/***************************************************************************** * This file is part of Kvazaar HEVC encoder. * * Copyright (C) 2013-2015 Tampere University of Technology and others (see * COPYING file). * * Kvazaar is free software: you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the * Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with Kvazaar. If not, see . ****************************************************************************/ /* * \file */ #include "inter.h" #include #include #include #include "config.h" #include "filter.h" #include "strategies/strategies-ipol.h" /** * \brief Set block info to the CU structure * \param pic picture to use * \param x_cu x CU position (smallest CU) * \param y_cu y CU position (smallest CU) * \param depth current CU depth * \param cur_cu CU to take the settings from * \returns Void */ void inter_set_block(videoframe_t* frame, uint32_t x_cu, uint32_t y_cu, uint8_t depth, cu_info_t* cur_cu) { uint32_t x, y; // Width in smallest CU int block_scu_width = (LCU_WIDTH>>depth)/(LCU_WIDTH>>MAX_DEPTH); int tr_depth = (depth == 0 ? 1 : depth); // Loop through all the block in the area of cur_cu for (y = y_cu; y < y_cu + block_scu_width; y++) { for (x = x_cu; x < x_cu + block_scu_width; x++) { cu_info_t * const cu = videoframe_get_cu(frame, x, y); // Set all SCU's to this blocks values at the bottom most depth. cu->depth = depth; cu->type = CU_INTER; cu->part_size = SIZE_2Nx2N; cu->inter.mode = cur_cu->inter.mode; cu->inter.mv[0][0] = cur_cu->inter.mv[0][0]; cu->inter.mv[0][1] = cur_cu->inter.mv[0][1]; cu->inter.mv[1][0] = cur_cu->inter.mv[1][0]; cu->inter.mv[1][1] = cur_cu->inter.mv[1][1]; cu->inter.mv_dir = cur_cu->inter.mv_dir; cu->inter.mv_ref[0] = cur_cu->inter.mv_ref[0]; cu->inter.mv_ref[1] = cur_cu->inter.mv_ref[1]; cu->inter.mv_ref_coded[0] = cur_cu->inter.mv_ref_coded[0]; cu->inter.mv_ref_coded[1] = cur_cu->inter.mv_ref_coded[1]; cu->tr_depth = tr_depth; } } } /** * \brief Reconstruct inter block * \param ref picture to copy the data from * \param xpos block x position * \param ypos block y position * \param width block width * \param mv[2] motion vector * \param lcu destination lcu * \returns Void */ void inter_recon_lcu(const encoder_state_t * const state, const image_t * const ref, int32_t xpos, int32_t ypos,int32_t width, const int16_t mv_param[2], lcu_t *lcu) { int x,y,coord_x,coord_y; int16_t mv[2] = { mv_param[0], mv_param[1] }; int32_t dst_width_c = LCU_WIDTH>>1; //!< Destination picture width in chroma pixels int32_t ref_width_c = ref->width>>1; //!< Reference picture width in chroma pixels // negative overflow flag int8_t overflow_neg_x = (state->tile->lcu_offset_x * LCU_WIDTH + xpos + (mv[0]>>2) < 0)?1:0; int8_t overflow_neg_y = (state->tile->lcu_offset_y * LCU_WIDTH + ypos + (mv[1]>>2) < 0)?1:0; // positive overflow flag int8_t overflow_pos_x = (state->tile->lcu_offset_x * LCU_WIDTH + xpos + (mv[0]>>2) + width > ref->width )?1:0; int8_t overflow_pos_y = (state->tile->lcu_offset_y * LCU_WIDTH + ypos + (mv[1]>>2) + width > ref->height)?1:0; // Chroma half-pel #define HALFPEL_CHROMA_WIDTH ((LCU_WIDTH>>1) + 8) int8_t chroma_halfpel = ((mv[0]>>2)&1) || ((mv[1]>>2)&1); //!< (luma integer mv) lsb is set -> chroma is half-pel pixel_t halfpel_src_u[HALFPEL_CHROMA_WIDTH * HALFPEL_CHROMA_WIDTH]; //!< U source block for interpolation pixel_t halfpel_src_v[HALFPEL_CHROMA_WIDTH * HALFPEL_CHROMA_WIDTH]; //!< V source block for interpolation pixel_t *halfpel_src_off_u = &halfpel_src_u[HALFPEL_CHROMA_WIDTH * 4 + 4]; //!< halfpel_src_u with offset (4,4) pixel_t *halfpel_src_off_v = &halfpel_src_v[HALFPEL_CHROMA_WIDTH * 4 + 4]; //!< halfpel_src_v with offset (4,4) pixel_t halfpel_u[LCU_WIDTH * LCU_WIDTH]; //!< interpolated 2W x 2H block (u) pixel_t halfpel_v[LCU_WIDTH * LCU_WIDTH]; //!< interpolated 2W x 2H block (v) // Luma quarter-pel int8_t fractional_mv = (mv[0]&1) || (mv[1]&1) || (mv[0]&2) || (mv[1]&2); // either of 2 lowest bits of mv set -> mv is fractional if(fractional_mv) { int y_off_x = (mv[0]&3); int y_off_y = (mv[1]&3); int c_off_x = (mv[0]&7); int c_off_y = (mv[1]&7); int y,x; #define FILTER_SIZE_Y 8 //Luma filter size #define FILTER_SIZE_C 4 //Chroma filter size // Fractional luma 1/4-pel pixel_t qpel_src_y[(LCU_WIDTH+FILTER_SIZE_Y) * (LCU_WIDTH+FILTER_SIZE_Y)]; pixel_t* qpel_src_off_y = &qpel_src_y[(width+FILTER_SIZE_Y)*(FILTER_SIZE_Y>>1)+(FILTER_SIZE_Y>>1)]; pixel_t qpel_dst_y[LCU_WIDTH*LCU_WIDTH*16]; // Fractional chroma 1/8-pel int width_c = width>>1; pixel_t octpel_src_u[((LCU_WIDTH>>1)+FILTER_SIZE_C) * ((LCU_WIDTH>>1)+FILTER_SIZE_C)]; pixel_t* octpel_src_off_u = &octpel_src_u[(width_c+FILTER_SIZE_C)*(FILTER_SIZE_C>>1)+(FILTER_SIZE_C>>1)]; pixel_t octpel_dst_u[(LCU_WIDTH >> 1)*(LCU_WIDTH >> 1) * 64]; pixel_t octpel_src_v[((LCU_WIDTH >> 1) + FILTER_SIZE_C) * ((LCU_WIDTH >> 1) + FILTER_SIZE_C)]; pixel_t* octpel_src_off_v = &octpel_src_v[(width_c + FILTER_SIZE_C)*(FILTER_SIZE_C >> 1) + (FILTER_SIZE_C >> 1)]; pixel_t octpel_dst_v[(LCU_WIDTH >> 1)*(LCU_WIDTH >> 1) * 64]; // Fractional luma extend_borders(xpos, ypos, mv[0]>>2, mv[1]>>2, state->tile->lcu_offset_x * LCU_WIDTH, state->tile->lcu_offset_y * LCU_WIDTH, ref->y, ref->width, ref->height, FILTER_SIZE_Y, width, width, qpel_src_y); filter_inter_quarterpel_luma(state->encoder_control, qpel_src_off_y, width+FILTER_SIZE_Y, width, width, qpel_dst_y, width*4, y_off_x, y_off_y); //Fractional chroma U extend_borders(xpos>>1, ypos>>1, (mv[0]>>2)>>1, (mv[1]>>2)>>1, state->tile->lcu_offset_x * (LCU_WIDTH>>1), state->tile->lcu_offset_y * (LCU_WIDTH>>1), ref->u, ref->width>>1, ref->height>>1, FILTER_SIZE_C, width_c, width_c, octpel_src_u); filter_inter_octpel_chroma(state->encoder_control, octpel_src_off_u, width_c+FILTER_SIZE_C, width_c, width_c, octpel_dst_u, width_c*8, c_off_x, c_off_y); //Fractional chroma V extend_borders(xpos>>1, ypos>>1, (mv[0]>>2)>>1, (mv[1]>>2)>>1, state->tile->lcu_offset_x * (LCU_WIDTH>>1), state->tile->lcu_offset_y * (LCU_WIDTH>>1), ref->v, ref->width>>1, ref->height>>1, FILTER_SIZE_C, width_c, width_c, octpel_src_v); filter_inter_octpel_chroma(state->encoder_control, octpel_src_off_v, width_c+FILTER_SIZE_C, width_c, width_c, octpel_dst_v, width_c*8, c_off_x, c_off_y); //Sample fractional pixels for luma for(y = 0; y < width; ++y) { int y_in_lcu = ((y+ypos) & ((LCU_WIDTH)-1)); int qpel_y = y*4+y_off_y; for(x = 0; x < width; ++x) { int x_in_lcu = ((x+xpos) & ((LCU_WIDTH)-1)); int qpel_x = x*4+y_off_x; lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (pixel_t)qpel_dst_y[qpel_y*(width*4)+qpel_x]; } } //Sample fractional pixels for chroma for(y = 0; y < width_c; ++y) { int y_in_lcu = ((y+(ypos>>1)) & ((LCU_WIDTH>>1)-1)); int qpel_y = y*8+c_off_y; for(x = 0; x < width_c; ++x) { int x_in_lcu = ((x+(xpos>>1)) & ((LCU_WIDTH>>1)-1)); int qpel_x = x*8+c_off_x; lcu->rec.u[y_in_lcu * dst_width_c + x_in_lcu] = (pixel_t)octpel_dst_u[qpel_y*(width_c*8)+qpel_x]; lcu->rec.v[y_in_lcu * dst_width_c + x_in_lcu] = (pixel_t)octpel_dst_v[qpel_y*(width_c*8)+qpel_x]; } } } mv[0] >>= 2; mv[1] >>= 2; // Chroma half-pel // get half-pel interpolated block and push it to output if(!fractional_mv) { if(chroma_halfpel) { int halfpel_y, halfpel_x; int abs_mv_x = mv[0]&1; int abs_mv_y = mv[1]&1; int8_t overflow_neg_y_temp,overflow_pos_y_temp,overflow_neg_x_temp,overflow_pos_x_temp; // Fill source blocks with data from reference, -4...width+4 for (halfpel_y = 0, y = (ypos>>1) - 4; y < ((ypos + width)>>1) + 4; halfpel_y++, y++) { // calculate y-pixel offset coord_y = (y + state->tile->lcu_offset_y * (LCU_WIDTH>>1)) + (mv[1]>>1); // On y-overflow set coord_y accordingly overflow_neg_y_temp = (coord_y < 0) ? 1 : 0; overflow_pos_y_temp = (coord_y >= ref->height>>1) ? 1 : 0; if (overflow_neg_y_temp) coord_y = 0; else if (overflow_pos_y_temp) coord_y = (ref->height>>1) - 1; coord_y *= ref_width_c; for (halfpel_x = 0, x = (xpos>>1) - 4; x < ((xpos + width)>>1) + 4; halfpel_x++, x++) { coord_x = (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1); // On x-overflow set coord_x accordingly overflow_neg_x_temp = (coord_x < 0) ? 1 : 0; overflow_pos_x_temp = (coord_x >= ref_width_c) ? 1 : 0; if (overflow_neg_x_temp) coord_x = 0; else if (overflow_pos_x_temp) coord_x = ref_width_c - 1; // Store source block data (with extended borders) halfpel_src_u[halfpel_y*HALFPEL_CHROMA_WIDTH + halfpel_x] = ref->u[coord_y + coord_x]; halfpel_src_v[halfpel_y*HALFPEL_CHROMA_WIDTH + halfpel_x] = ref->v[coord_y + coord_x]; } } // Filter the block to half-pel resolution filter_inter_halfpel_chroma(state->encoder_control, halfpel_src_off_u, HALFPEL_CHROMA_WIDTH, width>>1, width>>1, halfpel_u, LCU_WIDTH, abs_mv_x, abs_mv_y); filter_inter_halfpel_chroma(state->encoder_control, halfpel_src_off_v, HALFPEL_CHROMA_WIDTH, width>>1, width>>1, halfpel_v, LCU_WIDTH, abs_mv_x, abs_mv_y); // Assign filtered pixels to output, take every second half-pel sample with offset of abs_mv_y/x for (halfpel_y = abs_mv_y, y = ypos>>1; y < (ypos + width)>>1; halfpel_y += 2, y++) { for (halfpel_x = abs_mv_x, x = xpos>>1; x < (xpos + width)>>1; halfpel_x += 2, x++) { int x_in_lcu = (x & ((LCU_WIDTH>>1)-1)); int y_in_lcu = (y & ((LCU_WIDTH>>1)-1)); lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = (pixel_t)halfpel_u[halfpel_y*LCU_WIDTH + halfpel_x]; lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = (pixel_t)halfpel_v[halfpel_y*LCU_WIDTH + halfpel_x]; } } } // With overflow present, more checking if (overflow_neg_x || overflow_neg_y || overflow_pos_x || overflow_pos_y) { // Copy Luma with boundary checking for (y = ypos; y < ypos + width; y++) { for (x = xpos; x < xpos + width; x++) { int x_in_lcu = (x & ((LCU_WIDTH)-1)); int y_in_lcu = (y & ((LCU_WIDTH)-1)); coord_x = (x + state->tile->lcu_offset_x * LCU_WIDTH) + mv[0]; coord_y = (y + state->tile->lcu_offset_y * LCU_WIDTH) + mv[1]; overflow_neg_x = (coord_x < 0)?1:0; overflow_neg_y = (coord_y < 0)?1:0; overflow_pos_x = (coord_x >= ref->width )?1:0; overflow_pos_y = (coord_y >= ref->height)?1:0; // On x-overflow set coord_x accordingly if (overflow_neg_x) { coord_x = 0; } else if (overflow_pos_x) { coord_x = ref->width - 1; } // On y-overflow set coord_y accordingly if (overflow_neg_y) { coord_y = 0; } else if (overflow_pos_y) { coord_y = ref->height - 1; } // set destination to (corrected) pixel value from the reference lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = ref->y[coord_y*ref->width + coord_x]; } } if(!chroma_halfpel) { // Copy Chroma with boundary checking // TODO: chroma fractional pixel interpolation for (y = ypos>>1; y < (ypos + width)>>1; y++) { for (x = xpos>>1; x < (xpos + width)>>1; x++) { int x_in_lcu = (x & ((LCU_WIDTH>>1)-1)); int y_in_lcu = (y & ((LCU_WIDTH>>1)-1)); coord_x = (x + state->tile->lcu_offset_x * (LCU_WIDTH >> 1)) + (mv[0]>>1); coord_y = (y + state->tile->lcu_offset_y * (LCU_WIDTH >> 1)) + (mv[1]>>1); overflow_neg_x = (coord_x < 0)?1:0; overflow_neg_y = (y + (mv[1]>>1) < 0)?1:0; overflow_pos_x = (coord_x >= ref->width>>1 )?1:0; overflow_pos_y = (coord_y >= ref->height>>1)?1:0; // On x-overflow set coord_x accordingly if(overflow_neg_x) { coord_x = 0; } else if(overflow_pos_x) { coord_x = (ref->width>>1) - 1; } // On y-overflow set coord_y accordingly if(overflow_neg_y) { coord_y = 0; } else if(overflow_pos_y) { coord_y = (ref->height>>1) - 1; } // set destinations to (corrected) pixel value from the reference lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = ref->u[coord_y * ref_width_c + coord_x]; lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = ref->v[coord_y * ref_width_c + coord_x]; } } } } else { //If no overflow, we can copy without checking boundaries // Copy Luma for (y = ypos; y < ypos + width; y++) { int y_in_lcu = (y & ((LCU_WIDTH)-1)); coord_y = ((y + state->tile->lcu_offset_y * LCU_WIDTH) + mv[1]) * ref->width; // pre-calculate for (x = xpos; x < xpos + width; x++) { int x_in_lcu = (x & ((LCU_WIDTH)-1)); lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = ref->y[coord_y + (x + state->tile->lcu_offset_x * LCU_WIDTH) + mv[0]]; } } if(!chroma_halfpel) { // Copy Chroma // TODO: chroma fractional pixel interpolation for (y = ypos>>1; y < (ypos + width)>>1; y++) { int y_in_lcu = (y & ((LCU_WIDTH>>1)-1)); coord_y = ((y + state->tile->lcu_offset_y * (LCU_WIDTH>>1)) + (mv[1]>>1)) * ref_width_c; // pre-calculate for (x = xpos>>1; x < (xpos + width)>>1; x++) { int x_in_lcu = (x & ((LCU_WIDTH>>1)-1)); lcu->rec.u[y_in_lcu*dst_width_c + x_in_lcu] = ref->u[coord_y + (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1)]; lcu->rec.v[y_in_lcu*dst_width_c + x_in_lcu] = ref->v[coord_y + (x + state->tile->lcu_offset_x * (LCU_WIDTH>>1)) + (mv[0]>>1)]; } } } } } } /** * \brief Get merge candidates for current block * \param encoder encoder control struct to use * \param x_cu block x position in SCU * \param y_cu block y position in SCU * \param depth current block depth * \param b0 candidate b0 * \param b1 candidate b1 * \param b2 candidate b2 * \param a0 candidate a0 * \param a1 candidate a1 */ void inter_get_spatial_merge_candidates(int32_t x, int32_t y, int8_t depth, cu_info_t **b0, cu_info_t **b1, cu_info_t **b2,cu_info_t **a0,cu_info_t **a1, lcu_t *lcu) { uint8_t cur_block_in_scu = (LCU_WIDTH>>depth) / CU_MIN_SIZE_PIXELS; //!< the width of the current block on SCU /* Predictor block locations ____ _______ |B2|______|B1|B0| | | | Cur CU | __| | |A1|_________| |A0| */ int32_t x_cu = (x & (LCU_WIDTH - 1)) >> MAX_DEPTH; //!< coordinates from top-left of this LCU int32_t y_cu = (y & (LCU_WIDTH - 1)) >> MAX_DEPTH; cu_info_t* cu = &lcu->cu[LCU_CU_OFFSET]; // A0 and A1 availability testing if (x != 0) { *a1 = &cu[x_cu - 1 + (y_cu + cur_block_in_scu - 1) * LCU_T_CU_WIDTH]; if (!(*a1)->coded) *a1 = NULL; if (y_cu + cur_block_in_scu < LCU_WIDTH>>3) { *a0 = &cu[x_cu - 1 + (y_cu + cur_block_in_scu) * LCU_T_CU_WIDTH]; if (!(*a0)->coded) *a0 = NULL; } } // B0, B1 and B2 availability testing if (y != 0) { if (x_cu + cur_block_in_scu < LCU_WIDTH>>3) { *b0 = &cu[x_cu + cur_block_in_scu + (y_cu - 1) * LCU_T_CU_WIDTH]; if (!(*b0)->coded) *b0 = NULL; } else if(y_cu == 0) { // Special case, top-right cu from LCU is the last in lcu->cu array *b0 = &lcu->cu[LCU_T_CU_WIDTH*LCU_T_CU_WIDTH]; if (!(*b0)->coded) *b0 = NULL; } *b1 = &cu[x_cu + cur_block_in_scu - 1 + (y_cu - 1) * LCU_T_CU_WIDTH]; if (!(*b1)->coded) *b1 = NULL; if (x != 0) { *b2 = &cu[x_cu - 1 + (y_cu - 1) * LCU_T_CU_WIDTH]; if(!(*b2)->coded) *b2 = NULL; } } } /** * \brief Get MV prediction for current block * \param encoder encoder control struct to use * \param x_cu block x position in SCU * \param y_cu block y position in SCU * \param depth current block depth * \param mv_pred[2][2] 2x motion vector prediction */ void inter_get_mv_cand(const encoder_state_t * const state, int32_t x, int32_t y, int8_t depth, int16_t mv_cand[2][2], cu_info_t* cur_cu, lcu_t *lcu) { uint8_t candidates = 0; uint8_t b_candidates = 0; cu_info_t *b0, *b1, *b2, *a0, *a1; b0 = b1 = b2 = a0 = a1 = NULL; inter_get_spatial_merge_candidates(x, y, depth, &b0, &b1, &b2, &a0, &a1, lcu); #define CALCULATE_SCALE(cu,tb,td) ((tb * ((0x4000 + (abs(td)>>1))/td) + 32) >> 6) #define APPLY_MV_SCALING(cu, cand, list) {int td = state->global->poc - state->global->ref->images[(cu)->inter.mv_ref[list]]->poc;\ int tb = state->global->poc - state->global->ref->images[cur_cu->inter.mv_ref[cur_cu->inter.mv_dir-1]]->poc;\ if (td != tb) { \ int scale = CALCULATE_SCALE(cu,tb,td); \ mv_cand[cand][0] = ((scale * (cu)->inter.mv[list][0] + 127 + (scale * (cu)->inter.mv[list][0] < 0)) >> 8 ); \ mv_cand[cand][1] = ((scale * (cu)->inter.mv[list][1] + 127 + (scale * (cu)->inter.mv[list][1] < 0)) >> 8 ); }} // Left predictors if (a0 && a0->type == CU_INTER && a0->inter.mv_ref == cur_cu->inter.mv_ref) { if (a0->inter.mv_dir & 1) { mv_cand[candidates][0] = a0->inter.mv[0][0]; mv_cand[candidates][1] = a0->inter.mv[0][1]; } else { mv_cand[candidates][0] = a0->inter.mv[1][0]; mv_cand[candidates][1] = a0->inter.mv[1][1]; } candidates++; } else if (a1 && a1->type == CU_INTER && a1->inter.mv_ref == cur_cu->inter.mv_ref) { if (a1->inter.mv_dir & 1) { mv_cand[candidates][0] = a1->inter.mv[0][0]; mv_cand[candidates][1] = a1->inter.mv[0][1]; } else { mv_cand[candidates][0] = a1->inter.mv[1][0]; mv_cand[candidates][1] = a1->inter.mv[1][1]; } candidates++; } if(!candidates) { // Left predictors if (a0 && a0->type == CU_INTER) { if (a0->inter.mv_dir & 1) { mv_cand[candidates][0] = a0->inter.mv[0][0]; mv_cand[candidates][1] = a0->inter.mv[0][1]; APPLY_MV_SCALING(a0, candidates, 0); } else { mv_cand[candidates][0] = a0->inter.mv[1][0]; mv_cand[candidates][1] = a0->inter.mv[1][1]; APPLY_MV_SCALING(a0, candidates, 1); } candidates++; } else if (a1 && a1->type == CU_INTER) { if (a1->inter.mv_dir & 1) { mv_cand[candidates][0] = a1->inter.mv[0][0]; mv_cand[candidates][1] = a1->inter.mv[0][1]; APPLY_MV_SCALING(a1, candidates, 0); } else { mv_cand[candidates][0] = a1->inter.mv[1][0]; mv_cand[candidates][1] = a1->inter.mv[1][1]; APPLY_MV_SCALING(a1, candidates, 1); } candidates++; } } // Top predictors if (b0 && b0->type == CU_INTER && b0->inter.mv_ref == cur_cu->inter.mv_ref) { if (b0->inter.mv_dir & 1) { mv_cand[candidates][0] = b0->inter.mv[0][0]; mv_cand[candidates][1] = b0->inter.mv[0][1]; } else { mv_cand[candidates][0] = b0->inter.mv[1][0]; mv_cand[candidates][1] = b0->inter.mv[1][1]; } b_candidates++; } else if (b1 && b1->type == CU_INTER && b1->inter.mv_ref == cur_cu->inter.mv_ref) { if (b1->inter.mv_dir & 1) { mv_cand[candidates][0] = b1->inter.mv[0][0]; mv_cand[candidates][1] = b1->inter.mv[0][1]; } else { mv_cand[candidates][0] = b1->inter.mv[1][0]; mv_cand[candidates][1] = b1->inter.mv[1][1]; } b_candidates++; } else if(b2 && b2->type == CU_INTER && b2->inter.mv_ref == cur_cu->inter.mv_ref) { if (b2->inter.mv_dir & 1) { mv_cand[candidates][0] = b2->inter.mv[0][0]; mv_cand[candidates][1] = b2->inter.mv[0][1]; } else { mv_cand[candidates][0] = b2->inter.mv[1][0]; mv_cand[candidates][1] = b2->inter.mv[1][1]; } b_candidates++; } candidates += b_candidates; // When a1 or a0 is available, we dont check for secondary B candidates if((a1 && a1->type == CU_INTER) || (a0 && a0->type == CU_INTER)) { b_candidates = 1; } else if(candidates != 2) { b_candidates = 0; } if(!b_candidates) { // Top predictors if (b0 && b0->type == CU_INTER) { if (b0->inter.mv_dir & 1) { mv_cand[candidates][0] = b0->inter.mv[0][0]; mv_cand[candidates][1] = b0->inter.mv[0][1]; APPLY_MV_SCALING(b0, candidates, 0); } else { mv_cand[candidates][0] = b0->inter.mv[1][0]; mv_cand[candidates][1] = b0->inter.mv[1][1]; APPLY_MV_SCALING(b0, candidates, 1); } candidates++; } else if (b1 && b1->type == CU_INTER) { if (b1->inter.mv_dir & 1) { mv_cand[candidates][0] = b1->inter.mv[0][0]; mv_cand[candidates][1] = b1->inter.mv[0][1]; APPLY_MV_SCALING(b1, candidates, 0); } else { mv_cand[candidates][0] = b1->inter.mv[1][0]; mv_cand[candidates][1] = b1->inter.mv[1][1]; APPLY_MV_SCALING(b1, candidates, 1); } candidates++; } else if(b2 && b2->type == CU_INTER) { if (b2->inter.mv_dir & 1) { mv_cand[candidates][0] = b2->inter.mv[0][0]; mv_cand[candidates][1] = b2->inter.mv[0][1]; APPLY_MV_SCALING(b2, candidates, 0); } else { mv_cand[candidates][0] = b2->inter.mv[1][0]; mv_cand[candidates][1] = b2->inter.mv[1][1]; APPLY_MV_SCALING(b2, candidates, 1); } candidates++; } } // Remove identical candidate if(candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) { candidates = 1; } #if ENABLE_TEMPORAL_MVP if(candidates < AMVP_MAX_NUM_CANDS) { //TODO: add temporal mv predictor } #endif // Fill with (0,0) while (candidates < AMVP_MAX_NUM_CANDS) { mv_cand[candidates][0] = 0; mv_cand[candidates][1] = 0; candidates++; } #undef CALCULATE_SCALE #undef APPLY_MV_SCALING } /** * \brief Get merge predictions for current block * \param encoder encoder control struct to use * \param x_cu block x position in SCU * \param y_cu block y position in SCU * \param depth current block depth * \param mv_pred[MRG_MAX_NUM_CANDS][2] MRG_MAX_NUM_CANDS motion vector prediction */ uint8_t inter_get_merge_cand(const encoder_state_t * const state, int32_t x, int32_t y, int8_t depth, inter_merge_cand_t mv_cand[MRG_MAX_NUM_CANDS], lcu_t *lcu) { uint8_t candidates = 0; int8_t duplicate = 0; cu_info_t *b0, *b1, *b2, *a0, *a1; int8_t zero_idx = 0; b0 = b1 = b2 = a0 = a1 = NULL; inter_get_spatial_merge_candidates(x, y, depth, &b0, &b1, &b2, &a0, &a1, lcu); #define CHECK_DUPLICATE(CU1,CU2) {duplicate = 0; if ((CU2) && (CU2)->type == CU_INTER && \ (!((CU1)->inter.mv_dir & 1) || \ ((CU1)->inter.mv[0][0] == (CU2)->inter.mv[0][0] && \ (CU1)->inter.mv[0][1] == (CU2)->inter.mv[0][1] && \ (CU1)->inter.mv_ref[0] == (CU2)->inter.mv_ref[0]) ) && \ (!((CU1)->inter.mv_dir & 2) || \ ((CU1)->inter.mv[1][0] == (CU2)->inter.mv[1][0] && \ (CU1)->inter.mv[1][1] == (CU2)->inter.mv[1][1] && \ (CU1)->inter.mv_ref[1] == (CU2)->inter.mv_ref[1])) \ ) duplicate = 1; } if (a1 && a1->type == CU_INTER) { mv_cand[candidates].mv[0][0] = a1->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = a1->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = a1->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = a1->inter.mv[1][1]; mv_cand[candidates].ref[0] = a1->inter.mv_ref[0]; mv_cand[candidates].ref[1] = a1->inter.mv_ref[1]; mv_cand[candidates].dir = a1->inter.mv_dir; candidates++; } if (b1 && b1->type == CU_INTER) { if(candidates) CHECK_DUPLICATE(b1, a1); if(!duplicate) { mv_cand[candidates].mv[0][0] = b1->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = b1->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = b1->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = b1->inter.mv[1][1]; mv_cand[candidates].ref[0] = b1->inter.mv_ref[0]; mv_cand[candidates].ref[1] = b1->inter.mv_ref[1]; mv_cand[candidates].dir = b1->inter.mv_dir; candidates++; } } if (b0 && b0->type == CU_INTER) { if(candidates) CHECK_DUPLICATE(b0,b1); if(!duplicate) { mv_cand[candidates].mv[0][0] = b0->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = b0->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = b0->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = b0->inter.mv[1][1]; mv_cand[candidates].ref[0] = b0->inter.mv_ref[0]; mv_cand[candidates].ref[1] = b0->inter.mv_ref[1]; mv_cand[candidates].dir = b0->inter.mv_dir; candidates++; } } if (a0 && a0->type == CU_INTER) { if(candidates) CHECK_DUPLICATE(a0,a1); if(!duplicate) { mv_cand[candidates].mv[0][0] = a0->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = a0->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = a0->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = a0->inter.mv[1][1]; mv_cand[candidates].ref[0] = a0->inter.mv_ref[0]; mv_cand[candidates].ref[1] = a0->inter.mv_ref[1]; mv_cand[candidates].dir = a0->inter.mv_dir; candidates++; } } if (candidates != 4) { if(b2 && b2->type == CU_INTER) { CHECK_DUPLICATE(b2,a1); if(!duplicate) { CHECK_DUPLICATE(b2,b1); if(!duplicate) { mv_cand[candidates].mv[0][0] = b2->inter.mv[0][0]; mv_cand[candidates].mv[0][1] = b2->inter.mv[0][1]; mv_cand[candidates].mv[1][0] = b2->inter.mv[1][0]; mv_cand[candidates].mv[1][1] = b2->inter.mv[1][1]; mv_cand[candidates].ref[0] = b2->inter.mv_ref[0]; mv_cand[candidates].ref[1] = b2->inter.mv_ref[1]; mv_cand[candidates].dir = b2->inter.mv_dir; candidates++; } } } } #if ENABLE_TEMPORAL_MVP if(candidates < AMVP_MAX_NUM_CANDS) { //TODO: add temporal mv predictor } #endif if (candidates == MRG_MAX_NUM_CANDS) return MRG_MAX_NUM_CANDS; if (state->global->slicetype == SLICE_B) { #define NUM_PRIORITY_LIST 12; static const uint8_t priorityList0[] = { 0, 1, 0, 2, 1, 2, 0, 3, 1, 3, 2, 3 }; static const uint8_t priorityList1[] = { 1, 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2 }; uint8_t cutoff = candidates; for (int32_t idx = 0; idx= candidates || j >= candidates) break; // Find one L0 and L1 candidate according to the priority list if ((mv_cand[i].dir & 0x1) && (mv_cand[j].dir & 0x2)) { mv_cand[candidates].dir = 3; // get Mv from cand[i] and cand[j] mv_cand[candidates].mv[0][0] = mv_cand[i].mv[0][0]; mv_cand[candidates].mv[0][1] = mv_cand[i].mv[0][1]; mv_cand[candidates].mv[1][0] = mv_cand[j].mv[1][0]; mv_cand[candidates].mv[1][1] = mv_cand[j].mv[1][1]; mv_cand[candidates].ref[0] = mv_cand[i].ref[0]; mv_cand[candidates].ref[1] = mv_cand[j].ref[1]; if (mv_cand[i].ref[0] == mv_cand[j].ref[1] && mv_cand[i].mv[0][0] == mv_cand[j].mv[1][0] && mv_cand[i].mv[0][1] == mv_cand[j].mv[1][1]) { // Not a candidate } else { candidates++; } } } } if (candidates == MRG_MAX_NUM_CANDS) return MRG_MAX_NUM_CANDS; int num_ref = state->global->ref->used_size; if (state->global->slicetype == SLICE_B) { int j; int ref_negative = 0; int ref_positive = 0; for (j = 0; j < state->global->ref->used_size; j++) { if (state->global->ref->images[j]->poc < state->global->poc) { ref_negative++; } else { ref_positive++; } if (!ref_negative) ref_negative = 1; if (!ref_positive) ref_positive = 1; } num_ref = MIN(ref_negative, ref_positive); } // Add (0,0) prediction while (candidates != MRG_MAX_NUM_CANDS) { mv_cand[candidates].mv[0][0] = 0; mv_cand[candidates].mv[0][1] = 0; mv_cand[candidates].ref[0] = (zero_idx>=num_ref-1)?0:zero_idx; mv_cand[candidates].ref[1] = mv_cand[candidates].ref[0]; mv_cand[candidates].dir = 1; if (state->global->slicetype == SLICE_B) { mv_cand[candidates].mv[1][0] = 0; mv_cand[candidates].mv[1][1] = 0; mv_cand[candidates].dir = 3; } zero_idx++; candidates++; } return candidates; }