/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see .
****************************************************************************/
/*
* \file
*/
#include
#include "intra-avx2.h"
#include "strategyselector.h"
#if COMPILE_INTEL_AVX2
#include
/**
* \brief Generage angular predictions.
* \param log2_width Log2 of width, range 2..5.
* \param intra_mode Angular mode in range 2..34.
* \param in_ref_above Pointer to -1 index of above reference, length=width*2+1.
* \param in_ref_left Pointer to -1 index of left reference, length=width*2+1.
* \param dst Buffer of size width*width.
*/
static void kvz_angular_pred_avx2(
const int_fast8_t log2_width,
const int_fast8_t intra_mode,
const kvz_pixel *const in_ref_above,
const kvz_pixel *const in_ref_left,
kvz_pixel *const dst)
{
assert(log2_width >= 2 && log2_width <= 5);
assert(intra_mode >= 2 && intra_mode <= 34);
static const int8_t modedisp2sampledisp[9] = { 0, 2, 5, 9, 13, 17, 21, 26, 32 };
static const int16_t modedisp2invsampledisp[9] = { 0, 4096, 1638, 910, 630, 482, 390, 315, 256 }; // (256 * 32) / sampledisp
// Temporary buffer for modes 11-25.
// It only needs to be big enough to hold indices from -width to width-1.
kvz_pixel tmp_ref[2 * 32];
const int_fast8_t width = 1 << log2_width;
// Whether to swap references to always project on the left reference row.
const bool vertical_mode = intra_mode >= 18;
// Modes distance to horizontal or vertical mode.
const int_fast8_t mode_disp = vertical_mode ? intra_mode - 26 : 10 - intra_mode;
// Sample displacement per column in fractions of 32.
const int_fast8_t sample_disp = (mode_disp < 0 ? -1 : 1) * modedisp2sampledisp[abs(mode_disp)];
// Pointer for the reference we are interpolating from.
const kvz_pixel *ref_main;
// Pointer for the other reference.
const kvz_pixel *ref_side;
// Set ref_main and ref_side such that, when indexed with 0, they point to
// index 0 in block coordinates.
if (sample_disp < 0) {
// Negative sample_disp means, we need to use both references.
ref_side = (vertical_mode ? in_ref_left : in_ref_above) + 1;
ref_main = (vertical_mode ? in_ref_above : in_ref_left) + 1;
// Move the reference pixels to start from the middle to the later half of
// the tmp_ref, so there is room for negative indices.
for (int_fast8_t x = -1; x < width; ++x) {
tmp_ref[x + width] = ref_main[x];
}
// Get a pointer to block index 0 in tmp_ref.
ref_main = &tmp_ref[width];
// Extend the side reference to the negative indices of main reference.
int_fast32_t col_sample_disp = 128; // rounding for the ">> 8"
int_fast16_t inv_abs_sample_disp = modedisp2invsampledisp[abs(mode_disp)];
int_fast8_t most_negative_index = (width * sample_disp) >> 5;
for (int_fast8_t x = -2; x >= most_negative_index; --x) {
col_sample_disp += inv_abs_sample_disp;
int_fast8_t side_index = col_sample_disp >> 8;
tmp_ref[x + width] = ref_side[side_index - 1];
}
}
else {
// sample_disp >= 0 means we don't need to refer to negative indices,
// which means we can just use the references as is.
ref_main = (vertical_mode ? in_ref_above : in_ref_left) + 1;
ref_side = (vertical_mode ? in_ref_left : in_ref_above) + 1;
}
if (sample_disp != 0) {
// The mode is not horizontal or vertical, we have to do interpolation.
int_fast16_t delta_pos = 0;
for (int_fast8_t y = 0; y < width; ++y) {
delta_pos += sample_disp;
int_fast8_t delta_int = delta_pos >> 5;
int_fast8_t delta_fract = delta_pos & (32 - 1);
if (delta_fract) {
// Do linear filtering
for (int_fast8_t x = 0; x < width; ++x) {
kvz_pixel ref1 = ref_main[x + delta_int];
kvz_pixel ref2 = ref_main[x + delta_int + 1];
dst[y * width + x] = ((32 - delta_fract) * ref1 + delta_fract * ref2 + 16) >> 5;
}
}
else {
// Just copy the integer samples
for (int_fast8_t x = 0; x < width; x++) {
dst[y * width + x] = ref_main[x + delta_int];
}
}
}
}
else {
// Mode is horizontal or vertical, just copy the pixels.
for (int_fast8_t y = 0; y < width; ++y) {
for (int_fast8_t x = 0; x < width; ++x) {
dst[y * width + x] = ref_main[x];
}
}
}
// Flip the block if this is was a horizontal mode.
if (!vertical_mode) {
for (int_fast8_t y = 0; y < width - 1; ++y) {
for (int_fast8_t x = y + 1; x < width; ++x) {
SWAP(dst[y * width + x], dst[x * width + y], kvz_pixel);
}
}
}
}
#endif //COMPILE_INTEL_AVX2
int kvz_strategy_register_intra_avx2(void* opaque, uint8_t bitdepth)
{
bool success = true;
#if COMPILE_INTEL_AVX2
success &= kvz_strategyselector_register(opaque, "angular_pred", "avx2", 0, &kvz_angular_pred_avx2);
#endif //COMPILE_INTEL_AVX2
return success;
}