/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2014 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Kvazaar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "encoder.h" #include #include #include #include #include #include "config.h" #include "cabac.h" #include "picture.h" #include "nal.h" #include "context.h" #include "transform.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "search.h" #include "sao.h" #include "rdo.h" double g_lambda_cost[55]; uint32_t* g_sig_last_scan[3][7]; /* Local functions. */ static void add_checksum(encoder_control* encoder); void init_sig_last_scan(uint32_t *buff_d, uint32_t *buff_h, uint32_t *buff_v, int32_t width, int32_t height) { uint32_t num_scan_pos = width * width; uint32_t next_scan_pos = 0; int32_t xx, yy, x, y; uint32_t scan_line; uint32_t blk_y, blk_x; uint32_t blk; uint32_t cnt = 0; if (width < 16) { uint32_t *buff_tmp = buff_d; if (width == 8) { buff_tmp = (uint32_t *)g_sig_last_scan_32x32; } for (scan_line = 0; next_scan_pos < num_scan_pos; scan_line++) { int primary_dim = scan_line; int second_dim = 0; while (primary_dim >= width) { second_dim++; primary_dim--; } while (primary_dim >= 0 && second_dim < width) { buff_tmp[next_scan_pos] = primary_dim * width + second_dim ; next_scan_pos++; second_dim++; primary_dim--; } } } if (width > 4) { uint32_t num_blk_side = width >> 2; uint32_t num_blks = num_blk_side * num_blk_side; uint32_t log2_blk = g_convert_to_bit[num_blk_side] + 1; for (blk = 0; blk < num_blks; blk++) { uint32_t init_blk_pos = g_sig_last_scan[SCAN_DIAG][log2_blk][blk]; next_scan_pos = 0; if (width == 32) { init_blk_pos = g_sig_last_scan_32x32[blk]; } { uint32_t offset_y = init_blk_pos / num_blk_side; uint32_t offset_x = init_blk_pos - offset_y * num_blk_side; uint32_t offset_d = 4 * (offset_x + offset_y * width); uint32_t offset_scan = 16 * blk; for (scan_line = 0; next_scan_pos < 16; scan_line++) { int primary_dim = scan_line; int second_dim = 0; //TODO: optimize while (primary_dim >= 4) { second_dim++; primary_dim--; } while (primary_dim >= 0 && second_dim < 4) { buff_d[next_scan_pos + offset_scan] = primary_dim * width + second_dim + offset_d; next_scan_pos++; second_dim++; primary_dim--; } } } } } if (width > 2) { uint32_t num_blk_side = width >> 2; for (blk_y = 0; blk_y < num_blk_side; blk_y++) { for (blk_x = 0; blk_x < num_blk_side; blk_x++) { uint32_t offset = blk_y * 4 * width + blk_x * 4; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { buff_h[cnt] = y * width + x + offset; cnt ++; } } } } cnt = 0; for (blk_x = 0; blk_x < num_blk_side; blk_x++) { for (blk_y = 0; blk_y < num_blk_side; blk_y++) { uint32_t offset = blk_y * 4 * width + blk_x * 4; for (x = 0; x < 4; x++) { for (y = 0; y < 4; y++) { buff_v[cnt] = y * width + x + offset; cnt ++; } } } } } else { for (yy = 0; yy < height; yy++) { for (xx = 0; xx < width; xx++) { buff_h[cnt] = yy * width + xx; cnt ++; } } cnt = 0; for (xx = 0; xx < width; xx++) { for (yy = 0; yy < height; yy++) { buff_v[cnt] = yy * width + xx; cnt ++; } } } } void init_tables(void) { int i; int c = 0; memset( g_convert_to_bit,-1, sizeof( g_convert_to_bit ) ); for (i = 4; i < (1 << 7); i *= 2) { g_convert_to_bit[i] = c; c++; } g_convert_to_bit[i] = c; c = 2; for (i = 0; i < 7; i++) { g_sig_last_scan[0][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t)); g_sig_last_scan[1][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t)); g_sig_last_scan[2][i] = (uint32_t*)malloc(c*c*sizeof(uint32_t)); init_sig_last_scan(g_sig_last_scan[0][i], g_sig_last_scan[1][i], g_sig_last_scan[2][i], c, c); c <<= 1; } } /*! \brief Initializes lambda-value for current QP Implementation closer to HM (Used HM12 as reference) - Still missing functionality when GOP and B-pictures are used */ void init_lambda(encoder_control *encoder) { double qp = encoder->QP; double lambda_scale = 1.0; double qp_temp = qp - 12; double lambda; // Default QP-factor from HM config double qp_factor = 0.4624; if (encoder->in.cur_pic->slicetype == SLICE_I) { qp_factor=0.57*lambda_scale; } lambda = qp_factor*pow( 2.0, qp_temp/3.0 ); if (encoder->in.cur_pic->slicetype != SLICE_I ) { lambda *= 0.95; } g_lambda_cost[encoder->QP] = lambda; } void free_tables(void) { int i; for (i = 0; i < 7; i++) { free(g_sig_last_scan[0][i]); free(g_sig_last_scan[1][i]); free(g_sig_last_scan[2][i]); } } encoder_control *init_encoder_control(config *cfg) { encoder_control *enc_c = NULL; bitstream *stream = NULL; picture_list *pic_list = NULL; if (!cfg) { fprintf(stderr, "Config object must not be null!\n"); goto init_failure; } // Allocate the main struct enc_c = malloc(sizeof(encoder_control)); if(!enc_c){ fprintf(stderr, "Failed to allocate encoder_control!\n"); goto init_failure; } // Config pointer to encoder struct enc_c->cfg = cfg; // input init (TODO: read from commandline / config) enc_c->bitdepth = 8; enc_c->frame = 0; enc_c->QP = enc_c->cfg->qp; enc_c->in.video_format = FORMAT_420; // deblocking filter enc_c->deblock_enable = 1; enc_c->beta_offset_div2 = 0; enc_c->tc_offset_div2 = 0; // SAO enc_c->sao_enable = 1; // Allocate the bitstream struct stream = create_bitstream(enc_c->cfg->width); if (!stream) { fprintf(stderr, "Failed to allocate the bitstream object!\n"); goto init_failure; } enc_c->stream = stream; // Set CABAC output bitstream cabac.stream = enc_c->stream; // Initialize tables init_tables(); //Allocate and init exp golomb table if (!init_exp_golomb(4096*8)) { fprintf(stderr, "Failed to allocate the exp golomb code table, shutting down!\n"); goto init_failure; } // Initialize the scaling list scalinglist_init(); pic_list = picture_list_init(MAX_REF_PIC_COUNT); if(!pic_list) { fprintf(stderr, "Failed to allocate the picture list!\n"); goto init_failure; } enc_c->ref = pic_list; return enc_c; init_failure: // Free everything allocated in this function free(pic_list); free(stream); free(enc_c); return NULL; } void init_encoder_input(encoder_input *input, FILE *inputfile, int32_t width, int32_t height) { input->file = inputfile; input->width = width; input->height = height; input->real_width = width; input->real_height = height; // If input dimensions are not divisible by the smallest block size, add // pixels to the dimensions, so that they are. These extra pixels will be // compressed along with the real ones but they will be cropped out before // rendering. if (width % CU_MIN_SIZE_PIXELS) { input->width += CU_MIN_SIZE_PIXELS - (width % CU_MIN_SIZE_PIXELS); } if (height % CU_MIN_SIZE_PIXELS) { input->height += CU_MIN_SIZE_PIXELS - (height % CU_MIN_SIZE_PIXELS); } input->height_in_lcu = input->height / LCU_WIDTH; input->width_in_lcu = input->width / LCU_WIDTH; // Add one extra LCU when image not divisible by LCU_WIDTH if (input->height_in_lcu * LCU_WIDTH < height) { input->height_in_lcu++; } if (input->width_in_lcu * LCU_WIDTH < width) { input->width_in_lcu++; } // Allocate the picture and CU array input->cur_pic = picture_init(input->width, input->height, input->width_in_lcu, input->height_in_lcu); if (!input->cur_pic) { printf("Error allocating picture!\r\n"); exit(1); } #ifdef _DEBUG if (width != input->width || height != input->height) { printf("Picture buffer has been extended to be a multiple of the smallest block size:\r\n"); printf(" Width = %d (%d), Height = %d (%d)\r\n", width, input->width, height, input->height); } #endif } void encode_one_frame(encoder_control* encoder) { // Initialize lambda value(s) to use in search init_lambda(encoder); /** IDR picture when: period == 0 and frame == 0 * period == 1 && frame%2 == 0 * period != 0 && frame%period == 0 **/ if ( (encoder->cfg->intra_period == 0 && encoder->frame == 0) || (encoder->cfg->intra_period && encoder->frame % encoder->cfg->intra_period == 0 && (encoder->cfg->intra_period != 1 || encoder->frame % 2 == 0 ) ) ) { encoder->poc = 0; // Video Parameter Set (VPS) encode_vid_parameter_set(encoder); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_VPS_NUT, 0, 1); bitstream_clear_buffer(encoder->stream); // Sequence Parameter Set (SPS) encode_seq_parameter_set(encoder); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_SPS_NUT, 0, 1); bitstream_clear_buffer(encoder->stream); // Picture Parameter Set (PPS) encode_pic_parameter_set(encoder); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_PPS_NUT, 0, 1); bitstream_clear_buffer(encoder->stream); // First slice is IDR cabac_start(&cabac); encoder->in.cur_pic->slicetype = SLICE_I; encoder->in.cur_pic->type = NAL_IDR_W_RADL; scalinglist_process(); search_slice_data(encoder); encode_slice_header(encoder); bitstream_align(encoder->stream); encode_slice_data(encoder); cabac_flush(&cabac); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_IDR_W_RADL, 0, 0); bitstream_clear_buffer(encoder->stream); } else { cabac_start(&cabac); // When intra period == 1, all pictures are intra encoder->in.cur_pic->slicetype = encoder->cfg->intra_period==1 ? SLICE_I : SLICE_P; encoder->in.cur_pic->type = NAL_TRAIL_R; scalinglist_process(); search_slice_data(encoder); encode_slice_header(encoder); bitstream_align(encoder->stream); encode_slice_data(encoder); cabac_flush(&cabac); bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_TRAIL_R, 0, 1); bitstream_clear_buffer(encoder->stream); } // Calculate checksum add_checksum(encoder); } void fill_after_frame(FILE *file, unsigned height, unsigned array_width, unsigned array_height, pixel *data) { pixel* p = data + height * array_width; pixel* end = data + array_width * array_height; while (p < end) { // Fill the line by copying the line above. memcpy(p, p - array_width, array_width); p += array_width; } } int read_and_fill_frame_data(FILE *file, unsigned width, unsigned height, unsigned array_width, pixel *data) { pixel* p = data; pixel* end = data + array_width * height; pixel fill_char; unsigned i; while (p < end) { // Read the beginning of the line from input. if (width != fread(p, sizeof(unsigned char), width, file)) return 0; // Fill the rest with the last pixel value. fill_char = p[width - 1]; for (i = width; i < array_width; ++i) { p[i] = fill_char; } p += array_width; } return 1; } int read_one_frame(FILE* file, encoder_control* encoder) { encoder_input* in = &encoder->in; unsigned width = in->real_width; unsigned height = in->real_height; unsigned array_width = in->cur_pic->width; unsigned array_height = in->cur_pic->height; if (width != array_width) { // In the case of frames not being aligned on 8 bit borders, bits need to be copied to fill them in. if (!read_and_fill_frame_data(file, width, height, array_width, in->cur_pic->y_data) || !read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1, in->cur_pic->u_data) || !read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1, in->cur_pic->v_data)) return 0; } else { // Otherwise the data can be read directly to the array. unsigned y_size = width * height; unsigned uv_size = (width >> 1) * (height >> 1); if (y_size != fread(in->cur_pic->y_data, sizeof(unsigned char), y_size, file) || uv_size != fread(in->cur_pic->u_data, sizeof(unsigned char), uv_size, file) || uv_size != fread(in->cur_pic->v_data, sizeof(unsigned char), uv_size, file)) return 0; } if (height != array_height) { fill_after_frame(file, height, array_width, array_height, in->cur_pic->y_data); fill_after_frame(file, height >> 1, array_width >> 1, array_height >> 1, in->cur_pic->u_data); fill_after_frame(file, height >> 1, array_width >> 1, array_height >> 1, in->cur_pic->v_data); } return 1; } /** * \brief Add a checksum SEI message to the bitstream. * \param encoder The encoder. * \returns Void */ static void add_checksum(encoder_control* encoder) { unsigned char checksum[3][SEI_HASH_MAX_LENGTH]; uint32_t checksum_val; unsigned int i; picture_checksum(encoder->in.cur_pic, checksum); WRITE_U(encoder->stream, 132, 8, "sei_type"); WRITE_U(encoder->stream, 13, 8, "size"); WRITE_U(encoder->stream, 2, 8, "hash_type"); // 2 = checksum for (i = 0; i < 3; ++i) { // Pack bits into a single 32 bit uint instead of pushing them one byte // at a time. checksum_val = (checksum[i][0] << 24) + (checksum[i][1] << 16) + (checksum[i][2] << 8) + (checksum[i][3]); WRITE_U(encoder->stream, checksum_val, 32, "picture_checksum"); } bitstream_align(encoder->stream); bitstream_flush(encoder->stream); nal_write(encoder->output, encoder->stream->buffer, encoder->stream->buffer_pos, 0, NAL_SUFFIT_SEI_NUT, 0, 0); bitstream_clear_buffer(encoder->stream); } void encode_pic_parameter_set(encoder_control* encoder) { #ifdef _DEBUG printf("=========== Picture Parameter Set ID: 0 ===========\n"); #endif WRITE_UE(encoder->stream, 0, "pic_parameter_set_id"); WRITE_UE(encoder->stream, 0, "seq_parameter_set_id"); WRITE_U(encoder->stream, 0, 1, "dependent_slice_segments_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "output_flag_present_flag"); WRITE_U(encoder->stream, 0, 3, "num_extra_slice_header_bits"); WRITE_U(encoder->stream, ENABLE_SIGN_HIDING, 1, "sign_data_hiding_flag"); WRITE_U(encoder->stream, 0, 1, "cabac_init_present_flag"); WRITE_UE(encoder->stream, 0, "num_ref_idx_l0_default_active_minus1"); WRITE_UE(encoder->stream, 0, "num_ref_idx_l1_default_active_minus1"); WRITE_SE(encoder->stream, ((int8_t)encoder->QP)-26, "pic_init_qp_minus26"); WRITE_U(encoder->stream, 0, 1, "constrained_intra_pred_flag"); WRITE_U(encoder->stream, 0, 1, "transform_skip_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "cu_qp_delta_enabled_flag"); //if cu_qp_delta_enabled_flag //WRITE_UE(encoder->stream, 0, "diff_cu_qp_delta_depth"); //TODO: add QP offsets WRITE_SE(encoder->stream, 0, "pps_cb_qp_offset"); WRITE_SE(encoder->stream, 0, "pps_cr_qp_offset"); WRITE_U(encoder->stream, 0, 1, "pps_slice_chroma_qp_offsets_present_flag"); WRITE_U(encoder->stream, 0, 1, "weighted_pred_flag"); WRITE_U(encoder->stream, 0, 1, "weighted_bipred_idc"); //WRITE_U(encoder->stream, 0, 1, "dependent_slices_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "transquant_bypass_enable_flag"); WRITE_U(encoder->stream, 0, 1, "tiles_enabled_flag"); WRITE_U(encoder->stream, 0, 1, "entropy_coding_sync_enabled_flag"); //TODO: enable tiles for concurrency //IF tiles //ENDIF WRITE_U(encoder->stream, 0, 1, "loop_filter_across_slice_flag"); WRITE_U(encoder->stream, 1, 1, "deblocking_filter_control_present_flag"); //IF deblocking_filter WRITE_U(encoder->stream, 0, 1, "deblocking_filter_override_enabled_flag"); WRITE_U(encoder->stream, encoder->deblock_enable ? 0 : 1, 1, "pps_disable_deblocking_filter_flag"); //IF !disabled if (encoder->deblock_enable) { WRITE_SE(encoder->stream, encoder->beta_offset_div2, "beta_offset_div2"); WRITE_SE(encoder->stream, encoder->tc_offset_div2, "tc_offset_div2"); } //ENDIF //ENDIF WRITE_U(encoder->stream, 0, 1, "pps_scaling_list_data_present_flag"); //IF scaling_list //ENDIF WRITE_U(encoder->stream, 0, 1, "lists_modification_present_flag"); WRITE_UE(encoder->stream, 0, "log2_parallel_merge_level_minus2"); WRITE_U(encoder->stream, 0, 1, "slice_segment_header_extension_present_flag"); WRITE_U(encoder->stream, 0, 1, "pps_extension_flag"); } void encode_PTL(encoder_control *encoder) { int i; // PTL // Profile Tier WRITE_U(encoder->stream, 0, 2, "general_profile_space"); WRITE_U(encoder->stream, 0, 1, "general_tier_flag"); // Main Profile == 1 WRITE_U(encoder->stream, 1, 5, "general_profile_idc"); /* Compatibility flags should be set at general_profile_idc * (so with general_profile_idc = 1, compatibility_flag[1] should be 1) * According to specification, when compatibility_flag[1] is set, * compatibility_flag[2] should be set too. */ WRITE_U(encoder->stream, 6, 32, "general_profile_compatibility_flag[]"); WRITE_U(encoder->stream, 1, 1, "general_progressive_source_flag"); WRITE_U(encoder->stream, 0, 1, "general_interlaced_source_flag"); WRITE_U(encoder->stream, 0, 1, "general_non_packed_constraint_flag"); WRITE_U(encoder->stream, 0, 1, "general_frame_only_constraint_flag"); WRITE_U(encoder->stream, 0, 32, "XXX_reserved_zero_44bits[0..31]"); WRITE_U(encoder->stream, 0, 12, "XXX_reserved_zero_44bits[32..43]"); // end Profile Tier // Level 6.2 (general_level_idc is 30 * 6.2) WRITE_U(encoder->stream, 186, 8, "general_level_idc"); WRITE_U(encoder->stream, 0, 1, "sub_layer_profile_present_flag"); WRITE_U(encoder->stream, 0, 1, "sub_layer_level_present_flag"); for (i = 1; i < 8; i++) { WRITE_U(encoder->stream, 0, 2, "reserved_zero_2bits"); } // end PTL } void encode_seq_parameter_set(encoder_control* encoder) { encoder_input* const in = &encoder->in; #ifdef _DEBUG printf("=========== Sequence Parameter Set ID: 0 ===========\n"); #endif // TODO: profile IDC and level IDC should be defined later on WRITE_U(encoder->stream, 0, 4, "sps_video_parameter_set_id"); WRITE_U(encoder->stream, 1, 3, "sps_max_sub_layers_minus1"); WRITE_U(encoder->stream, 0, 1, "sps_temporal_id_nesting_flag"); encode_PTL(encoder); WRITE_UE(encoder->stream, 0, "sps_seq_parameter_set_id"); WRITE_UE(encoder->stream, encoder->in.video_format, "chroma_format_idc"); if (encoder->in.video_format == 3) { WRITE_U(encoder->stream, 0, 1, "separate_colour_plane_flag"); } WRITE_UE(encoder->stream, encoder->in.width, "pic_width_in_luma_samples"); WRITE_UE(encoder->stream, encoder->in.height, "pic_height_in_luma_samples"); if (in->width != in->real_width || in->height != in->real_height) { // The standard does not seem to allow setting conf_win values such that // the number of luma samples is not a multiple of 2. Options are to either // hide one line or show an extra line of non-video. Neither seems like a // very good option, so let's not even try. assert(!(in->width % 2)); WRITE_U(encoder->stream, 1, 1, "conformance_window_flag"); WRITE_UE(encoder->stream, 0, "conf_win_left_offset"); WRITE_UE(encoder->stream, (in->width - in->real_width) >> 1, "conf_win_right_offset"); WRITE_UE(encoder->stream, 0, "conf_win_top_offset"); WRITE_UE(encoder->stream, (in->height - in->real_height) >> 1, "conf_win_bottom_offset"); } else { WRITE_U(encoder->stream, 0, 1, "conformance_window_flag"); } //IF window flag //END IF WRITE_UE(encoder->stream, encoder->bitdepth-8, "bit_depth_luma_minus8"); WRITE_UE(encoder->stream, encoder->bitdepth-8, "bit_depth_chroma_minus8"); WRITE_UE(encoder->stream, 0, "log2_max_pic_order_cnt_lsb_minus4"); WRITE_U(encoder->stream, 0, 1, "sps_sub_layer_ordering_info_present_flag"); //for each layer WRITE_UE(encoder->stream, 0, "sps_max_dec_pic_buffering"); WRITE_UE(encoder->stream, 0, "sps_num_reorder_pics"); WRITE_UE(encoder->stream, 0, "sps_max_latency_increase"); //end for WRITE_UE(encoder->stream, MIN_SIZE-3, "log2_min_coding_block_size_minus3"); WRITE_UE(encoder->stream, MAX_DEPTH, "log2_diff_max_min_coding_block_size"); WRITE_UE(encoder->stream, 0, "log2_min_transform_block_size_minus2"); // 4x4 WRITE_UE(encoder->stream, 3, "log2_diff_max_min_transform_block_size"); // 4x4...32x32 WRITE_UE(encoder->stream, TR_DEPTH_INTER, "max_transform_hierarchy_depth_inter"); WRITE_UE(encoder->stream, TR_DEPTH_INTRA, "max_transform_hierarchy_depth_intra"); // Use default scaling list WRITE_U(encoder->stream, ENABLE_SCALING_LIST, 1, "scaling_list_enable_flag"); #if ENABLE_SCALING_LIST == 1 WRITE_U(encoder->stream, 0, 1, "sps_scaling_list_data_present_flag"); #endif WRITE_U(encoder->stream, 0, 1, "amp_enabled_flag"); WRITE_U(encoder->stream, encoder->sao_enable ? 1 : 0, 1, "sample_adaptive_offset_enabled_flag"); WRITE_U(encoder->stream, ENABLE_PCM, 1, "pcm_enabled_flag"); #if ENABLE_PCM == 1 WRITE_U(encoder->stream, 7, 4, "pcm_sample_bit_depth_luma_minus1"); WRITE_U(encoder->stream, 7, 4, "pcm_sample_bit_depth_chroma_minus1"); WRITE_UE(encoder->stream, 0, "log2_min_pcm_coding_block_size_minus3"); WRITE_UE(encoder->stream, 2, "log2_diff_max_min_pcm_coding_block_size"); WRITE_U(encoder->stream, 1, 1, "pcm_loop_filter_disable_flag"); #endif WRITE_UE(encoder->stream, 0, "num_short_term_ref_pic_sets"); //IF num short term ref pic sets //ENDIF WRITE_U(encoder->stream, 0, 1, "long_term_ref_pics_present_flag"); //IF long_term_ref_pics_present //ENDIF WRITE_U(encoder->stream, ENABLE_TEMPORAL_MVP, 1, "sps_temporal_mvp_enable_flag"); WRITE_U(encoder->stream, 0, 1, "sps_strong_intra_smoothing_enable_flag"); WRITE_U(encoder->stream, 0, 1, "vui_parameters_present_flag"); //TODO: VUI? //encode_VUI(encoder); WRITE_U(encoder->stream, 0, 1, "sps_extension_flag"); } void encode_vid_parameter_set(encoder_control* encoder) { int i; #ifdef _DEBUG printf("=========== Video Parameter Set ID: 0 ===========\n"); #endif WRITE_U(encoder->stream, 0, 4, "vps_video_parameter_set_id"); WRITE_U(encoder->stream, 3, 2, "vps_reserved_three_2bits" ); WRITE_U(encoder->stream, 0, 6, "vps_reserved_zero_6bits" ); WRITE_U(encoder->stream, 1, 3, "vps_max_sub_layers_minus1"); WRITE_U(encoder->stream, 0, 1, "vps_temporal_id_nesting_flag"); WRITE_U(encoder->stream, 0xffff, 16, "vps_reserved_ffff_16bits"); encode_PTL(encoder); WRITE_U(encoder->stream, 0, 1, "vps_sub_layer_ordering_info_present_flag"); //for each layer for (i = 0; i < 1; i++) { WRITE_UE(encoder->stream, 1, "vps_max_dec_pic_buffering"); WRITE_UE(encoder->stream, 0, "vps_num_reorder_pics"); WRITE_UE(encoder->stream, 0, "vps_max_latency_increase"); } WRITE_U(encoder->stream, 0, 6, "vps_max_nuh_reserved_zero_layer_id"); WRITE_UE(encoder->stream, 0, "vps_max_op_sets_minus1"); WRITE_U(encoder->stream, 0, 1, "vps_timing_info_present_flag"); //IF timing info //END IF WRITE_U(encoder->stream, 0, 1, "vps_extension_flag"); } void encode_VUI(encoder_control* encoder) { #ifdef _DEBUG printf("=========== VUI Set ID: 0 ===========\n"); #endif WRITE_U(encoder->stream, 0, 1, "aspect_ratio_info_present_flag"); //IF aspect ratio info //ENDIF WRITE_U(encoder->stream, 0, 1, "overscan_info_present_flag"); //IF overscan info //ENDIF WRITE_U(encoder->stream, 0, 1, "video_signal_type_present_flag"); //IF video type //ENDIF WRITE_U(encoder->stream, 0, 1, "chroma_loc_info_present_flag"); //IF chroma loc info //ENDIF WRITE_U(encoder->stream, 0, 1, "neutral_chroma_indication_flag"); WRITE_U(encoder->stream, 0, 1, "field_seq_flag"); WRITE_U(encoder->stream, 0, 1, "frame_field_info_present_flag"); WRITE_U(encoder->stream, 0, 1, "default_display_window_flag"); //IF default display window //ENDIF WRITE_U(encoder->stream, 0, 1, "vui_timing_info_present_flag"); //IF timing info //ENDIF WRITE_U(encoder->stream, 0, 1, "bitstream_restriction_flag"); //IF bitstream restriction //ENDIF } void encode_slice_header(encoder_control* encoder) { picture *cur_pic = encoder->in.cur_pic; #ifdef _DEBUG printf("=========== Slice ===========\n"); #endif WRITE_U(encoder->stream, 1, 1, "first_slice_segment_in_pic_flag"); if (encoder->in.cur_pic->type >= NAL_BLA_W_LP && encoder->in.cur_pic->type <= NAL_RSV_IRAP_VCL23) { WRITE_U(encoder->stream, 1, 1, "no_output_of_prior_pics_flag"); } WRITE_UE(encoder->stream, 0, "slice_pic_parameter_set_id"); //WRITE_U(encoder->stream, 0, 1, "dependent_slice_segment_flag"); WRITE_UE(encoder->stream, encoder->in.cur_pic->slicetype, "slice_type"); // if !entropy_slice_flag //if output_flag_present_flag //WRITE_U(encoder->stream, 1, 1, "pic_output_flag"); //end if //if( IdrPicFlag ) <- nal_unit_type == 5 if (encoder->in.cur_pic->type != NAL_IDR_W_RADL && encoder->in.cur_pic->type != NAL_IDR_N_LP) { int j; int ref_negative = 1; int ref_positive = 0; WRITE_U(encoder->stream, encoder->poc&0xf, 4, "pic_order_cnt_lsb"); WRITE_U(encoder->stream, 0, 1, "short_term_ref_pic_set_sps_flag"); WRITE_UE(encoder->stream, ref_negative, "num_negative_pics"); WRITE_UE(encoder->stream, ref_positive, "num_positive_pics"); for (j = 0; j < ref_negative; j++) { WRITE_UE(encoder->stream, 0, "delta_poc_s0_minus1"); WRITE_U(encoder->stream,1,1, "used_by_curr_pic_s0_flag"); } //WRITE_UE(encoder->stream, 0, "short_term_ref_pic_set_idx"); } //end if //end if if (encoder->sao_enable) { WRITE_U(encoder->stream, cur_pic->slice_sao_luma_flag, 1, "slice_sao_luma_flag"); WRITE_U(encoder->stream, cur_pic->slice_sao_chroma_flag, 1, "slice_sao_chroma_flag"); } if (encoder->in.cur_pic->slicetype != SLICE_I) { WRITE_U(encoder->stream, 0, 1, "num_ref_idx_active_override_flag"); WRITE_UE(encoder->stream, 5-MRG_MAX_NUM_CANDS, "five_minus_max_num_merge_cand"); } if (encoder->in.cur_pic->slicetype == SLICE_B) { WRITE_U(encoder->stream, 0, 1, "mvd_l1_zero_flag"); } // Skip flags that are not present // if !entropy_slice_flag WRITE_SE(encoder->stream, 0, "slice_qp_delta"); //WRITE_U(encoder->stream, 1, 1, "alignment"); } void encode_sao_color(encoder_control *encoder, sao_info *sao, color_index color_i) { picture *pic = encoder->in.cur_pic; sao_eo_cat i; // Skip colors with no SAO. if (color_i == COLOR_Y && !pic->slice_sao_luma_flag) return; if (color_i != COLOR_Y && !pic->slice_sao_chroma_flag) return; /// sao_type_idx_luma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass} /// sao_type_idx_chroma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass} // Encode sao_type_idx for Y and U+V. if (color_i != COLOR_V) { cabac.ctx = &g_sao_type_idx_model; CABAC_BIN(&cabac, sao->type == SAO_TYPE_NONE ? 0 : 1, "sao_type_idx"); if (sao->type == SAO_TYPE_BAND) { CABAC_BIN_EP(&cabac, 0, "sao_type_idx_ep"); } else if (sao->type == SAO_TYPE_EDGE) { CABAC_BIN_EP(&cabac, 1, "sao_type_idx_ep"); } } if (sao->type == SAO_TYPE_NONE) return; /// sao_offset_abs[][][][]: TR, cMax = (1 << (Min(bitDepth, 10) - 5)) - 1, /// cRiceParam = 0, bins = {bypass x N} for (i = SAO_EO_CAT1; i <= SAO_EO_CAT2; ++i) { assert(sao->offsets[i] >= 0); cabac_write_unary_max_symbol_ep(&cabac, sao->offsets[i], SAO_ABS_OFFSET_MAX); } for (i = SAO_EO_CAT3; i <= SAO_EO_CAT4; ++i) { assert(sao->offsets[i] <= 0); cabac_write_unary_max_symbol_ep(&cabac, -sao->offsets[i], SAO_ABS_OFFSET_MAX); } /// sao_offset_sign[][][][]: FL, cMax = 1, bins = {bypass} /// sao_band_position[][][]: FL, cMax = 31, bins = {bypass x N} /// sao_eo_class_luma: FL, cMax = 3, bins = {bypass x 3} /// sao_eo_class_chroma: FL, cMax = 3, bins = {bypass x 3} if (sao->type == SAO_TYPE_BAND) { for (i = SAO_EO_CAT1; i < SAO_EO_CAT4; ++i) { // Positive sign is coded as 0. CABAC_BIN_EP(&cabac, sao->offsets[i] >= 0 ? 0 : 1, "sao_offset_sign"); } // TODO: sao_band_position // FL cMax=31 (6 bits) //CABAC_BINS_EP(&cavac, sao->band_position, 6, "sao_band_position"); } else if (color_i != COLOR_V) { CABAC_BINS_EP(&cabac, sao->eo_class, 2, "sao_eo_class"); } } void encode_sao_merge_flags(encoder_control *encoder, sao_info *sao, unsigned x_ctb, unsigned y_ctb) { // SAO merge flags are not present if merge candidate is not in the same // slice AND tile, but there isn't any such segmentation right now. assert(!USE_SLICES && !USE_TILES); // SAO merge flags are not present for the first row and column. if (x_ctb > 0) { cabac.ctx = &g_sao_merge_flag_model; CABAC_BIN(&cabac, sao->merge_left_flag ? 1 : 0, "sao_merge_left_flag"); } if (y_ctb > 0 && !sao->merge_left_flag) { cabac.ctx = &g_sao_merge_flag_model; CABAC_BIN(&cabac, sao->merge_up_flag ? 1 : 0, "sao_merge_up_flag"); } } /** * \brief Stub that encodes all LCU's as none type. */ void encode_sao(encoder_control *encoder, unsigned x_lcu, uint16_t y_lcu, sao_info *sao_luma, sao_info *sao_chroma) { unsigned sao_type[3] = {SAO_TYPE_NONE, SAO_TYPE_NONE, SAO_TYPE_NONE}; picture *pic = encoder->in.cur_pic; // TODO: transmit merge flags outside sao_info encode_sao_merge_flags(encoder, sao_luma, x_lcu, y_lcu); // If SAO is merged, nothing else needs to be coded. if (!sao_luma->merge_left_flag && !sao_luma->merge_up_flag) { encode_sao_color(encoder, sao_luma, COLOR_Y); encode_sao_color(encoder, sao_chroma, COLOR_U); encode_sao_color(encoder, sao_chroma, COLOR_V); } } void encode_slice_data(encoder_control* encoder) { uint16_t x_ctb, y_ctb; picture *pic = encoder->in.cur_pic; // Filtering if(encoder->deblock_enable) { filter_deblock(encoder); } if (encoder->sao_enable) { pixel *new_y_data = MALLOC(pixel, pic->width * pic->height); pixel *new_u_data = MALLOC(pixel, (pic->width * pic->height) >> 2); pixel *new_v_data = MALLOC(pixel, (pic->width * pic->height) >> 2); memcpy(new_y_data, pic->y_recdata, sizeof(pixel) * pic->width * pic->height); memcpy(new_u_data, pic->u_recdata, sizeof(pixel) * (pic->width * pic->height) >> 2); memcpy(new_v_data, pic->v_recdata, sizeof(pixel) * (pic->width * pic->height) >> 2); for (y_ctb = 0; y_ctb < encoder->in.height_in_lcu; y_ctb++) { for (x_ctb = 0; x_ctb < encoder->in.width_in_lcu; x_ctb++) { unsigned stride = encoder->in.width_in_lcu; sao_info *sao_luma = &pic->sao_luma[y_ctb * stride + x_ctb]; sao_info *sao_chroma = &pic->sao_chroma[y_ctb * stride + x_ctb]; init_sao_info(sao_luma); init_sao_info(sao_chroma); sao_search_luma(encoder->in.cur_pic, x_ctb, y_ctb, sao_luma); sao_search_chroma(encoder->in.cur_pic, x_ctb, y_ctb, sao_chroma); // sao_do_merge(encoder, x_ctb, y_ctb, sao_luma, sao_chroma); // sao_do_rdo(encoder, x_ctb, y_ctb, sao_luma, sao_chroma); sao_reconstruct(pic, new_y_data, x_ctb, y_ctb, sao_luma, COLOR_Y); sao_reconstruct(pic, new_u_data, x_ctb, y_ctb, sao_chroma, COLOR_U); sao_reconstruct(pic, new_v_data, x_ctb, y_ctb, sao_chroma, COLOR_V); } } free(new_y_data); free(new_u_data); free(new_v_data); } init_contexts(encoder,encoder->in.cur_pic->slicetype); // Loop through every LCU in the slice for (y_ctb = 0; y_ctb < encoder->in.height_in_lcu; y_ctb++) { uint8_t last_cu_y = (y_ctb == (encoder->in.height_in_lcu - 1)) ? 1 : 0; for (x_ctb = 0; x_ctb < encoder->in.width_in_lcu; x_ctb++) { uint8_t last_cu_x = (x_ctb == (encoder->in.width_in_lcu - 1)) ? 1 : 0; uint8_t depth = 0; if (encoder->sao_enable) { picture *pic = encoder->in.cur_pic; unsigned stride = encoder->in.width_in_lcu; sao_info sao_luma = pic->sao_luma[y_ctb * stride + x_ctb]; sao_info sao_chroma = pic->sao_chroma[y_ctb * stride + x_ctb]; encode_sao(encoder, x_ctb, y_ctb, &sao_luma, &sao_chroma); } // Recursive function for looping through all the sub-blocks encode_coding_tree(encoder, x_ctb << MAX_DEPTH, y_ctb << MAX_DEPTH, depth); // signal Terminating bit if (!last_cu_x || !last_cu_y) { cabac_encode_bin_trm(&cabac, 0); } } } } void encode_coding_tree(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { cu_info *cur_cu = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; uint8_t split_flag = GET_SPLITDATA(cur_cu, depth); uint8_t split_model = 0; // Check for slice border uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border = border_x | border_y; /*!< are we in any border CU */ // When not in MAX_DEPTH, insert split flag and split the blocks if needed if (depth != MAX_DEPTH) { // Implisit split flag when on border if (!border) { // Get left and top block split_flags and if they are present and true, increase model number if (x_ctb > 0 && GET_SPLITDATA(&(encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb - 1 + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]), depth) == 1) { split_model++; } if (y_ctb > 0 && GET_SPLITDATA(&(encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb + (y_ctb - 1) * (encoder->in.width_in_lcu << MAX_DEPTH)]), depth) == 1) { split_model++; } cabac.ctx = &g_split_flag_model[split_model]; CABAC_BIN(&cabac, split_flag, "SplitFlag"); } if (split_flag || border) { // Split blocks and remember to change x and y block positions uint8_t change = 1<<(MAX_DEPTH-1-depth); encode_coding_tree(encoder, x_ctb, y_ctb, depth + 1); // x,y // TODO: fix when other half of the block would not be completely over the border if (!border_x || border_split_x) { encode_coding_tree(encoder, x_ctb + change, y_ctb, depth + 1); } if (!border_y || border_split_y) { encode_coding_tree(encoder, x_ctb, y_ctb + change, depth + 1); } if (!border || (border_split_x && border_split_y)) { encode_coding_tree(encoder, x_ctb + change, y_ctb + change, depth + 1); } return; } } // Encode skip flag if (encoder->in.cur_pic->slicetype != SLICE_I) { int8_t ctx_skip = 0; // uiCtxSkip = aboveskipped + leftskipped; int ui; int16_t num_cand = MRG_MAX_NUM_CANDS; // Get left and top skipped flags and if they are present and true, increase context number if (x_ctb > 0 && (&encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb - 1 + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)])->skipped) { ctx_skip++; } if (y_ctb > 0 && (&encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb + (y_ctb - 1) * (encoder->in.width_in_lcu << MAX_DEPTH)])->skipped) { ctx_skip++; } cabac.ctx = &g_cu_skip_flag_model[ctx_skip]; CABAC_BIN(&cabac, cur_cu->skipped, "SkipFlag"); // IF SKIP if (cur_cu->skipped) { if (num_cand > 1) { for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { cabac.ctx = &g_cu_merge_idx_ext_model; CABAC_BIN(&cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(&cabac,symbol,"MergeIndex"); } if (symbol == 0) { break; } } } return; } } // ENDIF SKIP // Prediction mode if (encoder->in.cur_pic->slicetype != SLICE_I) { cabac.ctx = &g_cu_pred_mode_model; CABAC_BIN(&cabac, (cur_cu->type == CU_INTRA), "PredMode"); } // part_mode if (cur_cu->type == CU_INTRA) { if (depth == MAX_DEPTH) { cabac.ctx = &g_part_size_model[0]; if (cur_cu->part_size == SIZE_2Nx2N) { CABAC_BIN(&cabac, 1, "part_mode 2Nx2N"); } else { CABAC_BIN(&cabac, 0, "part_mode NxN"); } } } else { // TODO: Handle inter sizes other than 2Nx2N cabac.ctx = &g_part_size_model[0]; CABAC_BIN(&cabac, 1, "part_mode 2Nx2N"); } //end partsize if (cur_cu->type == CU_INTER) { // FOR each part // Mergeflag int16_t num_cand = 0; cabac.ctx = &g_cu_merge_flag_ext_model; CABAC_BIN(&cabac, cur_cu->merged, "MergeFlag"); num_cand = MRG_MAX_NUM_CANDS; if (cur_cu->merged) { //merge if (num_cand > 1) { int32_t ui; for (ui = 0; ui < num_cand - 1; ui++) { int32_t symbol = (ui != cur_cu->merge_idx); if (ui == 0) { cabac.ctx = &g_cu_merge_idx_ext_model; CABAC_BIN(&cabac, symbol, "MergeIndex"); } else { CABAC_BIN_EP(&cabac,symbol,"MergeIndex"); } if (symbol == 0) break; } } } else { uint32_t ref_list_idx; /* // Void TEncSbac::codeInterDir( TComDataCU* pcCU, UInt uiAbsPartIdx ) if(encoder->in.cur_pic->slicetype == SLICE_B) { // Code Inter Dir const UInt uiInterDir = pcCU->getInterDir( uiAbsPartIdx ) - 1; const UInt uiCtx = pcCU->getCtxInterDir( uiAbsPartIdx ); ContextModel *pCtx = m_cCUInterDirSCModel.get( 0 ); if (pcCU->getPartitionSize(uiAbsPartIdx) == SIZE_2Nx2N || pcCU->getHeight(uiAbsPartIdx) != 8 ) { m_pcBinIf->encodeBin( uiInterDir == 2 ? 1 : 0, *( pCtx + uiCtx ) ); } if (uiInterDir < 2) { m_pcBinIf->encodeBin( uiInterDir, *( pCtx + 4 ) ); } } */ for (ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) { //if(encoder->ref_idx_num[uiRefListIdx] > 0) { if (cur_cu->inter.mv_dir & (1 << ref_list_idx)) { if (0) { //encoder->ref_idx_num[uiRefListIdx] != 1)//NumRefIdx != 1) // parseRefFrmIdx int32_t ref_frame = cur_cu->inter.mv_ref; cabac.ctx = &g_cu_ref_pic_model[0]; CABAC_BIN(&cabac, (ref_frame == 0) ? 0 : 1, "ref_frame_flag"); if (ref_frame > 0) { uint32_t i; uint32_t ref_num = encoder->ref_idx_num[ref_list_idx] - 2; cabac.ctx = &g_cu_ref_pic_model[1]; ref_frame--; for (i = 0; i < ref_num; ++i) { const uint32_t symbol = (i == ref_frame) ? 0 : 1; if (i == 0) { CABAC_BIN(&cabac, symbol, "ref_frame_flag2"); } else { CABAC_BIN_EP(&cabac, symbol, "ref_frame_flag2"); } if (symbol == 0) break; } } } if (!(/*pcCU->getSlice()->getMvdL1ZeroFlag() &&*/ encoder->ref_list == REF_PIC_LIST_1 && cur_cu->inter.mv_dir == 3)) { const int32_t mvd_hor = cur_cu->inter.mvd[0]; const int32_t mvd_ver = cur_cu->inter.mvd[1]; const int8_t hor_abs_gr0 = mvd_hor != 0; const int8_t ver_abs_gr0 = mvd_ver != 0; const uint32_t mvd_hor_abs = abs(mvd_hor); const uint32_t mvd_ver_abs = abs(mvd_ver); cabac.ctx = &g_cu_mvd_model[0]; CABAC_BIN(&cabac, (mvd_hor!=0)?1:0, "abs_mvd_greater0_flag_hor"); CABAC_BIN(&cabac, (mvd_ver!=0)?1:0, "abs_mvd_greater0_flag_ver"); cabac.ctx = &g_cu_mvd_model[1]; if (hor_abs_gr0) { CABAC_BIN(&cabac, (mvd_hor_abs>1)?1:0, "abs_mvd_greater1_flag_hor"); } if (ver_abs_gr0) { CABAC_BIN(&cabac, (mvd_ver_abs>1)?1:0, "abs_mvd_greater1_flag_ver"); } if (hor_abs_gr0) { if (mvd_hor_abs > 1) { cabac_write_ep_ex_golomb(&cabac,mvd_hor_abs-2, 1); } CABAC_BIN_EP(&cabac, (mvd_hor>0)?0:1, "mvd_sign_flag_hor"); } if (ver_abs_gr0) { if (mvd_ver_abs > 1) { cabac_write_ep_ex_golomb(&cabac,mvd_ver_abs-2, 1); } CABAC_BIN_EP(&cabac, (mvd_ver>0)?0:1, "mvd_sign_flag_ver"); } } // Signal which candidate MV to use cabac_write_unary_max_symbol(&cabac, g_mvp_idx_model, cur_cu->inter.mv_ref, 1, AMVP_MAX_NUM_CANDS - 1); } } } // for ref_list } // if !merge // Only need to signal coded block flag if not skipped or merged // skip = no coded residual, merge = coded residual if (!cur_cu->merged) { cabac.ctx = &g_cu_qt_root_cbf_model; CABAC_BIN(&cabac, cur_cu->coeff_top_y[depth] | cur_cu->coeff_top_u[depth] | cur_cu->coeff_top_v[depth], "rqt_root_cbf"); } // Code (possible) coeffs to bitstream if(cur_cu->coeff_top_y[depth] | cur_cu->coeff_top_u[depth] | cur_cu->coeff_top_v[depth]) { encode_transform_coeff(encoder, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0); } // END for each part } else if (cur_cu->type == CU_INTRA) { uint8_t intra_pred_mode[4] = { cur_cu->intra[0].mode, cur_cu->intra[1].mode, cur_cu->intra[2].mode, cur_cu->intra[3].mode }; uint8_t intra_pred_mode_chroma = 36; // 36 = Chroma derived from luma int8_t intra_preds[4][3] = {{-1, -1, -1},{-1, -1, -1},{-1, -1, -1},{-1, -1, -1}}; int8_t mpm_preds[4] = {-1, -1, -1, -1}; int i, j; uint32_t flag[4]; uint32_t width = LCU_WIDTH>>depth; int num_pred_units = (cur_cu->part_size == SIZE_2Nx2N ? 1 : 4); #if ENABLE_PCM == 1 // Code must start after variable initialization cabac_encode_bin_trm(&cabac, 0); // IPCMFlag == 0 #endif // PREDINFO CODING // If intra prediction mode is found from the predictors, // it can be signaled with two EP's. Otherwise we can send // 5 EP bins with the full predmode for (j = 0; j < num_pred_units; ++j) { static const vector2d offset[4] = {{0,0},{1,0},{0,1},{1,1}}; intra_get_dir_luma_predictor(encoder->in.cur_pic, x_ctb * 2 + offset[j].x, y_ctb * 2 + offset[j].y, depth, intra_preds[j]); for (i = 0; i < 3; i++) { if (intra_preds[j][i] == intra_pred_mode[j]) { mpm_preds[j] = i; break; } } flag[j] = (mpm_preds[j] == -1) ? 0 : 1; } cabac.ctx = &g_intra_mode_model; for (j = 0; j < num_pred_units; ++j) { CABAC_BIN(&cabac, flag[j], "prev_intra_luma_pred_flag"); } for (j = 0; j < num_pred_units; ++j) { // Signal index of the prediction mode in the prediction list. if (flag[j]) { CABAC_BIN_EP(&cabac, (mpm_preds[j] == 0 ? 0 : 1), "mpm_idx"); if (mpm_preds[j] != 0) { CABAC_BIN_EP(&cabac, (mpm_preds[j] == 1 ? 0 : 1), "mpm_idx"); } } else { // Signal the actual prediction mode. int32_t tmp_pred = intra_pred_mode[j]; // Sort prediction list from lowest to highest. if (intra_preds[j][0] > intra_preds[j][1]) SWAP(intra_preds[j][0], intra_preds[j][1], int8_t); if (intra_preds[j][0] > intra_preds[j][2]) SWAP(intra_preds[j][0], intra_preds[j][2], int8_t); if (intra_preds[j][1] > intra_preds[j][2]) SWAP(intra_preds[j][1], intra_preds[j][2], int8_t); // Reduce the index of the signaled prediction mode according to the // prediction list, as it has been already signaled that it's not one // of the prediction modes. for (i = 2; i >= 0; i--) { tmp_pred = (tmp_pred > intra_preds[j][i] ? tmp_pred - 1 : tmp_pred); } CABAC_BINS_EP(&cabac, tmp_pred, 5, "rem_intra_luma_pred_mode"); } } { // start intra chroma pred mode coding unsigned pred_mode = 5; unsigned chroma_pred_modes[4] = {0, 26, 10, 1}; if (intra_pred_mode_chroma == 36) { pred_mode = 4; } else if (intra_pred_mode_chroma == 34) { // Angular 34 mode is possible only if intra pred mode is one of the // possible chroma pred modes, in which case it is signaled with that // duplicate mode. for (i = 0; i < 4; ++i) { if (intra_pred_mode[0] == chroma_pred_modes[i]) pred_mode = i; } } else { for (i = 0; i < 4; ++i) { if (intra_pred_mode_chroma == chroma_pred_modes[i]) pred_mode = i; } } /** * Table 9-35 - Binarization for intra_chroma_pred_mode * intra_chroma_pred_mode bin_string * 4 0 * 0 100 * 1 101 * 2 110 * 3 111 * Table 9-37 - Assignment of ctxInc to syntax elements with context coded bins * intra_chroma_pred_mode[][] = 0, bypass, bypass */ cabac.ctx = &g_chroma_pred_model[0]; if (pred_mode == 4) { CABAC_BIN(&cabac, 0, "intra_chroma_pred_mode"); } else { CABAC_BIN(&cabac, 1, "intra_chroma_pred_mode"); CABAC_BINS_EP(&cabac, pred_mode, 2, "intra_chroma_pred_mode"); } } // end intra chroma pred mode coding encode_transform_coeff(encoder, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0); } #if ENABLE_PCM == 1 // Code IPCM block if (cur_cu->type == CU_PCM) { cabac_encode_bin_trm(&cabac, 1); // IPCMFlag == 1 cabac_finish(&cabac); bitstream_align(cabac.stream); // PCM sample { unsigned y, x; pixel *base_y = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width]; pixel *base_u = &encoder->in.cur_pic->u_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)]; pixel *base_v = &encoder->in.cur_pic->v_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)]; // Luma for (y = 0; y < LCU_WIDTH >> depth; y++) { for (x = 0; x < LCU_WIDTH >> depth; x++) { bitstream_put(cabac.stream, base_y[x + y * encoder->in.width], 8); } } // Chroma if (encoder->in.video_format != FORMAT_400) { for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { bitstream_put(cabac.stream, base_u[x + y * (encoder->in.width >> 1)], 8); } } for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) { for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) { bitstream_put(cabac.stream, base_v[x + y * (encoder->in.width >> 1)], 8); } } } } // end PCM sample cabac_start(&cabac); } // end Code IPCM block #endif /* END ENABLE_PCM */ else { /* Should not happend */ printf("UNHANDLED TYPE!\r\n"); exit(1); } /* end prediction unit */ /* end coding_unit */ } void transform_chroma(encoder_control *encoder, cu_info *cur_cu, int depth, pixel *base_u, pixel *pred_u, coefficient *coeff_u, int color_type, unsigned scan_idx_chroma, coefficient *pre_quant_coeff, coefficient *block) { int base_stride = encoder->in.width; int pred_stride = encoder->in.width; int width_c = LCU_WIDTH >> (depth + 1); int i = 0; unsigned ac_sum = 0; int y, x; for (y = 0; y < width_c; y++) { for (x = 0; x < width_c; x++) { block[i] = ((int16_t)base_u[x + y * (base_stride >> 1)]) - pred_u[x + y * (pred_stride >> 1)]; i++; } } transform2d(block, pre_quant_coeff, width_c,65535); #if RDOQ == 1 rdoq(encoder, pre_quant_coeff, coeff_u, width_c, width_c, &ac_sum, 2, scan_idx_chroma, cur_cu->type, cur_cu->tr_depth-cur_cu->depth); #else quant(encoder, pre_quant_coeff, coeff_u, width_c, width_c, &ac_sum, 2, scan_idx_chroma, cur_cu->type); #endif } void reconstruct_chroma(encoder_control *encoder, cu_info *cur_cu, int depth, int has_coeffs, coefficient *coeff_u, pixel *recbase_u, pixel *pred_u, int color_type, coefficient *pre_quant_coeff, coefficient *block) { int width_c = LCU_WIDTH >> (depth + 1); int coeff_stride = encoder->in.width; int pred_stride = encoder->in.width; int recbase_stride = encoder->in.width; int i, y, x; if (has_coeffs) { // RECONSTRUCT for predictions dequant(encoder, coeff_u, pre_quant_coeff, width_c, width_c, color_type, cur_cu->type); itransform2d(block, pre_quant_coeff, width_c,65535); i = 0; for (y = 0; y < width_c; y++) { for (x = 0; x < width_c; x++) { int16_t val = block[i++] + pred_u[x + y * (pred_stride >> 1)]; //TODO: support 10+bits recbase_u[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255, val); } } // END RECONTRUCTION } else { // without coeffs, we only use the prediction for (y = 0; y < width_c; y++) { for (x = 0; x < width_c; x++) { recbase_u[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255, pred_u[x + y * (pred_stride >> 1)]); } } } } void encode_transform_tree(encoder_control *encoder, int32_t x_pu, int32_t y_pu, uint8_t depth) { // we have 64>>depth transform size int32_t x_cu = x_pu / 2; int32_t y_cu = y_pu / 2; int i; int32_t width = LCU_WIDTH>>depth; int32_t width_c = (depth == MAX_DEPTH + 1 ? width : width >> 1); cu_info *cur_cu = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu + y_cu * (encoder->in.width_in_lcu << MAX_DEPTH)]; // Split transform and increase depth if (depth == 0 || cur_cu->tr_depth > depth) { int offset = 1 << (MAX_DEPTH - (depth + 1)); int pu_offset = 1 << (MAX_PU_DEPTH - (depth + 1)); encode_transform_tree(encoder, x_pu, y_pu, depth+1); encode_transform_tree(encoder, x_pu + pu_offset, y_pu, depth+1); encode_transform_tree(encoder, x_pu, y_pu + pu_offset, depth+1); encode_transform_tree(encoder, x_pu + pu_offset, y_pu + pu_offset, depth+1); // Derive coded coeff flags from the next depth if (depth == MAX_DEPTH) { cur_cu->coeff_top_y[depth] = cur_cu->coeff_top_y[depth+1] | cur_cu->coeff_top_y[depth+2] | cur_cu->coeff_top_y[depth+3] | cur_cu->coeff_top_y[depth+4]; cur_cu->coeff_top_u[depth] = cur_cu->coeff_top_u[depth+1]; cur_cu->coeff_top_v[depth] = cur_cu->coeff_top_v[depth+1]; } else { cu_info *cu_a = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu + offset + y_cu * (encoder->in.width_in_lcu << MAX_DEPTH)]; cu_info *cu_b = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu + (y_cu + offset) * (encoder->in.width_in_lcu << MAX_DEPTH)]; cu_info *cu_c = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu + offset + (y_cu + offset) * (encoder->in.width_in_lcu << MAX_DEPTH)]; cur_cu->coeff_top_y[depth] = cur_cu->coeff_top_y[depth+1] | cu_a->coeff_top_y[depth+1] | cu_b->coeff_top_y[depth+1] | cu_c->coeff_top_y[depth+1]; cur_cu->coeff_top_u[depth] = cur_cu->coeff_top_u[depth+1] | cu_a->coeff_top_u[depth+1] | cu_b->coeff_top_u[depth+1] | cu_c->coeff_top_u[depth+1]; cur_cu->coeff_top_v[depth] = cur_cu->coeff_top_v[depth+1] | cu_a->coeff_top_v[depth+1] | cu_b->coeff_top_v[depth+1] | cu_c->coeff_top_v[depth+1]; } return; } { // INTRAPREDICTION VARIABLES int x = x_pu * (LCU_WIDTH >> MAX_PU_DEPTH); int y = y_pu * (LCU_WIDTH >> MAX_PU_DEPTH); pixel *recbase_y = &encoder->in.cur_pic->y_recdata[x + y * encoder->in.width]; pixel *recbase_u = &encoder->in.cur_pic->u_recdata[(x >> 1) + (y >> 1) * (encoder->in.width >> 1)]; pixel *recbase_v = &encoder->in.cur_pic->v_recdata[(x >> 1) + (y >> 1) * (encoder->in.width >> 1)]; int32_t recbase_stride = encoder->in.width; pixel *base_y = &encoder->in.cur_pic->y_data[x + y * encoder->in.width]; pixel *base_u = &encoder->in.cur_pic->u_data[(x >> 1) + (y >> 1) * (encoder->in.width >> 1)]; pixel *base_v = &encoder->in.cur_pic->v_data[(x >> 1) + (y >> 1) * (encoder->in.width >> 1)]; int32_t base_stride = encoder->in.width; pixel *pred_y = &encoder->in.cur_pic->pred_y[x + y * encoder->in.width]; pixel *pred_u = &encoder->in.cur_pic->pred_u[(x >> 1) + (y >> 1) * (encoder->in.width >> 1)]; pixel *pred_v = &encoder->in.cur_pic->pred_v[(x >> 1) + (y >> 1) * (encoder->in.width >> 1)]; int32_t pred_stride = encoder->in.width; coefficient coeff_y[LCU_WIDTH*LCU_WIDTH]; coefficient coeff_u[LCU_WIDTH*LCU_WIDTH>>2]; coefficient coeff_v[LCU_WIDTH*LCU_WIDTH>>2]; coefficient *orig_coeff_y = &encoder->in.cur_pic->coeff_y[x + y * encoder->in.width]; coefficient *orig_coeff_u = &encoder->in.cur_pic->coeff_u[(x >> 1) + (y >> 1) * (encoder->in.width >> 1)]; coefficient *orig_coeff_v = &encoder->in.cur_pic->coeff_v[(x >> 1) + (y >> 1) * (encoder->in.width >> 1)]; int32_t coeff_stride = encoder->in.width; // Quant and transform here... int16_t block[LCU_WIDTH*LCU_WIDTH>>2]; int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2]; // INTRA PREDICTION uint32_t ac_sum = 0; uint32_t ctx_idx; uint32_t scan_idx_luma = SCAN_DIAG; uint32_t scan_idx_chroma = SCAN_DIAG; uint8_t dir_mode; int cbf_y = 0; #if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD uint32_t residual_sum = 0; #endif switch (width) { case 2: ctx_idx = 6; break; case 4: ctx_idx = 5; break; case 8: ctx_idx = 4; break; case 16: ctx_idx = 3; break; case 32: ctx_idx = 2; break; case 64: ctx_idx = 1; break; default: ctx_idx = 0; break; } if(cur_cu->type == CU_INTRA) { int pu_index = x_pu % 2 + 2 * (y_pu % 2); int luma_mode = cur_cu->intra[pu_index].mode; scan_idx_luma = SCAN_DIAG; // Scan mode is diagonal, except for 4x4 and 8x8, where: // - angular 6-14 = vertical // - angular 22-30 = horizontal if (width <= 8) { if (luma_mode >= 6 && luma_mode <= 14) { scan_idx_luma = SCAN_VER; } else if (luma_mode >= 22 && luma_mode <= 30) { scan_idx_luma = SCAN_HOR; } } // TODO : chroma intra prediction cur_cu->intra[0].mode_chroma = 36; // Chroma scanmode ctx_idx++; dir_mode = cur_cu->intra[0].mode_chroma; if (dir_mode == 36) { // TODO: support NxN dir_mode = cur_cu->intra[0].mode; } if (ctx_idx > 4 && ctx_idx < 7) { // if multiple scans supported for transform size scan_idx_chroma = abs((int32_t) dir_mode - 26) < 5 ? 1 : (abs((int32_t)dir_mode - 10) < 5 ? 2 : 0); } } // Copy Luma and Chroma to the pred-block for(y = 0; y < LCU_WIDTH>>depth; y++) { for(x = 0; x < LCU_WIDTH>>depth; x++) { pred_y[x+y*pred_stride]=recbase_y[x+y*recbase_stride]; } } for(y = 0; y < width_c; y++) { for(x = 0; x < width_c; x++) { pred_u[x+y*(pred_stride>>1)]=recbase_u[x+y*(recbase_stride>>1)]; pred_v[x+y*(pred_stride>>1)]=recbase_v[x+y*(recbase_stride>>1)]; } } // INTRA PREDICTION ENDS HERE // Get residual by subtracting prediction i = 0; ac_sum = 0; for (y = 0; y < LCU_WIDTH >> depth; y++) { for (x = 0; x < LCU_WIDTH >> depth; x++) { block[i] = ((int16_t)base_y[x + y * base_stride]) - pred_y[x + y * pred_stride]; #if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD residual_sum += block[i]; #endif i++; } } #if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD #define RESIDUAL_THRESHOLD 500 if(residual_sum < RESIDUAL_THRESHOLD/(LCU_WIDTH >> depth)) { memset(block, 0, sizeof(int16_t)*(LCU_WIDTH >> depth)*(LCU_WIDTH >> depth)); } #endif // Transform and quant residual to coeffs transform2d(block,pre_quant_coeff,width,0); #if RDOQ == 1 rdoq(encoder, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0, scan_idx_luma, cur_cu->type,cur_cu->tr_depth-cur_cu->depth); #else quant(encoder, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0, scan_idx_luma, cur_cu->type); #endif // Check for non-zero coeffs for (i = 0; i < width * width; i++) { if (coeff_y[i] != 0) { // Found one, we can break here cur_cu->coeff_y = 1; cbf_y = 1; if (depth <= MAX_DEPTH) { cur_cu->coeff_top_y[depth] = 1; } else { int pu_index = x_pu % 2 + 2 * (y_pu % 2); cur_cu->coeff_top_y[depth + pu_index] = 1; } break; } } if (cbf_y) { // Combine inverese quantized coefficients with the prediction to get // reconstructed image. picture_set_block_residual(encoder->in.cur_pic,x_cu,y_cu,depth,1); i = 0; for (y = 0; y < width; y++) { for (x = 0; x < width; x++) { orig_coeff_y[x + y * coeff_stride] = coeff_y[i]; i++; } } dequant(encoder, coeff_y, pre_quant_coeff, width, width, 0, cur_cu->type); itransform2d(block,pre_quant_coeff,width,0); i = 0; for (y = 0; y < width; y++) { for (x = 0; x < width; x++) { int val = block[i++] + pred_y[x + y * pred_stride]; //TODO: support 10+bits recbase_y[x + y * recbase_stride] = (pixel)CLIP(0, 255, val); } } } else { // Without coefficients, just copy the prediction as the reconstructed image. for (y = 0; y < width; y++) { for (x = 0; x < width; x++) { recbase_y[x + y * recbase_stride] = (pixel)CLIP(0, 255, pred_y[x + y * pred_stride]); } } } // If luma is 4x4, do chroma for the 8x8 luma area when handling the top // left PU because the coordinates are correct. if (depth <= MAX_DEPTH || (x_pu % 2 == 0 && y_pu % 2 == 0)) { int chroma_depth = (depth == MAX_PU_DEPTH ? depth - 1 : depth); int chroma_size = LCU_CHROMA_SIZE >> (chroma_depth * 2); // These are some weird indices for quant and dequant and should be // replaced later with color_index. int color_type_u = 2; int color_type_v = 3; transform_chroma(encoder, cur_cu, chroma_depth, base_u, pred_u, coeff_u, color_type_u, scan_idx_chroma, pre_quant_coeff, block); for (i = 0; i < chroma_size; i++) { if (coeff_u[i] != 0) { // Found one, we can break here cur_cu->coeff_u = 1; cur_cu->coeff_top_u[depth] = 1; break; } } transform_chroma(encoder, cur_cu, chroma_depth, base_v, pred_v, coeff_v, color_type_v, scan_idx_chroma, pre_quant_coeff, block); for (i = 0; i < chroma_size; i++) { if (coeff_v[i] != 0) { // Found one, we can break here cur_cu->coeff_v = 1; cur_cu->coeff_top_v[depth] = 1; break; } } // Save coefficients to cu. if (cur_cu->coeff_u || cur_cu->coeff_v) { i = 0; for (y = 0; y < width_c; y++) { for (x = 0; x < width_c; x++) { orig_coeff_u[x + y * (coeff_stride>>1)] = coeff_u[i]; orig_coeff_v[x + y * (coeff_stride>>1)] = coeff_v[i]; i++; } } } reconstruct_chroma(encoder, cur_cu, chroma_depth, cur_cu->coeff_u, coeff_u, recbase_u, pred_u, color_type_u, pre_quant_coeff, block); reconstruct_chroma(encoder, cur_cu, chroma_depth, cur_cu->coeff_v, coeff_v, recbase_v, pred_v, color_type_v, pre_quant_coeff, block); } return; } // end Residual Coding } void encode_transform_unit(encoder_control *encoder, int x_pu, int y_pu, int depth, int tr_depth) { int width = LCU_WIDTH >> depth; int width_c = (depth == MAX_PU_DEPTH ? width : width >> 1); int x_cu = x_pu / 2; int y_cu = y_pu / 2; cu_info *cur_cu = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu + y_cu * (encoder->in.width_in_lcu << MAX_DEPTH)]; coefficient coeff_y[LCU_WIDTH*LCU_WIDTH+1]; coefficient coeff_u[LCU_WIDTH*LCU_WIDTH>>2]; coefficient coeff_v[LCU_WIDTH*LCU_WIDTH>>2]; int32_t coeff_stride = encoder->in.width; uint32_t ctx_idx; uint32_t scan_idx = SCAN_DIAG; uint32_t dir_mode; int cbf_y; if (depth <= MAX_DEPTH) { cbf_y = cur_cu->coeff_y; } else { int pu_index = x_pu % 2 + 2 * (y_pu % 2); cbf_y = cur_cu->coeff_top_y[depth + pu_index]; } if (cbf_y) { int x = x_pu * (LCU_WIDTH >> MAX_PU_DEPTH); int y = y_pu * (LCU_WIDTH >> MAX_PU_DEPTH); coefficient *orig_pos = &encoder->in.cur_pic->coeff_y[x + y * encoder->in.width]; for (y = 0; y < width; y++) { for (x = 0; x < width; x++) { coeff_y[x+y*width] = orig_pos[x]; } orig_pos += coeff_stride; } } switch (width) { case 2: ctx_idx = 6; break; case 4: ctx_idx = 5; break; case 8: ctx_idx = 4; break; case 16: ctx_idx = 3; break; case 32: ctx_idx = 2; break; case 64: ctx_idx = 1; break; default: ctx_idx = 0; break; } ctx_idx -= tr_depth; // CoeffNxN // Residual Coding if (cbf_y) { scan_idx = SCAN_DIAG; if (cur_cu->type == CU_INTRA) { // Luma (Intra) scanmode if (depth <= MAX_DEPTH) { dir_mode = cur_cu->intra[0].mode; } else { int pu_index = x_pu % 2 + 2 * (y_pu % 2); dir_mode = cur_cu->intra[pu_index].mode; } // Scan mode is diagonal, except for 4x4 and 8x8, where: // - angular 6-14 = vertical // - angular 22-30 = horizontal if (width <= 8) { if (dir_mode >= 6 && dir_mode <= 14) { scan_idx = SCAN_VER; } else if (dir_mode >= 22 && dir_mode <= 30) { scan_idx = SCAN_HOR; } } } encode_coeff_nxn(encoder, coeff_y, width, 0, scan_idx); } if (depth == MAX_DEPTH + 1 && !(x_pu % 2 && y_pu % 2)) { // For size 4x4 luma transform the corresponding chroma transforms are // also of size 4x4 covering 8x8 luma pixels. The residual is coded // in the last transform unit so for the other ones, don't do anything. return; } if (cur_cu->coeff_u || cur_cu->coeff_v) { int x, y; coefficient *orig_pos_u, *orig_pos_v; if (depth <= MAX_DEPTH) { x = x_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1)); y = y_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1)); } else { // for 4x4 select top left pixel of the CU. x = x_cu * (LCU_WIDTH >> (MAX_DEPTH + 1)); y = y_cu * (LCU_WIDTH >> (MAX_DEPTH + 1)); } orig_pos_u = &encoder->in.cur_pic->coeff_u[x + y * (encoder->in.width >> 1)]; orig_pos_v = &encoder->in.cur_pic->coeff_v[x + y * (encoder->in.width >> 1)]; for (y = 0; y < (width_c); y++) { for (x = 0; x < (width_c); x++) { coeff_u[x+y*(width_c)] = orig_pos_u[x]; coeff_v[x+y*(width_c)] = orig_pos_v[x]; } orig_pos_u += coeff_stride>>1; orig_pos_v += coeff_stride>>1; } if(cur_cu->type == CU_INTER) { scan_idx = SCAN_DIAG; } else { // Chroma scanmode ctx_idx++; dir_mode = cur_cu->intra[0].mode_chroma; if (dir_mode == 36) { // TODO: support NxN dir_mode = cur_cu->intra[0].mode; } scan_idx = SCAN_DIAG; if (ctx_idx > 4 && ctx_idx < 7) { // if multiple scans supported for transform size // mode is diagonal, except for 4x4 and 8x8, where: // - angular 6-14 = vertical // - angular 22-30 = horizontal scan_idx = abs((int32_t) dir_mode - 26) < 5 ? 1 : (abs((int32_t)dir_mode - 10) < 5 ? 2 : 0); } } if (cur_cu->coeff_u) { encode_coeff_nxn(encoder, coeff_u, width_c, 2, scan_idx); } if (cur_cu->coeff_v) { encode_coeff_nxn(encoder, coeff_v, width_c, 2, scan_idx); } } } /** * \param encoder * \param x_pu Prediction units' x coordinate. * \param y_pu Prediction units' y coordinate. * \param depth Depth from LCU. * \param tr_depth Depth from last CU. * \param parent_coeff_u What was signaled at previous level for cbf_cb. * \param parent_coeff_v What was signlaed at previous level for cbf_cr. */ void encode_transform_coeff(encoder_control *encoder, int32_t x_pu,int32_t y_pu, int8_t depth, int8_t tr_depth, uint8_t parent_coeff_u, uint8_t parent_coeff_v) { int32_t x_cu = x_pu / 2; int32_t y_cu = y_pu / 2; cu_info *cur_cu = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu + y_cu * (encoder->in.width_in_lcu << MAX_DEPTH)]; // NxN signifies implicit transform split at the first transform level. // There is a similar implicit split for inter, but it is only used when // transform hierarchy is not in use. int intra_split_flag = (cur_cu->type == CU_INTRA && cur_cu->part_size == SIZE_NxN); // The implicit split by intra NxN is not counted towards max_tr_depth. int max_tr_depth = (cur_cu->type == CU_INTRA ? TR_DEPTH_INTRA + intra_split_flag : TR_DEPTH_INTER); int8_t split = cur_cu->tr_depth > depth; int8_t cb_flag_u = cur_cu->coeff_top_u[depth]; int8_t cb_flag_v = cur_cu->coeff_top_v[depth]; int cb_flag_y; if (depth <= MAX_DEPTH) { cb_flag_y = cur_cu->coeff_top_y[depth]; } else { int pu_index = x_pu % 2 + 2 * (y_pu % 2); cb_flag_y = cur_cu->coeff_top_y[depth + pu_index]; } // The split_transform_flag is not signaled when: // - transform size is greater than 32 (depth == 0) // - transform size is 4 (depth == MAX_PU_DEPTH) // - transform depth is max // - cu is intra NxN and it's the first split if (depth > 0 && depth < MAX_PU_DEPTH && tr_depth < max_tr_depth && !(intra_split_flag && tr_depth == 0)) { cabac.ctx = &g_trans_subdiv_model[5 - ((g_convert_to_bit[LCU_WIDTH] + 2) - depth)]; CABAC_BIN(&cabac, split, "split_transform_flag"); } // Chroma cb flags are not signaled when one of the following: // - transform size is 4 (2x2 chroma transform doesn't exist) // - they have already been signaled to 0 previously // When they are not present they are inferred to be 0, except for size 4 // when the flags from previous level are used. if (depth < MAX_PU_DEPTH) { cabac.ctx = &g_qt_cbf_model_chroma[tr_depth]; if (tr_depth == 0 || parent_coeff_u) { CABAC_BIN(&cabac, cb_flag_u, "cbf_cb"); } if (tr_depth == 0 || parent_coeff_v) { CABAC_BIN(&cabac, cb_flag_v, "cbf_cr"); } } if (split) { uint8_t pu_offset = 1 << (MAX_PU_DEPTH - (depth + 1)); encode_transform_coeff(encoder, x_pu, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(encoder, x_pu + pu_offset, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(encoder, x_pu, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); encode_transform_coeff(encoder, x_pu + pu_offset, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v); return; } // Luma coded block flag is signaled when one of the following: // - prediction mode is intra // - transform depth > 0 // - we have chroma coefficients at this level // When it is not present, it is inferred to be 1. if(cur_cu->type == CU_INTRA || tr_depth > 0 || cur_cu->coeff_u || cur_cu->coeff_v) { cabac.ctx = &g_qt_cbf_model_luma[!tr_depth]; CABAC_BIN(&cabac, cb_flag_y, "cbf_luma"); } if (cb_flag_y | cur_cu->coeff_u | cur_cu->coeff_v) { encode_transform_unit(encoder, x_pu, y_pu, depth, tr_depth); } } void encode_coeff_nxn(encoder_control *encoder, coefficient *coeff, uint8_t width, uint8_t type, int8_t scan_mode) { int c1 = 1; uint8_t last_coeff_x = 0; uint8_t last_coeff_y = 0; int32_t i; uint32_t sig_coeffgroup_flag[64]; uint32_t num_nonzero = 0; int32_t scan_pos_last = -1; int32_t pos_last = 0; int32_t shift = 4>>1; int8_t be_valid = ENABLE_SIGN_HIDING; int32_t scan_pos_sig; int32_t last_scan_set; uint32_t go_rice_param = 0; uint32_t blk_pos, pos_y, pos_x, sig, ctx_sig; // CONSTANTS const uint32_t num_blk_side = width >> shift; const uint32_t log2_block_size = g_convert_to_bit[width] + 2; const uint32_t *scan = g_sig_last_scan[scan_mode][log2_block_size - 1]; const uint32_t *scan_cg = NULL; // Init base contexts according to block type cabac_ctx *base_coeff_group_ctx = &g_cu_sig_coeff_group_model[type]; cabac_ctx *baseCtx = (type == 0) ? &g_cu_sig_model_luma[0] : &g_cu_sig_model_chroma[0]; memset(sig_coeffgroup_flag,0,sizeof(uint32_t)*64); // Count non-zero coeffs for (i = 0; i < width * width; i++) { if (coeff[i] != 0) { num_nonzero++; } } scan_cg = g_sig_last_scan[scan_mode][log2_block_size > 3 ? log2_block_size - 3 : 0]; if (log2_block_size == 3) { scan_cg = g_sig_last_scan_8x8[scan_mode]; } else if (log2_block_size == 5) { scan_cg = g_sig_last_scan_32x32; } scan_pos_last = -1; // Significance mapping while (num_nonzero > 0) { pos_last = scan[++scan_pos_last]; #define POSY (pos_last >> log2_block_size) #define POSX (pos_last - ( POSY << log2_block_size )) if (coeff[pos_last] != 0) { sig_coeffgroup_flag[(num_blk_side * (POSY >> shift) + (POSX >> shift))] = 1; } num_nonzero -= (coeff[pos_last] != 0) ? 1 : 0; #undef POSY #undef POSX } last_coeff_x = pos_last & (width - 1); last_coeff_y = pos_last >> log2_block_size; // Code last_coeff_x and last_coeff_y encode_last_significant_xy(encoder, last_coeff_x, last_coeff_y, width, width, type, scan_mode); scan_pos_sig = scan_pos_last; last_scan_set = (scan_pos_last >> 4); // significant_coeff_flag for (i = last_scan_set; i >= 0; i--) { int32_t sub_pos = i << 4; // LOG2_SCAN_SET_SIZE; int32_t abs_coeff[16]; int32_t cg_blk_pos = scan_cg[i]; int32_t cg_pos_y = cg_blk_pos / num_blk_side; int32_t cg_pos_x = cg_blk_pos - (cg_pos_y * num_blk_side); uint32_t coeff_signs = 0; int32_t last_nz_pos_in_cg = -1; int32_t first_nz_pos_in_cg = 16; int32_t num_non_zero = 0; go_rice_param = 0; if (scan_pos_sig == scan_pos_last) { abs_coeff[0] = abs(coeff[pos_last]); coeff_signs = (coeff[pos_last] < 0); num_non_zero = 1; last_nz_pos_in_cg = scan_pos_sig; first_nz_pos_in_cg = scan_pos_sig; scan_pos_sig--; } if (i == last_scan_set || i == 0) { sig_coeffgroup_flag[cg_blk_pos] = 1; } else { uint32_t sig_coeff_group = (sig_coeffgroup_flag[cg_blk_pos] != 0); uint32_t ctx_sig = context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); cabac.ctx = &base_coeff_group_ctx[ctx_sig]; CABAC_BIN(&cabac, sig_coeff_group, "significant_coeff_group"); } if (sig_coeffgroup_flag[cg_blk_pos]) { int32_t pattern_sig_ctx = context_calc_pattern_sig_ctx(sig_coeffgroup_flag, cg_pos_x, cg_pos_y, width); for (; scan_pos_sig >= sub_pos; scan_pos_sig--) { blk_pos = scan[scan_pos_sig]; pos_y = blk_pos >> log2_block_size; pos_x = blk_pos - (pos_y << log2_block_size); sig = (coeff[blk_pos] != 0) ? 1 : 0; if (scan_pos_sig > sub_pos || i == 0 || num_non_zero) { ctx_sig = context_get_sig_ctx_inc(pattern_sig_ctx, scan_mode, pos_x, pos_y, log2_block_size, width, type); cabac.ctx = &baseCtx[ctx_sig]; CABAC_BIN(&cabac, sig, "significant_coeff_flag"); } if (sig) { abs_coeff[num_non_zero] = abs(coeff[blk_pos]); coeff_signs = 2 * coeff_signs + (coeff[blk_pos] < 0); num_non_zero++; if (last_nz_pos_in_cg == -1) { last_nz_pos_in_cg = scan_pos_sig; } first_nz_pos_in_cg = scan_pos_sig; } } } else { scan_pos_sig = sub_pos - 1; } if (num_non_zero > 0) { int8_t sign_hidden = (last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 /*SBH_THRESHOLD*/) ? 1 : 0; uint32_t ctx_set = (i > 0 && type == 0) ? 2 : 0; cabac_ctx *base_ctx_mod; int32_t num_c1_flag, first_c2_flag_idx, idx, first_coeff2; if (c1 == 0) { ctx_set++; } c1 = 1; base_ctx_mod = (type == 0) ? &g_cu_one_model_luma[4 * ctx_set] : &g_cu_one_model_chroma[4 * ctx_set]; num_c1_flag = MIN(num_non_zero, C1FLAG_NUMBER); first_c2_flag_idx = -1; for (idx = 0; idx < num_c1_flag; idx++) { uint32_t symbol = (abs_coeff[idx] > 1) ? 1 : 0; cabac.ctx = &base_ctx_mod[c1]; CABAC_BIN(&cabac, symbol, "significant_coeff2_flag"); if (symbol) { c1 = 0; if (first_c2_flag_idx == -1) { first_c2_flag_idx = idx; } } else if ((c1 < 3) && (c1 > 0)) { c1++; } } if (c1 == 0) { base_ctx_mod = (type == 0) ? &g_cu_abs_model_luma[ctx_set] : &g_cu_abs_model_chroma[ctx_set]; if (first_c2_flag_idx != -1) { uint8_t symbol = (abs_coeff[first_c2_flag_idx] > 2) ? 1 : 0; cabac.ctx = &base_ctx_mod[0]; CABAC_BIN(&cabac,symbol,"first_c2_flag"); } } if (be_valid && sign_hidden) { CABAC_BINS_EP(&cabac, (coeff_signs >> 1), (num_non_zero - 1), ""); } else { CABAC_BINS_EP(&cabac, coeff_signs, num_non_zero, ""); } if (c1 == 0 || num_non_zero > C1FLAG_NUMBER) { first_coeff2 = 1; for (idx = 0; idx < num_non_zero; idx++) { int32_t base_level = (idx < C1FLAG_NUMBER) ? (2 + first_coeff2) : 1; if (abs_coeff[idx] >= base_level) { cabac_write_coeff_remain(&cabac, abs_coeff[idx] - base_level, go_rice_param); if (abs_coeff[idx] > 3 * (1 << go_rice_param)) { go_rice_param = MIN(go_rice_param + 1, 4); } } if (abs_coeff[idx] >= 2) { first_coeff2 = 0; } } } } } } /*! \brief Encode (X,Y) position of the last significant coefficient \param lastpos_x X component of last coefficient \param lastpos_y Y component of last coefficient \param width Block width \param height Block height \param type plane type / luminance or chrominance \param scan scan type (diag, hor, ver) This method encodes the X and Y component within a block of the last significant coefficient. */ void encode_last_significant_xy(encoder_control *encoder, uint8_t lastpos_x, uint8_t lastpos_y, uint8_t width, uint8_t height, uint8_t type, uint8_t scan) { uint8_t offset_x = type?0:((TOBITS(width)*3) + ((TOBITS(width)+1)>>2)),offset_y = offset_x; uint8_t shift_x = type?(TOBITS(width)):((TOBITS(width)+3)>>2), shift_y = shift_x; int group_idx_x; int group_idx_y; int last_x,last_y,i; cabac_ctx *base_ctx_x = (type ? g_cu_ctx_last_x_chroma : g_cu_ctx_last_x_luma); cabac_ctx *base_ctx_y = (type ? g_cu_ctx_last_y_chroma : g_cu_ctx_last_y_luma); if (scan == SCAN_VER) { SWAP( lastpos_x, lastpos_y,uint8_t ); } group_idx_x = g_group_idx[lastpos_x]; group_idx_y = g_group_idx[lastpos_y]; // Last X binarization for (last_x = 0; last_x < group_idx_x ; last_x++) { cabac.ctx = &base_ctx_x[offset_x + (last_x >> shift_x)]; CABAC_BIN(&cabac,1,"LastSignificantX"); } if (group_idx_x < g_group_idx[width - 1]) { cabac.ctx = &base_ctx_x[offset_x + (last_x >> shift_x)]; CABAC_BIN(&cabac,0,"LastSignificantX"); } // Last Y binarization for (last_y = 0; last_y < group_idx_y ; last_y++) { cabac.ctx = &base_ctx_y[offset_y + (last_y >> shift_y)]; CABAC_BIN(&cabac,1,"LastSignificantY"); } if (group_idx_y < g_group_idx[height - 1]) { cabac.ctx = &base_ctx_y[offset_y + (last_y >> shift_y)]; CABAC_BIN(&cabac,0,"LastSignificantY"); } // Last X if (group_idx_x > 3) { lastpos_x -= g_min_in_group[group_idx_x]; for (i = ((group_idx_x - 2) >> 1) - 1; i >= 0; i--) { CABAC_BIN_EP(&cabac,(lastpos_x>>i) & 1,"LastSignificantX"); } } // Last Y if (group_idx_y > 3) { lastpos_y -= g_min_in_group[group_idx_y]; for (i = ((group_idx_y - 2) >> 1) - 1; i >= 0; i--) { CABAC_BIN_EP(&cabac,(lastpos_y>>i) & 1,"LastSignificantY"); } } // end LastSignificantXY } /** * \brief This function reconstructs inter/intra predictions and produces coded residual to the buffer */ void encode_block_residual(encoder_control *encoder, uint16_t x_ctb, uint16_t y_ctb, uint8_t depth) { cu_info *cur_cu = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]; uint8_t split_flag = GET_SPLITDATA(cur_cu, depth); uint8_t split_model = 0; // Check for slice border uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0; uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1; uint8_t border = border_x | border_y; /*!< are we in any border CU */ // When not in MAX_DEPTH, insert split flag and split the blocks if needed if (depth != MAX_DEPTH) { if (split_flag || border) { // Split blocks and remember to change x and y block positions uint8_t change = 1<<(MAX_DEPTH-1-depth); encode_block_residual(encoder, x_ctb, y_ctb, depth + 1); if (!border_x || border_split_x) { encode_block_residual(encoder, x_ctb + change, y_ctb, depth + 1); } if (!border_y || border_split_y) { encode_block_residual(encoder, x_ctb, y_ctb + change, depth + 1); } if (!border || (border_split_x && border_split_y)) { encode_block_residual(encoder, x_ctb + change, y_ctb + change, depth + 1); } return; } } if (cur_cu->type == CU_INTRA) { // INTRAPREDICTION VARIABLES pixel pred_y[LCU_WIDTH * LCU_WIDTH]; pixel *recbase_y = &encoder->in.cur_pic->y_recdata[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width]; pixel *recbase_u = &encoder->in.cur_pic->u_recdata[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)]; pixel *recbase_v = &encoder->in.cur_pic->v_recdata[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)]; int32_t rec_stride = encoder->in.width; // SEARCH BEST INTRA MODE (AGAIN) pixel rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)]; pixel *rec_shift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1]; pixel *rec_shift_u = &rec[(LCU_WIDTH >> (depth + 1)) * 2 + 8 + 1]; int width = LCU_WIDTH >> depth; int width_c = LCU_WIDTH >> (depth + 1); static vector2d offsets[4] = {{0,0},{1,0},{0,1},{1,1}}; int num_pu = (cur_cu->part_size == SIZE_2Nx2N ? 1 : 4); int i; if (cur_cu->part_size == SIZE_NxN) { width = width_c; } cur_cu->intra[0].mode_chroma = 36; // TODO: Chroma intra prediction // This does not support NxN yet. // A quick test with 10 frames of PeopleOnStreet_3840x2160 showed that // re-doing the search here with actual reconstructed reference lowered // bitrate by 4% and improved luma PSNR by 0.03dB. Doing it here might // not be worth it. intra_build_reference_border(encoder->in.cur_pic, encoder->in.cur_pic->y_recdata, x_ctb * 8, y_ctb * 8, width * 2 + 8, rec, width * 2 + 8, 0); cur_cu->intra[0].mode = (int8_t)intra_prediction(encoder->in.cur_pic->y_data, encoder->in.width, rec_shift, (LCU_WIDTH >> (depth)) * 2 + 8, x_ctb * (LCU_WIDTH >> (MAX_DEPTH)), y_ctb * (LCU_WIDTH >> (MAX_DEPTH)), width, pred_y, width, &cur_cu->intra[0].cost); intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu->intra[0].mode, cur_cu->part_size); intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu->intra[0].mode, cur_cu->part_size); for (i = 0; i < num_pu; ++i) { // Build reconstructed block to use in prediction with extrapolated borders int x_pos = (x_ctb << MIN_SIZE) + offsets[i].x * width; int y_pos = (y_ctb << MIN_SIZE) + offsets[i].y * width; recbase_y = &encoder->in.cur_pic->y_recdata[x_pos + y_pos * encoder->in.width]; rec_shift = &rec[width * 2 + 8 + 1]; intra_build_reference_border(encoder->in.cur_pic, encoder->in.cur_pic->y_recdata, x_pos, y_pos, width * 2 + 8, rec, width * 2 + 8, 0); intra_recon(rec_shift, width * 2 + 8, x_pos, y_pos, width, recbase_y, rec_stride, cur_cu->intra[i].mode, 0); // Filter DC-prediction if (cur_cu->intra[i].mode == 1 && width < 32) { intra_dc_pred_filtering(rec_shift, width * 2 + 8, recbase_y, rec_stride, width, width); } } // TODO : chroma intra prediction if (cur_cu->intra[0].mode_chroma != 36 && cur_cu->intra[0].mode_chroma == cur_cu->intra[0].mode) { cur_cu->intra[0].mode_chroma = 36; } rec_shift = &rec[width_c * 2 + 8 + 1]; intra_build_reference_border(encoder->in.cur_pic, encoder->in.cur_pic->u_recdata, x_ctb << MIN_SIZE, y_ctb << MIN_SIZE, width_c * 2 + 8, rec, width_c * 2 + 8, 1); intra_recon(rec_shift, width_c * 2 + 8, x_ctb * width_c, y_ctb * width_c, width_c, recbase_u, rec_stride >> 1, cur_cu->intra[0].mode_chroma != 36 ? cur_cu->intra[0].mode_chroma : cur_cu->intra[0].mode, 1); intra_build_reference_border(encoder->in.cur_pic, encoder->in.cur_pic->v_recdata, x_ctb << MIN_SIZE, y_ctb << MIN_SIZE, width_c * 2 + 8, rec, width_c * 2 + 8, 2); intra_recon(rec_shift, width_c * 2 + 8, x_ctb * width_c, y_ctb * width_c, width_c, recbase_v, rec_stride >> 1, cur_cu->intra[0].mode_chroma != 36 ? cur_cu->intra[0].mode_chroma : cur_cu->intra[0].mode, 1); } else { int16_t mv_cand[2][2]; // Search for merge mode candidate int16_t merge_cand[MRG_MAX_NUM_CANDS][2]; // Get list of candidates int16_t num_cand = inter_get_merge_cand(encoder, x_ctb, y_ctb, depth, merge_cand); // Check every candidate to find a match for(cur_cu->merge_idx = 0; cur_cu->merge_idx < num_cand; cur_cu->merge_idx++) { if(merge_cand[cur_cu->merge_idx][0] == cur_cu->inter.mv[0] && merge_cand[cur_cu->merge_idx][1] == cur_cu->inter.mv[1]) { cur_cu->merged = 1; break; } } // Get MV candidates inter_get_mv_cand(encoder, x_ctb, y_ctb, depth, mv_cand); // Select better candidate cur_cu->inter.mv_ref = 0; // Default to candidate 0 // Only check when candidates are different if (mv_cand[0][0] != mv_cand[1][0] || mv_cand[0][1] != mv_cand[1][1]) { uint16_t cand_1_diff = abs(cur_cu->inter.mv[0] - mv_cand[0][0]) + abs( cur_cu->inter.mv[1] - mv_cand[0][1]); uint16_t cand_2_diff = abs(cur_cu->inter.mv[0] - mv_cand[1][0]) + abs( cur_cu->inter.mv[1] - mv_cand[1][1]); // Select candidate 1 if it's closer if (cand_2_diff < cand_1_diff) { cur_cu->inter.mv_ref = 1; } } cur_cu->inter.mvd[0] = cur_cu->inter.mv[0] - mv_cand[cur_cu->inter.mv_ref][0]; cur_cu->inter.mvd[1] = cur_cu->inter.mv[1] - mv_cand[cur_cu->inter.mv_ref][1]; // Inter reconstruction inter_recon(encoder->ref->pics[0], x_ctb * CU_MIN_SIZE_PIXELS, y_ctb * CU_MIN_SIZE_PIXELS, LCU_WIDTH >> depth, cur_cu->inter.mv, encoder->in.cur_pic); } // Mark this block as "coded" (can be used for predictions..) picture_set_block_coded(encoder->in.cur_pic, x_ctb, y_ctb, depth, 1); encode_transform_tree(encoder, x_ctb * 2, y_ctb * 2, depth); // if merge is selected but no coefficients to code -> skip mode if(cur_cu->merged && !cur_cu->coeff_top_y[depth] && !cur_cu->coeff_top_u[depth] && !cur_cu->coeff_top_v[depth]) { cur_cu->merged = 0; picture_set_block_skipped(encoder->in.cur_pic, x_ctb, y_ctb, depth, 1); cur_cu->skipped = 1; } }