/** * HEVC Encoder * - Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Pervasive Computing. */ /*! \file search.c \brief searching \author Marko Viitanen \date 2013-04 Search related functions */ #include #include #include #include "global.h" #include "config.h" #include "bitstream.h" #include "picture.h" #include "encoder.h" #include "intra.h" #include "inter.h" #include "filter.h" #include "search.h" /** * * * pic: * pic_data: picture color data starting from the block MV is being searched for. * ref_data: picture color data starting from the beginning of reference pic. * cur_cu: */ void search_motion_vector(picture *pic, uint8_t *pic_data, uint8_t *ref_data, CU_info *cur_cu, unsigned step, int orig_x, int orig_y, int x, int y, unsigned depth) { // TODO: Inter: Handle non-square blocks. unsigned block_width = CU_WIDTH_FROM_DEPTH(depth); unsigned block_height = block_width; unsigned cost; // TODO: Inter: Calculating error outside picture borders. // This prevents choosing vectors that need interpolating of borders to work. if (orig_x + x < 0 || orig_y + y < 0 || orig_x + x > pic->width - block_width || orig_y + y > pic->height - block_height) return; cost = SAD(pic_data, &ref_data[(orig_y + y) * pic->width + (orig_x + x)], block_width, block_height, pic->width) + 1; if (cost < cur_cu->inter.cost) { cur_cu->inter.cost = cost; cur_cu->inter.mv[0] = x << 2; cur_cu->inter.mv[1] = y << 2; } step /= 2; if (step > 0) { search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y, x, y - step, depth); search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y, x - step, y, depth); search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y, x + step, y, depth); search_motion_vector(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y, x, y + step, depth); } } void search_buildReferenceBorder(picture* pic, int32_t xCtb, int32_t yCtb,int16_t outwidth, int16_t* dst, int32_t dststride, int8_t chroma) { int32_t leftColumn; /*!< left column iterator */ int16_t val; /*!< variable to store extrapolated value */ int32_t i; /*!< index iterator */ int16_t dcVal = 1<<(g_bitDepth-1); /*!< default predictor value */ int32_t topRow; /*!< top row iterator */ int32_t srcWidth = (pic->width>>(chroma?1:0)); /*!< source picture width */ int32_t srcHeight = (pic->height>>(chroma?1:0));/*!< source picture height */ uint8_t* srcPic = (!chroma)?pic->yData: ((chroma==1)?pic->uData: pic->vData); /*!< input picture pointer */ int16_t SCU_width = LCU_WIDTH>>(MAX_DEPTH+(chroma?1:0)); /*!< Smallest Coding Unit width */ uint8_t* srcShifted = &srcPic[xCtb*SCU_width+(yCtb*SCU_width)*srcWidth]; /*!< input picture pointer shifted to start from the left-top corner of the current block */ int32_t width_in_SCU = pic->width_in_LCU<= srcHeight || pic->CU[0][xCtb-1+(yCtb+leftColumn)*width_in_SCU].type == CU_NOTSET) { break; } } /* Copy the pixels to output */ for(i = 0; i < leftColumn*SCU_width-1; i ++) { dst[(i+1)*dststride] = srcShifted[i*srcWidth-1]; } /* if the loop was not completed, extrapolate the last pixel pushed to output */ if(leftColumn != outwidth/SCU_width) { val = srcShifted[(leftColumn*SCU_width-1)*srcWidth-1]; for(i = (leftColumn*SCU_width); i < outwidth; i++) { dst[i*dststride] = val; } } } /* If left column not available, copy from toprow or use the default predictor */ else { val = yCtb?srcShifted[-srcWidth]:dcVal; for(i = 0; i < outwidth; i++) { dst[i*dststride] = val; } } if(yCtb) { /* Loop top SCU's */ for(topRow = 1; topRow < outwidth/SCU_width; topRow++) { if((xCtb+topRow)*SCU_width >= srcWidth || pic->CU[0][xCtb+topRow+(yCtb-1)*width_in_SCU].type == CU_NOTSET) { break; } } for(i = 0; i < topRow*SCU_width-1; i ++) { dst[i+1] = srcShifted[i-srcWidth]; } if(topRow != outwidth/SCU_width) { val = srcShifted[(topRow*SCU_width)-srcWidth-1]; for(i = (topRow*SCU_width); i < outwidth; i++) { dst[i] = val; } } } else { val = xCtb?srcShifted[-1]:dcVal; for(i = 1; i < outwidth; i++) { dst[i] = val; } } /* Topleft corner */ dst[0] = (xCtb&&yCtb)?srcShifted[-srcWidth-1]:dst[dststride]; } void search_tree(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth) { uint8_t border_x = ((encoder->in.width)<( xCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0; uint8_t border_y = ((encoder->in.height)<( yCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0; uint8_t border_split_x = ((encoder->in.width) < ( (xCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1; uint8_t border_split_y = ((encoder->in.height) < ( (yCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1; uint8_t border = border_x | border_y; /*!< are we in any border CU */ CU_info *cur_CU = &encoder->in.cur_pic->CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<intra.cost = 0xffffffff; cur_CU->inter.cost = 0xffffffff; /* Force split on border */ if(depth != MAX_DEPTH) { if(border) { /* Split blocks and remember to change x and y block positions */ uint8_t change = 1<<(MAX_DEPTH-1-depth); SET_SPLITDATA(cur_CU,1); search_tree(encoder,xCtb,yCtb,depth+1); if(!border_x || border_split_x) { search_tree(encoder,xCtb+change,yCtb,depth+1); } if(!border_y || border_split_y) { search_tree(encoder,xCtb,yCtb+change,depth+1); } if(!border || (border_split_x && border_split_y) ) { search_tree(encoder,xCtb+change,yCtb+change,depth+1); } /* We don't need to do anything else here */ return; } } /* INTER SEARCH */ if(encoder->in.cur_pic->slicetype != SLICE_I)// && (xCtb == 0) && yCtb == 0) { //if(depth >= MIN_SEARCH_DEPTH) { /* Motion estimation on P-frame */ if(encoder->in.cur_pic->slicetype != SLICE_B) { } { unsigned mv[2] = { 0, 0 }; // TODO: Take initial MV from adjacent blocks. picture *cur_pic = encoder->in.cur_pic; picture *ref_pic = encoder->ref->pics[0]; int x = xCtb * CU_MIN_SIZE_PIXELS; int y = yCtb * CU_MIN_SIZE_PIXELS; uint8_t *cur_data = &cur_pic->yData[(y * cur_pic->width) + x]; search_motion_vector(cur_pic, cur_data, ref_pic->yData, cur_CU, 8, x, y, 0, 0, depth); } cur_CU->type = CU_INTER; cur_CU->inter.mv_dir = 1; inter_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU); } } /* INTRA SEARCH */ if(depth >= MIN_SEARCH_DEPTH) { int x = 0,y = 0; uint8_t *base = &encoder->in.cur_pic->yData[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width]; uint32_t width = LCU_WIDTH>>depth; /* INTRAPREDICTION */ int16_t pred[LCU_WIDTH*LCU_WIDTH+1]; int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)]; int16_t *recShift = &rec[(LCU_WIDTH>>(depth))*2+8+1]; //int16_t *pred = (int16_t*)malloc(LCU_WIDTH*LCU_WIDTH*sizeof(int16_t)); //int16_t *rec = (int16_t*)malloc((LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)*sizeof(int16_t)); /* Build reconstructed block to use in prediction with extrapolated borders */ search_buildReferenceBorder(encoder->in.cur_pic, xCtb, yCtb,(LCU_WIDTH>>(depth))*2+8, rec, (LCU_WIDTH>>(depth))*2+8, 0); cur_CU->intra.mode = (uint8_t)intra_prediction(encoder->in.cur_pic->yData,encoder->in.width,recShift,(LCU_WIDTH>>(depth))*2+8,xCtb*(LCU_WIDTH>>(MAX_DEPTH)),yCtb*(LCU_WIDTH>>(MAX_DEPTH)),width,pred,width,&cur_CU->intra.cost); //free(pred); //free(rec); } /* Split and search to max_depth */ if(depth != MAX_SEARCH_DEPTH) { /* Split blocks and remember to change x and y block positions */ uint8_t change = 1<<(MAX_DEPTH-1-depth); search_tree(encoder,xCtb,yCtb,depth+1); search_tree(encoder,xCtb+change,yCtb,depth+1); search_tree(encoder,xCtb,yCtb+change,depth+1); search_tree(encoder,xCtb+change,yCtb+change,depth+1); } } uint32_t search_best_mode(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth) { CU_info *cur_CU = &encoder->in.cur_pic->CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<intra.cost; uint32_t bestInterCost = cur_CU->inter.cost; uint32_t bestCost = 0; uint32_t cost = 0; uint32_t lambdaCost = (4 * g_lambda_cost[encoder->QP]) << 4; //<<5; //TODO: Correct cost calculation /* Split and search to max_depth */ if (depth != MAX_SEARCH_DEPTH) { /* Split blocks and remember to change x and y block positions */ uint8_t change = 1<<(MAX_DEPTH-1-depth); cost = search_best_mode(encoder,xCtb,yCtb,depth+1); cost += search_best_mode(encoder,xCtb+change,yCtb,depth+1); cost += search_best_mode(encoder,xCtb,yCtb+change,depth+1); cost += search_best_mode(encoder,xCtb+change,yCtb+change,depth+1); /* We split if the cost is better (0 cost -> not checked) */ if(cost != 0 && (bestIntraCost != 0 && cost+lambdaCost < bestIntraCost) && (bestInterCost != 0 && cost+lambdaCost < bestInterCost && encoder->in.cur_pic->slicetype != SLICE_I)) { /* Set split to 1 */ picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,1); bestCost = cost+lambdaCost; } /* Else, check if inter cost is smaller or the same as intra */ else if(bestInterCost != 0 && (bestInterCost <= bestIntraCost || bestIntraCost == 0) && encoder->in.cur_pic->slicetype != SLICE_I) { /* Set split to 0 and mode to inter.mode */ picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0); inter_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU); bestCost = bestInterCost; } /* Else, dont split and recursively set block mode */ else { /* Set split to 0 and mode to intra.mode */ picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0); intra_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode); bestCost = bestIntraCost; } } else if(bestInterCost != 0 && (bestInterCost <= bestIntraCost || bestIntraCost == 0) && encoder->in.cur_pic->slicetype != SLICE_I) { /* Set split to 0 and mode to inter.mode */ picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0); inter_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU); bestCost = bestInterCost; } else { /* Set split to 0 and mode to intra.mode */ picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0); intra_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode); bestCost = bestIntraCost; } return bestCost; } void search_slice_data(encoder_control* encoder) { int16_t xCtb,yCtb; /* Loop through every LCU in the slice */ for(yCtb = 0; yCtb < encoder->in.height_in_LCU; yCtb++) { for(xCtb = 0; xCtb < encoder->in.width_in_LCU; xCtb++) { uint8_t depth = 0; /* Recursive function for looping through all the sub-blocks */ search_tree(encoder, xCtb<