[j][2]) SWAP(intra_preds[j][0], intra_preds[j][2], int8_t);
if (intra_preds[j][1] > intra_preds[j][2]) SWAP(intra_preds[j][1], intra_preds[j][2], int8_t);
// Reduce the index of the signaled prediction mode according to the
// prediction list, as it has been already signaled that it's not one
// of the prediction modes.
for (i = 2; i >= 0; i--) {
tmp_pred = (tmp_pred > intra_preds[j][i] ? tmp_pred - 1 : tmp_pred);
}
CABAC_BINS_EP(cabac, tmp_pred, 5, "rem_intra_luma_pred_mode");
}
}
{ // start intra chroma pred mode coding
unsigned pred_mode = 5;
unsigned chroma_pred_modes[4] = {0, 26, 10, 1};
if (intra_pred_mode_chroma == intra_pred_mode[0]) {
pred_mode = 4;
} else if (intra_pred_mode_chroma == 34) {
// Angular 34 mode is possible only if intra pred mode is one of the
// possible chroma pred modes, in which case it is signaled with that
// duplicate mode.
for (i = 0; i < 4; ++i) {
if (intra_pred_mode[0] == chroma_pred_modes[i]) pred_mode = i;
}
} else {
for (i = 0; i < 4; ++i) {
if (intra_pred_mode_chroma == chroma_pred_modes[i]) pred_mode = i;
}
}
// pred_mode == 5 mean intra_pred_mode_chroma is something that can't
// be coded.
assert(pred_mode != 5);
/**
* Table 9-35 - Binarization for intra_chroma_pred_mode
* intra_chroma_pred_mode bin_string
* 4 0
* 0 100
* 1 101
* 2 110
* 3 111
* Table 9-37 - Assignment of ctxInc to syntax elements with context coded bins
* intra_chroma_pred_mode[][] = 0, bypass, bypass
*/
cabac->cur_ctx = &(cabac->ctx.chroma_pred_model[0]);
if (pred_mode == 4) {
CABAC_BIN(cabac, 0, "intra_chroma_pred_mode");
} else {
CABAC_BIN(cabac, 1, "intra_chroma_pred_mode");
CABAC_BINS_EP(cabac, pred_mode, 2, "intra_chroma_pred_mode");
}
} // end intra chroma pred mode coding
encode_transform_coeff(state, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0);
}
#if ENABLE_PCM == 1
// Code IPCM block
if (cur_cu->type == CU_PCM) {
cabac_encode_bin_trm(cabac, 1); // IPCMFlag == 1
cabac_finish(cabac);
bitstream_align(cabac.stream);
// PCM sample
{
unsigned y, x;
pixel *base_y = &cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
pixel *base_u = &cur_pic->u_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)];
pixel *base_v = &cur_pic->v_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)];
// Luma
for (y = 0; y < LCU_WIDTH >> depth; y++) {
for (x = 0; x < LCU_WIDTH >> depth; x++) {
bitstream_put(cabac.stream, base_y[x + y * encoder->in.width], 8);
}
}
// Chroma
if (encoder->in.video_format != FORMAT_400) {
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
bitstream_put(cabac.stream, base_u[x + y * (encoder->in.width >> 1)], 8);
}
}
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
bitstream_put(cabac.stream, base_v[x + y * (encoder->in.width >> 1)], 8);
}
}
}
}
// end PCM sample
cabac_start(cabac);
} // end Code IPCM block
#endif /* END ENABLE_PCM */
else { /* Should not happend */
printf("UNHANDLED TYPE!\r\n");
assert(0);
exit(1);
}
/* end prediction unit */
/* end coding_unit */
}
coeff_scan_order_t get_scan_order(int8_t cu_type, int intra_mode, int depth)
{
// Scan mode is diagonal, except for 4x4+8x8 luma and 4x4 chroma, where:
// - angular 6-14 = vertical
// - angular 22-30 = horizontal
if (cu_type == CU_INTRA && depth >= 3) {
if (intra_mode >= 6 && intra_mode <= 14) {
return SCAN_VER;
} else if (intra_mode >= 22 && intra_mode <= 30) {
return SCAN_HOR;
}
}
return SCAN_DIAG;
}
static void encode_transform_unit(encoder_state_t * const state,
int x_pu, int y_pu, int depth)
{
assert(depth >= 1 && depth <= MAX_PU_DEPTH);
const videoframe_t * const frame = state->tile->frame;
uint8_t width = LCU_WIDTH >> depth;
uint8_t width_c = (depth == MAX_PU_DEPTH ? width : width / 2);
int x_cu = x_pu / 2;
int y_cu = y_pu / 2;
const cu_info_t *cur_cu = videoframe_get_cu_const(frame, x_cu, y_cu);
coeff_t coeff_y[LCU_WIDTH*LCU_WIDTH+1];
coeff_t coeff_u[LCU_WIDTH*LCU_WIDTH>>2];
coeff_t coeff_v[LCU_WIDTH*LCU_WIDTH>>2];
int32_t coeff_stride = frame->width;
int8_t scan_idx = get_scan_order(cur_cu->type, cur_cu->intra[PU_INDEX(x_pu, y_pu)].mode, depth);
int cbf_y = cbf_is_set(cur_cu->cbf.y, depth + PU_INDEX(x_pu, y_pu));
if (cbf_y) {
int x = x_pu * (LCU_WIDTH >> MAX_PU_DEPTH);
int y = y_pu * (LCU_WIDTH >> MAX_PU_DEPTH);
coeff_t *orig_pos = &frame->coeff_y[x + y * frame->width];
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
coeff_y[x+y*width] = orig_pos[x];
}
orig_pos += coeff_stride;
}
}
// CoeffNxN
// Residual Coding
if (cbf_y) {
encode_coeff_nxn(state, coeff_y, width, 0, scan_idx, cur_cu->intra[PU_INDEX(x_pu, y_pu)].tr_skip);
}
if (depth == MAX_DEPTH + 1 && !(x_pu % 2 && y_pu % 2)) {
// For size 4x4 luma transform the corresponding chroma transforms are
// also of size 4x4 covering 8x8 luma pixels. The residual is coded
// in the last transform unit so for the other ones, don't do anything.
return;
}
if (cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth)) {
int x, y;
coeff_t *orig_pos_u, *orig_pos_v;
if (depth <= MAX_DEPTH) {
x = x_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1));
y = y_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1));
} else {
// for 4x4 select top left pixel of the CU.
x = x_cu * (LCU_WIDTH >> (MAX_DEPTH + 1));
y = y_cu * (LCU_WIDTH >> (MAX_DEPTH + 1));
}
orig_pos_u = &frame->coeff_u[x + y * (frame->width >> 1)];
orig_pos_v = &frame->coeff_v[x + y * (frame->width >> 1)];
for (y = 0; y < (width_c); y++) {
for (x = 0; x < (width_c); x++) {
coeff_u[x+y*(width_c)] = orig_pos_u[x];
coeff_v[x+y*(width_c)] = orig_pos_v[x];
}
orig_pos_u += coeff_stride>>1;
orig_pos_v += coeff_stride>>1;
}
scan_idx = get_scan_order(cur_cu->type, cur_cu->intra[0].mode_chroma, depth);
if (cbf_is_set(cur_cu->cbf.u, depth)) {
encode_coeff_nxn(state, coeff_u, width_c, 2, scan_idx, 0);
}
if (cbf_is_set(cur_cu->cbf.v, depth)) {
encode_coeff_nxn(state, coeff_v, width_c, 2, scan_idx, 0);
}
}
}
/**
* \param encoder
* \param x_pu Prediction units' x coordinate.
* \param y_pu Prediction units' y coordinate.
* \param depth Depth from LCU.
* \param tr_depth Depth from last CU.
* \param parent_coeff_u What was signaled at previous level for cbf_cb.
* \param parent_coeff_v What was signlaed at previous level for cbf_cr.
*/
void encode_transform_coeff(encoder_state_t * const state, int32_t x_pu,int32_t y_pu,
int8_t depth, int8_t tr_depth, uint8_t parent_coeff_u, uint8_t parent_coeff_v)
{
cabac_data_t * const cabac = &state->cabac;
int32_t x_cu = x_pu / 2;
int32_t y_cu = y_pu / 2;
const videoframe_t * const frame = state->tile->frame;
const cu_info_t *cur_cu = videoframe_get_cu_const(frame, x_cu, y_cu);
// NxN signifies implicit transform split at the first transform level.
// There is a similar implicit split for inter, but it is only used when
// transform hierarchy is not in use.
int intra_split_flag = (cur_cu->type == CU_INTRA && cur_cu->part_size == SIZE_NxN);
// The implicit split by intra NxN is not counted towards max_tr_depth.
int tr_depth_intra = state->encoder_control->tr_depth_intra;
int max_tr_depth = (cur_cu->type == CU_INTRA ? tr_depth_intra + intra_split_flag : TR_DEPTH_INTER);
int8_t split = (cur_cu->tr_depth > depth);
const int cb_flag_y = cbf_is_set(cur_cu->cbf.y, depth + PU_INDEX(x_pu, y_pu));
const int cb_flag_u = cbf_is_set(cur_cu->cbf.u, depth);
const int cb_flag_v = cbf_is_set(cur_cu->cbf.v, depth);
// The split_transform_flag is not signaled when:
// - transform size is greater than 32 (depth == 0)
// - transform size is 4 (depth == MAX_PU_DEPTH)
// - transform depth is max
// - cu is intra NxN and it's the first split
if (depth > 0 &&
depth < MAX_PU_DEPTH &&
tr_depth < max_tr_depth &&
!(intra_split_flag && tr_depth == 0))
{
cabac->cur_ctx = &(cabac->ctx.trans_subdiv_model[5 - ((g_convert_to_bit[LCU_WIDTH] + 2) - depth)]);
CABAC_BIN(cabac, split, "split_transform_flag");
}
// Chroma cb flags are not signaled when one of the following:
// - transform size is 4 (2x2 chroma transform doesn't exist)
// - they have already been signaled to 0 previously
// When they are not present they are inferred to be 0, except for size 4
// when the flags from previous level are used.
if (depth < MAX_PU_DEPTH) {
cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_chroma[tr_depth]);
if (tr_depth == 0 || parent_coeff_u) {
CABAC_BIN(cabac, cb_flag_u, "cbf_cb");
}
if (tr_depth == 0 || parent_coeff_v) {
CABAC_BIN(cabac, cb_flag_v, "cbf_cr");
}
}
if (split) {
uint8_t pu_offset = 1 << (MAX_PU_DEPTH - (depth + 1));
encode_transform_coeff(state, x_pu, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v);
encode_transform_coeff(state, x_pu + pu_offset, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v);
encode_transform_coeff(state, x_pu, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v);
encode_transform_coeff(state, x_pu + pu_offset, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v);
return;
}
// Luma coded block flag is signaled when one of the following:
// - prediction mode is intra
// - transform depth > 0
// - we have chroma coefficients at this level
// When it is not present, it is inferred to be 1.
if(cur_cu->type == CU_INTRA || tr_depth > 0 || cb_flag_u || cb_flag_v) {
cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_luma[!tr_depth]);
CABAC_BIN(cabac, cb_flag_y, "cbf_luma");
}
if (cb_flag_y | cb_flag_u | cb_flag_v) {
encode_transform_unit(state, x_pu, y_pu, depth);
}
}
void encode_coeff_nxn(encoder_state_t * const state, coeff_t *coeff, uint8_t width,
uint8_t type, int8_t scan_mode, int8_t tr_skip)
{
const encoder_control_t * const encoder = state->encoder_control;
cabac_data_t * const cabac = &state->cabac;
int c1 = 1;
uint8_t last_coeff_x = 0;
uint8_t last_coeff_y = 0;
int32_t i;
uint32_t sig_coeffgroup_flag[64];
uint32_t num_nonzero = 0;
int32_t scan_pos_last = -1;
int32_t pos_last = 0;
int32_t shift = 4>>1;
int8_t be_valid = encoder->sign_hiding;
int32_t scan_pos_sig;
int32_t last_scan_set;
uint32_t go_rice_param = 0;
uint32_t blk_pos, pos_y, pos_x, sig, ctx_sig;
// CONSTANTS
const uint32_t num_blk_side = width >> shift;
const uint32_t log2_block_size = g_convert_to_bit[width] + 2;
const uint32_t *scan =
g_sig_last_scan[scan_mode][log2_block_size - 1];
const uint32_t *scan_cg = g_sig_last_scan_cg[log2_block_size - 2][scan_mode];
// Init base contexts according to block type
cabac_ctx_t *base_coeff_group_ctx = &(cabac->ctx.cu_sig_coeff_group_model[type]);
cabac_ctx_t *baseCtx = (type == 0) ? &(cabac->ctx.cu_sig_model_luma[0]) :
&(cabac->ctx.cu_sig_model_chroma[0]);
FILL(sig_coeffgroup_flag, 0);
// Count non-zero coeffs
for (i = 0; i < width * width; i++) {
if (coeff[i] != 0) {
num_nonzero++;
}
}
// Transforms with no non-zero coefficients are indicated with CBFs.
assert(num_nonzero != 0);
// transform skip flag
if(width == 4 && encoder->trskip_enable) {
cabac->cur_ctx = (type == 0) ? &(cabac->ctx.transform_skip_model_luma) : &(cabac->ctx.transform_skip_model_chroma);
CABAC_BIN(cabac, tr_skip, "transform_skip_flag");
}
scan_pos_last = -1;
// Significance mapping
while (num_nonzero > 0) {
pos_last = scan[++scan_pos_last];
#define POSY (pos_last >> log2_block_size)
#define POSX (pos_last - ( POSY << log2_block_size ))
if (coeff[pos_last] != 0) {
sig_coeffgroup_flag[(num_blk_side * (POSY >> shift) + (POSX >> shift))] = 1;
}
num_nonzero -= (coeff[pos_last] != 0) ? 1 : 0;
#undef POSY
#undef POSX
}
last_coeff_x = pos_last & (width - 1);
last_coeff_y = (uint8_t)(pos_last >> log2_block_size);
// Code last_coeff_x and last_coeff_y
encode_last_significant_xy(state, last_coeff_x, last_coeff_y, width, width,
type, scan_mode);
scan_pos_sig = scan_pos_last;
last_scan_set = (scan_pos_last >> 4);
// significant_coeff_flag
for (i = last_scan_set; i >= 0; i--) {
int32_t sub_pos = i << 4; // LOG2_SCAN_SET_SIZE;
int32_t abs_coeff[16];
int32_t cg_blk_pos = scan_cg[i];
int32_t cg_pos_y = cg_blk_pos / num_blk_side;
int32_t cg_pos_x = cg_blk_pos - (cg_pos_y * num_blk_side);
uint32_t coeff_signs = 0;
int32_t last_nz_pos_in_cg = -1;
int32_t first_nz_pos_in_cg = 16;
int32_t num_non_zero = 0;
go_rice_param = 0;
if (scan_pos_sig == scan_pos_last) {
abs_coeff[0] = abs(coeff[pos_last]);
coeff_signs = (coeff[pos_last] < 0);
num_non_zero = 1;
last_nz_pos_in_cg = scan_pos_sig;
first_nz_pos_in_cg = scan_pos_sig;
scan_pos_sig--;
}
if (i == last_scan_set || i == 0) {
sig_coeffgroup_flag[cg_blk_pos] = 1;
} else {
uint32_t sig_coeff_group = (sig_coeffgroup_flag[cg_blk_pos] != 0);
uint32_t ctx_sig = context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x,
cg_pos_y, width);
cabac->cur_ctx = &base_coeff_group_ctx[ctx_sig];
CABAC_BIN(cabac, sig_coeff_group, "coded_sub_block_flag");
}
if (sig_coeffgroup_flag[cg_blk_pos]) {
int32_t pattern_sig_ctx = context_calc_pattern_sig_ctx(sig_coeffgroup_flag,
cg_pos_x, cg_pos_y, width);
for (; scan_pos_sig >= sub_pos; scan_pos_sig--) {
blk_pos = scan[scan_pos_sig];
pos_y = blk_pos >> log2_block_size;
pos_x = blk_pos - (pos_y << log2_block_size);
sig = (coeff[blk_pos] != 0) ? 1 : 0;
if (scan_pos_sig > sub_pos || i == 0 || num_non_zero) {
ctx_sig = context_get_sig_ctx_inc(pattern_sig_ctx, scan_mode, pos_x, pos_y,
log2_block_size, type);
cabac->cur_ctx = &baseCtx[ctx_sig];
CABAC_BIN(cabac, sig, "sig_coeff_flag");
}
if (sig) {
abs_coeff[num_non_zero] = abs(coeff[blk_pos]);
coeff_signs = 2 * coeff_signs + (coeff[blk_pos] < 0);
num_non_zero++;
if (last_nz_pos_in_cg == -1) {
last_nz_pos_in_cg = scan_pos_sig;
}
first_nz_pos_in_cg = scan_pos_sig;
}
}
} else {
scan_pos_sig = sub_pos - 1;
}
if (num_non_zero > 0) {
int8_t sign_hidden = (last_nz_pos_in_cg - first_nz_pos_in_cg >=
4 /*SBH_THRESHOLD*/) ? 1 : 0;
uint32_t ctx_set = (i > 0 && type == 0) ? 2 : 0;
cabac_ctx_t *base_ctx_mod;
int32_t num_c1_flag, first_c2_flag_idx, idx, first_coeff2;
if (c1 == 0) {
ctx_set++;
}
c1 = 1;
base_ctx_mod = (type == 0) ? &(cabac->ctx.cu_one_model_luma[4 * ctx_set]) :
&(cabac->ctx.cu_one_model_chroma[4 * ctx_set]);
num_c1_flag = MIN(num_non_zero, C1FLAG_NUMBER);
first_c2_flag_idx = -1;
for (idx = 0; idx < num_c1_flag; idx++) {
uint32_t symbol = (abs_coeff[idx] > 1) ? 1 : 0;
cabac->cur_ctx = &base_ctx_mod[c1];
CABAC_BIN(cabac, symbol, "coeff_abs_level_greater1_flag");
if (symbol) {
c1 = 0;
if (first_c2_flag_idx == -1) {
first_c2_flag_idx = idx;
}
} else if ((c1 < 3) && (c1 > 0)) {
c1++;
}
}
if (c1 == 0) {
base_ctx_mod = (type == 0) ? &(cabac->ctx.cu_abs_model_luma[ctx_set]) :
&(cabac->ctx.cu_abs_model_chroma[ctx_set]);
if (first_c2_flag_idx != -1) {
uint8_t symbol = (abs_coeff[first_c2_flag_idx] > 2) ? 1 : 0;
cabac->cur_ctx = &base_ctx_mod[0];
CABAC_BIN(cabac, symbol, "coeff_abs_level_greater2_flag");
}
}
if (be_valid && sign_hidden) {
CABAC_BINS_EP(cabac, (coeff_signs >> 1), (num_non_zero - 1), "coeff_sign_flag");
} else {
CABAC_BINS_EP(cabac, coeff_signs, num_non_zero, "coeff_sign_flag");
}
if (c1 == 0 || num_non_zero > C1FLAG_NUMBER) {
first_coeff2 = 1;
for (idx = 0; idx < num_non_zero; idx++) {
int32_t base_level = (idx < C1FLAG_NUMBER) ? (2 + first_coeff2) : 1;
if (abs_coeff[idx] >= base_level) {
cabac_write_coeff_remain(cabac, abs_coeff[idx] - base_level, go_rice_param);
if (abs_coeff[idx] > 3 * (1 << go_rice_param)) {
go_rice_param = MIN(go_rice_param + 1, 4);
}
}
if (abs_coeff[idx] >= 2) {
first_coeff2 = 0;
}
}
}
}
}
}
/*!
\brief Encode (X,Y) position of the last significant coefficient
\param lastpos_x X component of last coefficient
\param lastpos_y Y component of last coefficient
\param width Block width
\param height Block height
\param type plane type / luminance or chrominance
\param scan scan type (diag, hor, ver)
This method encodes the X and Y component within a block of the last significant coefficient.
*/
void encode_last_significant_xy(encoder_state_t * const state,
uint8_t lastpos_x, uint8_t lastpos_y,
uint8_t width, uint8_t height,
uint8_t type, uint8_t scan)
{
cabac_data_t * const cabac = &state->cabac;
uint8_t offset_x = type?0:((TOBITS(width)*3) + ((TOBITS(width)+1)>>2)),offset_y = offset_x;
uint8_t shift_x = type?(TOBITS(width)):((TOBITS(width)+3)>>2), shift_y = shift_x;
int group_idx_x;
int group_idx_y;
int last_x,last_y,i;
cabac_ctx_t *base_ctx_x = (type ? cabac->ctx.cu_ctx_last_x_chroma : cabac->ctx.cu_ctx_last_x_luma);
cabac_ctx_t *base_ctx_y = (type ? cabac->ctx.cu_ctx_last_y_chroma : cabac->ctx.cu_ctx_last_y_luma);
if (scan == SCAN_VER) {
SWAP( lastpos_x, lastpos_y,uint8_t );
}
group_idx_x = g_group_idx[lastpos_x];
group_idx_y = g_group_idx[lastpos_y];
// Last X binarization
for (last_x = 0; last_x < group_idx_x ; last_x++) {
cabac->cur_ctx = &base_ctx_x[offset_x + (last_x >> shift_x)];
CABAC_BIN(cabac,1,"last_sig_coeff_x_prefix");
}
if (group_idx_x < g_group_idx[width - 1]) {
cabac->cur_ctx = &base_ctx_x[offset_x + (last_x >> shift_x)];
CABAC_BIN(cabac,0,"last_sig_coeff_x_prefix");
}
// Last Y binarization
for (last_y = 0; last_y < group_idx_y ; last_y++) {
cabac->cur_ctx = &base_ctx_y[offset_y + (last_y >> shift_y)];
CABAC_BIN(cabac,1,"last_sig_coeff_y_prefix");
}
if (group_idx_y < g_group_idx[height - 1]) {
cabac->cur_ctx = &base_ctx_y[offset_y + (last_y >> shift_y)];
CABAC_BIN(cabac,0,"last_sig_coeff_y_prefix");
}
// Last X
if (group_idx_x > 3) {
lastpos_x -= g_min_in_group[group_idx_x];
for (i = ((group_idx_x - 2) >> 1) - 1; i >= 0; i--) {
CABAC_BIN_EP(cabac,(lastpos_x>>i) & 1,"last_sig_coeff_x_suffix");
}
}
// Last Y
if (group_idx_y > 3) {
lastpos_y -= g_min_in_group[group_idx_y];
for (i = ((group_idx_y - 2) >> 1) - 1; i >= 0; i--) {
CABAC_BIN_EP(cabac,(lastpos_y>>i) & 1,"last_sig_coeff_y_suffix");
}
}
// end LastSignificantXY
}