uvg266/src/encode_coding_tree.c
2021-12-01 08:55:21 +02:00

1496 lines
55 KiB
C

/*****************************************************************************
* This file is part of uvg266 VVC encoder.
*
* Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
****************************************************************************/
#include "encode_coding_tree.h"
#include "cabac.h"
#include "context.h"
#include "cu.h"
#include "debug.h"
#include "encoder.h"
#include "global.h"
#include "imagelist.h"
#include "inter.h"
#include "intra.h"
#include "kvazaar.h"
#include "kvz_math.h"
#include "strategyselector.h"
#include "tables.h"
#include "videoframe.h"
static bool is_mts_allowed(encoder_state_t * const state, cu_info_t *const pred_cu)
{
uint32_t ts_max_size = 1 << 2; //cu.cs->sps->getLog2MaxTransformSkipBlockSize();
const int max_size = 32; // CU::isIntra(cu) ? MTS_INTRA_MAX_CU_SIZE : MTS_INTER_MAX_CU_SIZE;
const int cu_width = LCU_WIDTH >> pred_cu->depth;
const int cu_height = LCU_WIDTH >> pred_cu->depth;
//bool mts_allowed = cu.chType == CHANNEL_TYPE_LUMA && compID == COMPONENT_Y;
uint8_t mts_type = state->encoder_control->cfg.mts;
bool mts_allowed = mts_type == KVZ_MTS_BOTH || (pred_cu->type == CU_INTRA ? mts_type == KVZ_MTS_INTRA : pred_cu->type == CU_INTER && mts_type == KVZ_MTS_INTER);
mts_allowed &= cu_width <= max_size && cu_height <= max_size;
//mts_allowed &= !cu.ispMode;
//mts_allowed &= !cu.sbtInfo;
mts_allowed &= !(pred_cu->bdpcmMode && cu_width <= ts_max_size && cu_height <= ts_max_size);
return mts_allowed;
}
static void encode_mts_idx(encoder_state_t * const state,
cabac_data_t * const cabac,
const cu_info_t *const pred_cu)
{
//TransformUnit &tu = *cu.firstTU;
int mts_idx = pred_cu->tr_idx;
if (is_mts_allowed(state, (cu_info_t* const )pred_cu) && mts_idx != MTS_SKIP
&& !pred_cu->violates_mts_coeff_constraint
&& pred_cu->mts_last_scan_pos
//&& cu.lfnstIdx == 0
)
{
int symbol = mts_idx != MTS_DCT2_DCT2 ? 1 : 0;
int ctx_idx = 0;
cabac->cur_ctx = &(cabac->ctx.mts_idx_model[ctx_idx]);
CABAC_BIN(cabac, symbol, "mts_idx");
if (symbol)
{
ctx_idx = 1;
for (int i = 0; i < 3; i++, ctx_idx++)
{
symbol = mts_idx > i + MTS_DST7_DST7 ? 1 : 0;
cabac->cur_ctx = &(cabac->ctx.mts_idx_model[ctx_idx]);
CABAC_BIN(cabac, symbol, "mts_idx");
if (!symbol)
{
break;
}
}
}
}
}
void kvz_encode_ts_residual(encoder_state_t* const state,
cabac_data_t* const cabac,
const coeff_t* coeff,
uint32_t width,
uint8_t type,
int8_t scan_mode) {
//const encoder_control_t * const encoder = state->encoder_control;
//int c1 = 1;
int32_t i;
int32_t blk_pos;
// ToDo: large block support in VVC?
uint32_t sig_coeffgroup_flag[32 * 32] = { 0 };
// CONSTANTS
const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2;
const uint32_t log2_cg_size = kvz_g_log2_sbb_size[log2_block_size][log2_block_size][0] + kvz_g_log2_sbb_size[log2_block_size][log2_block_size][1];
const uint32_t* scan =
kvz_g_sig_last_scan[scan_mode][log2_block_size - 1];
const uint32_t* scan_cg = g_sig_last_scan_cg[log2_block_size - 1][scan_mode];
// Init base contexts according to block type
cabac_ctx_t* base_coeff_group_ctx = &(cabac->ctx.sig_coeff_group_model[(type == 0 ? 0 : 1) * 2 + 1]);
cabac->cur_ctx = base_coeff_group_ctx;
int maxCtxBins = (width * width * 7) >> 2;
unsigned scan_cg_last = (unsigned )-1;
unsigned scan_pos_last = (unsigned )-1;
for (int i = 0; i < width * width; i++) {
if (coeff[scan[i]]) {
scan_pos_last = i;
sig_coeffgroup_flag[scan_cg[i >> log2_cg_size]] = 1;
}
}
scan_cg_last = scan_pos_last >> log2_cg_size;
for (i = 0; i <= (width * width - 1) >> log2_cg_size; i++) {
if (!(i == 0 || i ==scan_cg_last)) {
if(!sig_coeffgroup_flag[scan_cg[i]]) {
CABAC_BIN(cabac, 0, "sb_coded_flag");
continue;
}
CABAC_BIN(cabac, 1, "sb_coded_flag");
}
int firstSigPos = i << log2_cg_size;
int min_sub_pos = firstSigPos + (1 << log2_cg_size) - 1;
int nextSigPos = firstSigPos;
//===== encode absolute values =====
const int inferSigPos = min_sub_pos;
int remAbsLevel = -1;
int numNonZero = 0;
int rightPixel, belowPixel, modAbsCoeff;
int lastScanPosPass1 = -1;
int lastScanPosPass2 = -1;
for (; nextSigPos <= min_sub_pos && maxCtxBins >= 4; nextSigPos++)
{
blk_pos = scan[nextSigPos];
int pos_x = blk_pos % width;
int pos_y = blk_pos / width;
coeff_t curr_coeff = coeff[blk_pos];
unsigned sigFlag = (curr_coeff != 0);
if (numNonZero || nextSigPos != inferSigPos)
{
cabac->cur_ctx = &cabac->ctx.transform_skip_sig[
kvz_context_get_sig_ctx_idx_abs_ts(coeff, pos_x, pos_y, width)
];
CABAC_BIN(cabac, sigFlag, "sig_coeff_flag");
maxCtxBins--;
}
if (sigFlag)
{
//===== encode sign's =====
int sign = curr_coeff < 0;
cabac->cur_ctx = &cabac->ctx.transform_skip_res_sign[
kvz_sign_ctx_id_abs_ts(coeff, pos_x, pos_y, width, 0)
];
CABAC_BIN(cabac, sign, "coeff_sign_flag");
maxCtxBins--;
numNonZero++;
rightPixel = pos_x > 0 ? coeff[pos_x + pos_y * width - 1] : 0;
belowPixel = pos_y > 0 ? coeff[pos_x + (pos_y - 1) * width] : 0;
modAbsCoeff = kvz_derive_mod_coeff(rightPixel, belowPixel, abs(curr_coeff), 0);
remAbsLevel = modAbsCoeff - 1;
unsigned gt1 = !!remAbsLevel;
cabac->cur_ctx = &cabac->ctx.transform_skip_gt1[
kvz_lrg1_ctx_id_abs_ts(coeff, pos_x, pos_y, width, 0)
];
CABAC_BIN(cabac, gt1, "abs_level_gtx_flag");
maxCtxBins--;
if (gt1)
{
remAbsLevel -= 1;
cabac->cur_ctx = &cabac->ctx.transform_skip_par;
CABAC_BIN(cabac, remAbsLevel & 1, "par_level_flag");
maxCtxBins--;
}
}
lastScanPosPass1 = nextSigPos;
}
int cutoffVal = 2;
int numGtBins = 4;
for (int scanPos = firstSigPos; scanPos <= min_sub_pos && maxCtxBins >= 4; scanPos++)
{
blk_pos = scan[scanPos];
int pos_x = blk_pos % width;
int pos_y = blk_pos / width;
unsigned absLevel;
rightPixel = pos_x > 0 ? coeff[pos_x + pos_y * width - 1] : 0;
belowPixel = pos_y > 0 ? coeff[pos_x + (pos_y - 1) * width] : 0;
absLevel = kvz_derive_mod_coeff(rightPixel, belowPixel, abs(coeff[blk_pos]), 0);
cutoffVal = 2;
for (int i = 0; i < numGtBins; i++)
{
if (absLevel >= cutoffVal)
{
unsigned gt2 = (absLevel >= (cutoffVal + 2));
cabac->cur_ctx = &cabac->ctx.transform_skip_gt2[cutoffVal >> 1];
CABAC_BIN(cabac, gt2, "abs_level_gtx_flag");
maxCtxBins--;
}
cutoffVal += 2;
}
lastScanPosPass2 = scanPos;
}
//===== coeff bypass ====
for (int scanPos = firstSigPos; scanPos <= min_sub_pos; scanPos++)
{
blk_pos = scan[scanPos];
int pos_x = blk_pos % width;
int pos_y = blk_pos / width;
unsigned absLevel;
rightPixel = pos_x > 0 ? coeff[pos_x + pos_y * width - 1] : 0;
belowPixel = pos_y > 0 ? coeff[pos_x + (pos_y - 1) * width] : 0;
cutoffVal = (scanPos <= lastScanPosPass2 ? 10 : (scanPos <= lastScanPosPass1 ? 2 : 0));
absLevel = kvz_derive_mod_coeff(rightPixel, belowPixel, abs(coeff[blk_pos]), 0 || !cutoffVal);
if (absLevel >= cutoffVal)
{
int rice = 1;
unsigned rem = scanPos <= lastScanPosPass1 ? (absLevel - cutoffVal) >> 1 : absLevel;
kvz_cabac_write_coeff_remain(cabac, rem, rice, 5);
if (absLevel && scanPos > lastScanPosPass1)
{
int sign = coeff[blk_pos] < 0;
CABAC_BIN_EP(cabac, sign, "coeff_sign_flag");
}
}
}
}
}
/**
* \brief Encode (X,Y) position of the last significant coefficient
*
* \param lastpos_x X component of last coefficient
* \param lastpos_y Y component of last coefficient
* \param width Block width
* \param height Block height
* \param type plane type / luminance or chrominance
* \param scan scan type (diag, hor, ver) DEPRECATED?
*
* This method encodes the X and Y component within a block of the last
* significant coefficient.
*/
void kvz_encode_last_significant_xy(cabac_data_t * const cabac,
uint8_t lastpos_x, uint8_t lastpos_y,
uint8_t width, uint8_t height,
uint8_t type, uint8_t scan)
{
const int index_x = kvz_math_floor_log2(width);
const int index_y = kvz_math_floor_log2(width);
const int prefix_ctx[8] = { 0, 0, 0, 3, 6, 10, 15, 21 };
//ToDo: own ctx_offset and shift for X and Y
uint8_t ctx_offset_x = type ? 0 : prefix_ctx[index_x];
uint8_t ctx_offset_y = type ? 0 : prefix_ctx[index_y];
uint8_t shift_x = type ? CLIP(0, 2, width>>3) : (index_x+1)>>2;
uint8_t shift_y = type ? CLIP(0, 2, width >> 3) : (index_y + 1) >> 2;
cabac_ctx_t *base_ctx_x = (type ? cabac->ctx.cu_ctx_last_x_chroma : cabac->ctx.cu_ctx_last_x_luma);
cabac_ctx_t *base_ctx_y = (type ? cabac->ctx.cu_ctx_last_y_chroma : cabac->ctx.cu_ctx_last_y_luma);
const int group_idx_x = g_group_idx[lastpos_x];
const int group_idx_y = g_group_idx[lastpos_y];
// x prefix
int last_x = 0;
for (last_x = 0; last_x < group_idx_x; last_x++) {
cabac->cur_ctx = &base_ctx_x[ctx_offset_x + (last_x >> shift_x)];
CABAC_BIN(cabac, 1, "last_sig_coeff_x_prefix");
}
if (group_idx_x < ( /*width == 32 ? g_group_idx[15] : */g_group_idx[MIN(32, (int32_t)width) - 1])) {
cabac->cur_ctx = &base_ctx_x[ctx_offset_x + (last_x >> shift_x)];
CABAC_BIN(cabac, 0, "last_sig_coeff_x_prefix");
}
// y prefix
int last_y = 0;
for (last_y = 0; last_y < group_idx_y; last_y++) {
cabac->cur_ctx = &base_ctx_y[ctx_offset_y + (last_y >> shift_y)];
CABAC_BIN(cabac, 1, "last_sig_coeff_y_prefix");
}
if (group_idx_y < (/* height == 32 ? g_group_idx[15] : */g_group_idx[MIN(32, (int32_t)height) - 1])) {
cabac->cur_ctx = &base_ctx_y[ctx_offset_y + (last_y >> shift_y)];
CABAC_BIN(cabac, 0, "last_sig_coeff_y_prefix");
}
// last_sig_coeff_x_suffix
if (group_idx_x > 3) {
const int suffix = lastpos_x - g_min_in_group[group_idx_x];
const int bits = (group_idx_x - 2) / 2;
CABAC_BINS_EP(cabac, suffix, bits, "last_sig_coeff_x_suffix");
}
// last_sig_coeff_y_suffix
if (group_idx_y > 3) {
const int suffix = lastpos_y - g_min_in_group[group_idx_y];
const int bits = (group_idx_y - 2) / 2;
CABAC_BINS_EP(cabac, suffix, bits, "last_sig_coeff_y_suffix");
}
}
static void encode_chroma_tu(encoder_state_t* const state, int x, int y, int depth, const uint8_t width_c, const cu_info_t* cur_pu, int8_t* scan_idx, lcu_coeff_t* coeff, uint8_t joint_chroma) {
int x_local = (x >> 1) % LCU_WIDTH_C;
int y_local = (y >> 1) % LCU_WIDTH_C;
cabac_data_t* const cabac = &state->cabac;
*scan_idx = kvz_get_scan_order(cur_pu->type, cur_pu->intra.mode_chroma, depth);
if(!joint_chroma){
const coeff_t *coeff_u = &coeff->u[xy_to_zorder(LCU_WIDTH_C, x_local, y_local)];
const coeff_t *coeff_v = &coeff->v[xy_to_zorder(LCU_WIDTH_C, x_local, y_local)];
if (cbf_is_set(cur_pu->cbf, depth, COLOR_U)) {
if(state->encoder_control->cfg.trskip_enable && width_c == 4){
cabac->cur_ctx = &cabac->ctx.transform_skip_model_chroma;
// HEVC only supports transform_skip for Luma
// TODO: transform skip for chroma blocks
CABAC_BIN(cabac, 0, "transform_skip_flag");
}
kvz_encode_coeff_nxn(state, &state->cabac, coeff_u, width_c, 1, *scan_idx, NULL, false);
}
if (cbf_is_set(cur_pu->cbf, depth, COLOR_V)) {
if (state->encoder_control->cfg.trskip_enable && width_c == 4) {
cabac->cur_ctx = &cabac->ctx.transform_skip_model_chroma;
CABAC_BIN(cabac, 0, "transform_skip_flag");
}
kvz_encode_coeff_nxn(state, &state->cabac, coeff_v, width_c, 2, *scan_idx, NULL, false);
}
}
else {
const coeff_t *coeff_uv = &coeff->joint_uv[xy_to_zorder(LCU_WIDTH_C, x_local, y_local)];
if (state->encoder_control->cfg.trskip_enable && width_c == 4) {
cabac->cur_ctx = &cabac->ctx.transform_skip_model_chroma;
CABAC_BIN(cabac, 0, "transform_skip_flag");
}
kvz_encode_coeff_nxn(state, &state->cabac, coeff_uv, width_c, 2, *scan_idx, NULL, false);
}
}
static void encode_transform_unit(encoder_state_t * const state,
int x, int y, int depth, bool only_chroma, lcu_coeff_t* coeff)
{
assert(depth >= 1 && depth <= MAX_PU_DEPTH);
const videoframe_t * const frame = state->tile->frame;
cabac_data_t* const cabac = &state->cabac;
const uint8_t width = LCU_WIDTH >> depth;
const uint8_t width_c = (depth == MAX_PU_DEPTH ? width : width / 2);
const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, x, y);
int8_t scan_idx = kvz_get_scan_order(cur_pu->type, cur_pu->intra.mode, depth);
int cbf_y = cbf_is_set(cur_pu->cbf, depth, COLOR_Y);
if (cbf_y && !only_chroma) {
int x_local = x % LCU_WIDTH;
int y_local = y % LCU_WIDTH;
const coeff_t *coeff_y = &coeff->y[xy_to_zorder(LCU_WIDTH, x_local, y_local)];
// CoeffNxN
// Residual Coding
if(state->encoder_control->cfg.trskip_enable && width == 4) {
cabac->cur_ctx = &cabac->ctx.transform_skip_model_luma;
CABAC_BIN(cabac, cur_pu->tr_idx == MTS_SKIP, "transform_skip_flag");
}
if(cur_pu->tr_idx == MTS_SKIP) {
kvz_encode_ts_residual(state, cabac, coeff_y, width, 0, scan_idx);
}
else {
kvz_encode_coeff_nxn(state,
cabac,
coeff_y,
width,
0,
scan_idx,
(cu_info_t * )cur_pu,
true);
}
}
bool joint_chroma = cur_pu->joint_cb_cr != 0;
if (depth == MAX_DEPTH) {
// For size 4x4 luma transform the corresponding chroma transforms are
// also of size 4x4 covering 8x8 luma pixels. The residual is coded in
// the last transform unit.
if ((x % 8 == 0 || y % 8 == 0) || !only_chroma) {
// Not the last luma transform block so there is nothing more to do.
return;
} else {
// Time to to code the chroma transform blocks. Move to the top-left
// corner of the block.
x -= 4;
y -= 4;
cur_pu = kvz_cu_array_at_const((const cu_array_t *)frame->cu_array, x, y);
}
}
bool chroma_cbf_set = cbf_is_set(cur_pu->cbf, depth, COLOR_U) ||
cbf_is_set(cur_pu->cbf, depth, COLOR_V);
if (chroma_cbf_set || joint_chroma) {
encode_chroma_tu(state, x, y, depth, width_c, cur_pu, &scan_idx, coeff, joint_chroma);
}
}
/**
* \param encoder
* \param x_pu Prediction units' x coordinate.
* \param y_pu Prediction units' y coordinate.
* \param depth Depth from LCU.
* \param tr_depth Depth from last CU.
* \param parent_coeff_u What was signaled at previous level for cbf_cb.
* \param parent_coeff_v What was signlaed at previous level for cbf_cr.
*/
static void encode_transform_coeff(encoder_state_t * const state,
int32_t x,
int32_t y,
int8_t depth,
int8_t tr_depth,
uint8_t parent_coeff_u,
uint8_t parent_coeff_v,
bool only_chroma,
lcu_coeff_t* coeff)
{
cabac_data_t * const cabac = &state->cabac;
//const encoder_control_t *const ctrl = state->encoder_control;
const videoframe_t * const frame = state->tile->frame;
const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, x, y);
// Round coordinates down to a multiple of 8 to get the location of the
// containing CU.
const int x_cu = 8 * (x / 8);
const int y_cu = 8 * (y / 8);
const cu_info_t *cur_cu = kvz_cu_array_at_const(frame->cu_array, x_cu, y_cu);
// NxN signifies implicit transform split at the first transform level.
// There is a similar implicit split for inter, but it is only used when
// transform hierarchy is not in use.
//int intra_split_flag = (cur_cu->type == CU_INTRA && cur_cu->part_size == SIZE_NxN);
// The implicit split by intra NxN is not counted towards max_tr_depth.
/*
int max_tr_depth;
if (cur_cu->type == CU_INTRA) {
max_tr_depth = ctrl->cfg.tr_depth_intra + intra_split_flag;
} else {
max_tr_depth = ctrl->tr_depth_inter;
}
*/
int8_t split = (LCU_WIDTH >> depth > TR_MAX_WIDTH);
const int cb_flag_y = cbf_is_set(cur_pu->cbf, depth, COLOR_Y);
const int cb_flag_u = cur_pu->joint_cb_cr ? cur_pu->joint_cb_cr & 1 : cbf_is_set(cur_cu->cbf, depth, COLOR_U);
const int cb_flag_v = cur_pu->joint_cb_cr ? ((cur_pu->joint_cb_cr & 2) >> 1) : cbf_is_set(cur_cu->cbf, depth, COLOR_V);
// The split_transform_flag is not signaled when:
// - transform size is greater than 32 (depth == 0)
// - transform size is 4 (depth == MAX_PU_DEPTH)
// - transform depth is max
// - cu is intra NxN and it's the first split
//ToDo: check BMS transform split in QTBT
/*
if (depth > 0 &&
depth < MAX_PU_DEPTH &&
tr_depth < max_tr_depth &&
!(intra_split_flag && tr_depth == 0))
{
cabac->cur_ctx = &(cabac->ctx.trans_subdiv_model[5 - ((kvz_g_convert_to_bit[LCU_WIDTH] + 2) - depth)]);
CABAC_BIN(cabac, split, "split_transform_flag");
}
*/
// Chroma cb flags are not signaled when one of the following:
// - transform size is 4 (2x2 chroma transform doesn't exist)
// - they have already been signaled to 0 previously
// When they are not present they are inferred to be 0, except for size 4
// when the flags from previous level are used.
if (state->encoder_control->chroma_format != KVZ_CSP_400 && (depth != 4 || only_chroma)) {
if (!split) {
if (true) {
assert(tr_depth < 5);
cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_cb[0]);
CABAC_BIN(cabac, cb_flag_u, "cbf_cb");
}
if (true) {
cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_cr[cb_flag_u ? 1 : 0]);
CABAC_BIN(cabac, cb_flag_v, "cbf_cr");
}
}
}
if (split) {
uint8_t offset = LCU_WIDTH >> (depth + 1);
int x2 = x + offset;
int y2 = y + offset;
encode_transform_coeff(state, x, y, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v, only_chroma, coeff);
encode_transform_coeff(state, x2, y, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v, only_chroma, coeff);
encode_transform_coeff(state, x, y2, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v, only_chroma, coeff);
encode_transform_coeff(state, x2, y2, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v, only_chroma, coeff);
return;
}
// Luma coded block flag is signaled when one of the following:
// - prediction mode is intra
// - transform depth > 0
// - we have chroma coefficients at this level
// When it is not present, it is inferred to be 1.
if ((cur_cu->type == CU_INTRA || tr_depth > 0 || cb_flag_u || cb_flag_v) && !only_chroma) {
cabac->cur_ctx = &(cabac->ctx.qt_cbf_model_luma[0]);
CABAC_BIN(cabac, cb_flag_y, "cbf_luma");
}
if (cb_flag_y | cb_flag_u | cb_flag_v) {
if (state->must_code_qp_delta) {
const int qp_pred = kvz_get_cu_ref_qp(state, x_cu, y_cu, state->last_qp);
const int qp_delta = cur_cu->qp - qp_pred;
// Possible deltaQP range depends on bit depth as stated in HEVC specification.
assert(qp_delta >= KVZ_QP_DELTA_MIN && qp_delta <= KVZ_QP_DELTA_MAX && "QP delta not in valid range.");
const int qp_delta_abs = ABS(qp_delta);
cabac_data_t* cabac = &state->cabac;
// cu_qp_delta_abs prefix
cabac->cur_ctx = &cabac->ctx.cu_qp_delta_abs[0];
kvz_cabac_write_unary_max_symbol(cabac, cabac->ctx.cu_qp_delta_abs, MIN(qp_delta_abs, 5), 1, 5);
if (qp_delta_abs >= 5) {
// cu_qp_delta_abs suffix
kvz_cabac_write_ep_ex_golomb(state, cabac, qp_delta_abs - 5, 0);
}
if (qp_delta != 0) {
CABAC_BIN_EP(cabac, (qp_delta >= 0 ? 0 : 1), "qp_delta_sign_flag");
}
state->must_code_qp_delta = false;
}
if((cb_flag_u || cb_flag_v ) && (depth != 4 || only_chroma) && state->encoder_control->cfg.jccr) {
cabac->cur_ctx = &cabac->ctx.joint_cb_cr[cb_flag_u * 2 + cb_flag_v - 1];
CABAC_BIN(cabac, cur_pu->joint_cb_cr != 0, "tu_joint_cbcr_residual_flag");
}
encode_transform_unit(state, x, y, depth, only_chroma, coeff);
}
}
/**
* \brief Writes inter block parameters to the bitstream
* \param state Encoder state in use
* \param x Slice x coordinate.
* \param y Slice y coordinate.
* \param depth Depth from LCU.
* \return if non-zero mvd is coded
*/
static bool encode_inter_prediction_unit(encoder_state_t * const state,
cabac_data_t * const cabac,
const cu_info_t * const cur_cu,
int x, int y, int width, int height,
int depth)
{
// Mergeflag
int16_t num_cand = 0;
bool non_zero_mvd = false;
cabac->cur_ctx = &(cabac->ctx.cu_merge_flag_ext_model);
CABAC_BIN(cabac, cur_cu->merged, "MergeFlag");
num_cand = state->encoder_control->cfg.max_merge;
if (cur_cu->merged) { //merge
if (num_cand > 1) {
int32_t ui;
for (ui = 0; ui < num_cand - 1; ui++) {
int32_t symbol = (ui != cur_cu->merge_idx);
if (ui == 0) {
cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model);
CABAC_BIN(cabac, symbol, "MergeIndex");
} else {
CABAC_BIN_EP(cabac,symbol,"MergeIndex");
}
if (symbol == 0) break;
}
}
#ifdef KVZ_DEBUG_PRINT_YUVIEW_CSV
if (cur_cu->inter.mv_dir & 1) DBG_YUVIEW_MV(state->frame->poc, DBG_YUVIEW_MVMERGE_L0, x, y, width, height, cur_cu->inter.mv[0][0], cur_cu->inter.mv[0][1]);
if (cur_cu->inter.mv_dir & 2) DBG_YUVIEW_MV(state->frame->poc, DBG_YUVIEW_MVMERGE_L1, x, y, width, height, cur_cu->inter.mv[1][0], cur_cu->inter.mv[1][1]);
#endif
} else {
if (state->frame->slicetype == KVZ_SLICE_B) {
// Code Inter Dir
uint8_t inter_dir = cur_cu->inter.mv_dir;
if (cur_cu->part_size == SIZE_2Nx2N || (LCU_WIDTH >> depth) != 4) { // ToDo: limit on 4x8/8x4
uint32_t inter_dir_ctx = (7 - ((kvz_math_floor_log2(width) + kvz_math_floor_log2(height) + 1) >> 1));
cabac->cur_ctx = &(cabac->ctx.inter_dir[inter_dir_ctx]);
CABAC_BIN(cabac, (inter_dir == 3), "inter_pred_idc");
}
if (inter_dir < 3) {
cabac->cur_ctx = &(cabac->ctx.inter_dir[5]);
CABAC_BIN(cabac, (inter_dir == 2), "inter_pred_idc");
}
}
for (uint32_t ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) {
if (!(cur_cu->inter.mv_dir & (1 << ref_list_idx))) {
continue;
}
DBG_YUVIEW_MV(state->frame->poc, ref_list_idx ? DBG_YUVIEW_MVINTER_L1 : DBG_YUVIEW_MVINTER_L0, x, y, width, height, cur_cu->inter.mv[ref_list_idx][0], cur_cu->inter.mv[ref_list_idx][1]);
// size of the current reference index list (L0/L1)
uint8_t ref_LX_size = state->frame->ref_LX_size[ref_list_idx];
if (ref_LX_size > 1) {
// parseRefFrmIdx
int32_t ref_frame = cur_cu->inter.mv_ref[ref_list_idx];
cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[0]);
CABAC_BIN(cabac, (ref_frame > 0), "ref_idx_lX");
if (ref_frame > 0 && ref_LX_size > 2) {
cabac->cur_ctx = &(cabac->ctx.cu_ref_pic_model[1]);
CABAC_BIN(cabac, (ref_frame > 1), "ref_idx_lX");
if (ref_frame > 1 && ref_LX_size > 3) {
for (int idx = 3; idx < ref_LX_size; idx++)
{
uint8_t val = (ref_frame > idx - 1) ? 1 : 0;
CABAC_BIN_EP(cabac, val, "ref_idx_lX");
if (!val) break;
}
}
}
}
if (state->frame->ref_list != REF_PIC_LIST_1 || cur_cu->inter.mv_dir != 3) {
mv_t mv_cand[2][2];
kvz_inter_get_mv_cand_cua(
state,
x, y, width, height,
mv_cand, cur_cu, ref_list_idx);
uint8_t cu_mv_cand = CU_GET_MV_CAND(cur_cu, ref_list_idx);
mv_t mvd_hor = cur_cu->inter.mv[ref_list_idx][0] - mv_cand[cu_mv_cand][0];
mv_t mvd_ver = cur_cu->inter.mv[ref_list_idx][1] - mv_cand[cu_mv_cand][1];
kvz_change_precision(INTERNAL_MV_PREC, kvz_g_imv_to_prec[KVZ_IMV_OFF], &mvd_hor, &mvd_ver);
kvz_encode_mvd(state, cabac, mvd_hor, mvd_ver);
non_zero_mvd |= (mvd_hor != 0) || (mvd_ver != 0);
}
// Signal which candidate MV to use
cabac->cur_ctx = &(cabac->ctx.mvp_idx_model);
CABAC_BIN(cabac, CU_GET_MV_CAND(cur_cu, ref_list_idx), "mvp_flag");
} // for ref_list
} // if !merge
return non_zero_mvd;
}
static void encode_chroma_intra_cu(cabac_data_t* const cabac, const cu_info_t* const cur_cu, int x, int y, const videoframe_t* const frame, const int cu_width, const int cclm_enabled) {
unsigned pred_mode = 0;
unsigned chroma_pred_modes[8] = {0, 50, 18, 1, 67, 81, 82, 83};
const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, 0);
const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, 0);
const cu_info_t *first_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y);
int8_t chroma_intra_dir = first_pu->intra.mode_chroma;
int8_t luma_intra_dir = first_pu->intra.mode;
bool derived_mode = chroma_intra_dir == luma_intra_dir;
bool cclm_mode = chroma_intra_dir > 67;
if (cclm_enabled) {
cabac->cur_ctx = &cabac->ctx.cclm_flag;
CABAC_BIN(cabac, cclm_mode, "cclm_flag");
if(cclm_mode) {
cabac->cur_ctx = &cabac->ctx.cclm_model;
CABAC_BIN(cabac, chroma_intra_dir != 81, "cclm_model_1");
if(chroma_intra_dir != 81) {
CABAC_BIN_EP(cabac, chroma_intra_dir == 83, "cclm_model_2");
}
return;
}
}
cabac->cur_ctx = &(cabac->ctx.chroma_pred_model);
CABAC_BIN(cabac, derived_mode ? 0 : 1, "intra_chroma_pred_mode");
if (!derived_mode) {
/*for (int i = 0; i < 4; i++) {
if (luma_intra_dir == chroma_pred_modes[i]) {
chroma_pred_modes[i] = 66;
break;
}
}*/
for (; pred_mode < 5; pred_mode++) {
if (chroma_intra_dir == chroma_pred_modes[pred_mode]) {
break;
}
}
/*else if (intra_pred_mode_chroma == 66) {
// Angular 66 mode is possible only if intra pred mode is one of the
// possible chroma pred modes, in which case it is signaled with that
// duplicate mode.
for (int i = 0; i < 4; ++i) {
if (intra_pred_mode_actual[0] == chroma_pred_modes[i]) pred_mode = i;
}
}
else {
for (int i = 0; i < 4; ++i) {
if (intra_pred_mode_chroma == chroma_pred_modes[i]) pred_mode = i;
}
}
// pred_mode == 67 mean intra_pred_mode_chroma is something that can't
// be coded.
assert(pred_mode != 67);
*/
/**
* Table 9-35 - Binarization for intra_chroma_pred_mode
* intra_chroma_pred_mode bin_string
* 4 0
* 0 100
* 1 101
* 2 110
* 3 111
* Table 9-37 - Assignment of ctxInc to syntax elements with context coded bins
* intra_chroma_pred_mode[][] = 0, bypass, bypass
*/
/*cabac->cur_ctx = &(cabac->ctx.chroma_pred_model[0]);
if (pred_mode == 68) {
CABAC_BIN(cabac, 0, "intra_chroma_pred_mode");
}
else {
CABAC_BIN(cabac, 1, "intra_chroma_pred_mode");*/
CABAC_BINS_EP(cabac, pred_mode, 2, "intra_chroma_pred_mode");
//}
}
}
static void encode_intra_coding_unit(encoder_state_t * const state,
cabac_data_t * const cabac,
const cu_info_t * const cur_cu,
int x, int y, int depth, lcu_coeff_t* coeff)
{
const videoframe_t * const frame = state->tile->frame;
uint8_t intra_pred_mode_actual[4];
uint8_t *intra_pred_mode = intra_pred_mode_actual;
//uint8_t intra_pred_mode_chroma = cur_cu->intra.mode_chroma;
int8_t intra_preds[4][INTRA_MPM_COUNT] = {{-1, -1, -1, -1, -1, -1},{-1, -1, -1, -1, -1, -1},{-1, -1, -1, -1, -1, -1},{-1, -1, -1, -1, -1, -1}};
int8_t mpm_preds[4] = {-1, -1, -1, -1};
uint32_t flag[4];
/*
if ((cur_cu->type == CU_INTRA && (LCU_WIDTH >> cur_cu->depth <= 32))) {
cabac->cur_ctx = &(cabac->ctx.bdpcm_mode[0]);
CABAC_BIN(cabac, cur_cu->bdpcmMode > 0 ? 1 : 0, "bdpcm_mode");
if (cur_cu->bdpcmMode) {
cabac->cur_ctx = &(cabac->ctx.bdpcm_mode[1]);
CABAC_BIN(cabac, cur_cu->bdpcmMode > 1 ? 1 : 0, "bdpcm_mode > 1");
}
}
*/
#if ENABLE_PCM == 1
// Code must start after variable initialization
kvz_cabac_encode_bin_trm(cabac, 0); // IPCMFlag == 0
#endif
/*
if (cur_cu->type == 1 && (LCU_WIDTH >> depth <= 32)) {
cabac->cur_ctx = &(cabac->ctx.bdpcm_mode[0]);
CABAC_BIN(cabac, 0, "bdpcm_mode");
}
*/
const int num_pred_units = kvz_part_mode_num_parts[cur_cu->part_size];
//ToDo: update multi_ref_lines variable when it's something else than constant 3
//int multi_ref_lines = 3;
/*
if(isp_enable_flag){ //ToDo: implement flag value to be something else than constant zero
for (int i = 0; i < num_pred_units; i++) {
if (multi_ref_lines > 1) {
cabac->cur_ctx = &(cabac->ctx.multi_ref_line[0]);
CABAC_BIN(cabac, cur_cu->intra.multi_ref_idx != 0, "multi_ref_line_0");
if (multi_ref_lines > 2 && cur_cu->intra.multi_ref_idx != 0) {
cabac->cur_ctx = &(cabac->ctx.multi_ref_line[1]);
CABAC_BIN(cabac, cur_cu->intra.multi_ref_idx != 1, "multi_ref_line_1");
if (multi_ref_lines > 3 && cur_cu->intra.multi_ref_idx != 1) {
cabac->cur_ctx = &(cabac->ctx.multi_ref_line[2]);
CABAC_BIN(cabac, cur_cu->intra.multi_ref_idx != 3, "multi_ref_line_2");
}
}
}
}
}
*/
// Intra Subpartition mode
uint32_t width = (LCU_WIDTH >> depth);
uint32_t height = (LCU_WIDTH >> depth);
bool enough_samples = kvz_g_convert_to_bit[width] + kvz_g_convert_to_bit[height] > (kvz_g_convert_to_bit[4 /* MIN_TB_SIZEY*/] << 1);
uint8_t isp_mode = 0;
// ToDo: add height comparison
//isp_mode += ((width > TR_MAX_WIDTH) || !enough_samples) ? 1 : 0;
//isp_mode += ((height > TR_MAX_WIDTH) || !enough_samples) ? 2 : 0;
bool allow_isp = enough_samples;
if (0 && cur_cu->type == 1/*intra*/ && (y % LCU_WIDTH) != 0) {
cabac->cur_ctx = &(cabac->ctx.multi_ref_line[0]);
CABAC_BIN(cabac, 0, "multi_ref_line");
}
// ToDo: update real usage, these if clauses as such don't make any sense
if (isp_mode != 0) {
if (isp_mode) {
cabac->cur_ctx = &(cabac->ctx.intra_subpart_model[0]);
CABAC_BIN(cabac, 0, "intra_subPartitions");
} else {
cabac->cur_ctx = &(cabac->ctx.intra_subpart_model[0]);
CABAC_BIN(cabac, 1, "intra_subPartitions");
// ToDo: complete this if-clause
if (isp_mode == 3) {
cabac->cur_ctx = &(cabac->ctx.intra_subpart_model[1]);
CABAC_BIN(cabac, allow_isp - 1, "intra_subPart_ver_hor");
}
}
}
// PREDINFO CODING
// If intra prediction mode is found from the predictors,
// it can be signaled with two EP's. Otherwise we can send
// 5 EP bins with the full predmode
// ToDo: fix comments for VVC
const int cu_width = LCU_WIDTH >> depth;
cabac->cur_ctx = &(cabac->ctx.intra_luma_mpm_flag_model);
for (int j = 0; j < num_pred_units; ++j) {
const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, j);
const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, j);
const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y);
const cu_info_t *left_pu = NULL;
const cu_info_t *above_pu = NULL;
if (pu_x > 0) {
assert(pu_x >> 2 > 0);
left_pu = kvz_cu_array_at_const(frame->cu_array, pu_x - 1, pu_y + cu_width - 1);
}
// Don't take the above PU across the LCU boundary.
if (pu_y % LCU_WIDTH > 0 && pu_y > 0) {
assert(pu_y >> 2 > 0);
above_pu = kvz_cu_array_at_const(frame->cu_array, pu_x + cu_width - 1, pu_y - 1);
}
kvz_intra_get_dir_luma_predictor(pu_x, pu_y,
intra_preds[j],
cur_pu,
left_pu, above_pu);
intra_pred_mode_actual[j] = cur_pu->intra.mode;
for (int i = 0; i < INTRA_MPM_COUNT; i++) {
if (intra_preds[j][i] == intra_pred_mode[j]) {
mpm_preds[j] = (int8_t)i;
break;
}
}
// Is the mode in the MPM array or not
flag[j] = (mpm_preds[j] == -1) ? 0 : 1;
if (true||!(cur_pu->intra.multi_ref_idx || (isp_mode))) {
CABAC_BIN(cabac, flag[j], "prev_intra_luma_pred_flag");
}
}
for (int j = 0; j < num_pred_units; ++j) {
// Signal index of the prediction mode in the prediction list, if it is there
if (flag[j]) {
const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, j);
const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, j);
const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y);
cabac->cur_ctx = &(cabac->ctx.luma_planar_model[(isp_mode ? 0 : 1)]);
if (true||cur_pu->intra.multi_ref_idx == 0) {
CABAC_BIN(cabac, (mpm_preds[j] > 0 ? 1 : 0), "mpm_idx_luma_planar");
}
//CABAC_BIN_EP(cabac, (mpm_preds[j] > 0 ? 1 : 0), "mpm_idx");
if (mpm_preds[j] > 0) {
CABAC_BIN_EP(cabac, (mpm_preds[j] > 1 ? 1 : 0), "mpm_idx");
}
if (mpm_preds[j] > 1) {
CABAC_BIN_EP(cabac, (mpm_preds[j] > 2 ? 1 : 0), "mpm_idx");
}
if (mpm_preds[j] > 2) {
CABAC_BIN_EP(cabac, (mpm_preds[j] > 3 ? 1 : 0), "mpm_idx");
}
if (mpm_preds[j] > 3) {
CABAC_BIN_EP(cabac, (mpm_preds[j] > 4 ? 1 : 0), "mpm_idx");
}
} else {
// Signal the actual prediction mode.
int32_t tmp_pred = intra_pred_mode[j];
uint8_t intra_preds_temp[INTRA_MPM_COUNT+2];
memcpy(intra_preds_temp, intra_preds[j], sizeof(int8_t)*3);
memcpy(intra_preds_temp+4, &intra_preds[j][3], sizeof(int8_t)*3);
intra_preds_temp[3] = 255;
intra_preds_temp[7] = 255;
// Improvised merge sort
// Sort prediction list from lowest to highest.
if (intra_preds_temp[0] > intra_preds_temp[1]) SWAP(intra_preds_temp[0], intra_preds_temp[1], uint8_t);
if (intra_preds_temp[0] > intra_preds_temp[2]) SWAP(intra_preds_temp[0], intra_preds_temp[2], uint8_t);
if (intra_preds_temp[1] > intra_preds_temp[2]) SWAP(intra_preds_temp[1], intra_preds_temp[2], uint8_t);
if (intra_preds_temp[4] > intra_preds_temp[5]) SWAP(intra_preds_temp[4], intra_preds_temp[5], uint8_t);
if (intra_preds_temp[4] > intra_preds_temp[6]) SWAP(intra_preds_temp[4], intra_preds_temp[6], uint8_t);
if (intra_preds_temp[5] > intra_preds_temp[6]) SWAP(intra_preds_temp[5], intra_preds_temp[6], uint8_t);
// Merge two subarrays
int32_t array1 = 0;
int32_t array2 = 4;
for (int item = 0; item < INTRA_MPM_COUNT; item++) {
if (intra_preds_temp[array1] < intra_preds_temp[array2]) {
intra_preds[j][item] = intra_preds_temp[array1];
array1++;
} else {
intra_preds[j][item] = intra_preds_temp[array2];
array2++;
}
}
// Reduce the index of the signaled prediction mode according to the
// prediction list, as it has been already signaled that it's not one
// of the prediction modes.
for (int i = INTRA_MPM_COUNT-1; i >= 0; i--) {
if (tmp_pred > intra_preds[j][i]) {
tmp_pred--;
}
}
kvz_cabac_encode_trunc_bin(cabac, tmp_pred, 67 - INTRA_MPM_COUNT);
}
}
// Code chroma prediction mode.
if (state->encoder_control->chroma_format != KVZ_CSP_400 && depth != 4) {
encode_chroma_intra_cu(cabac, cur_cu, x, y, frame, cu_width, state->encoder_control->cfg.cclm);
}
encode_transform_coeff(state, x, y, depth, 0, 0, 0, 0, coeff);
encode_mts_idx(state, cabac, cur_cu);
if (state->encoder_control->chroma_format != KVZ_CSP_400 && depth == 4 && x % 8 && y % 8) {
encode_chroma_intra_cu(cabac, cur_cu, x, y, frame, cu_width, state->encoder_control->cfg.cclm);
encode_transform_coeff(state, x, y, depth, 0, 0, 0, 1, coeff);
}
}
/**
static void encode_part_mode(encoder_state_t * const state,
cabac_data_t * const cabac,
const cu_info_t * const cur_cu,
int depth)
{
// Binarization from Table 9-34 of the HEVC spec:
//
// | log2CbSize > | log2CbSize ==
// | MinCbLog2SizeY | MinCbLog2SizeY
// -------+-------+----------+---------+-----------+----------
// pred | part | AMP | AMP | |
// mode | mode | disabled | enabled | size == 8 | size > 8
// -------+-------+----------+---------+-----------+----------
// intra | 2Nx2N | - - | 1 1
// | NxN | - - | 0 0
// -------+-------+--------------------+----------------------
// inter | 2Nx2N | 1 1 | 1 1
// | 2NxN | 01 011 | 01 01
// | Nx2N | 00 001 | 00 001
// | NxN | - - | - 000
// | 2NxnU | - 0100 | - -
// | 2NxnD | - 0101 | - -
// | nLx2N | - 0000 | - -
// | nRx2N | - 0001 | - -
// -------+-------+--------------------+----------------------
//
//
// Context indices from Table 9-37 of the HEVC spec:
//
// binIdx
// | 0 1 2 3
// ------------------------------+------------------
// log2CbSize == MinCbLog2SizeY | 0 1 2 bypass
// log2CbSize > MinCbLog2SizeY | 0 1 3 bypass
// ------------------------------+------------------
if (cur_cu->type == CU_INTRA) {
if (depth == MAX_DEPTH) {
cabac->cur_ctx = &(cabac->ctx.part_size_model[0]);
if (cur_cu->part_size == SIZE_2Nx2N) {
CABAC_BIN(cabac, 1, "part_mode 2Nx2N");
} else {
CABAC_BIN(cabac, 0, "part_mode NxN");
}
}
} else {
cabac->cur_ctx = &(cabac->ctx.part_size_model[0]);
if (cur_cu->part_size == SIZE_2Nx2N) {
CABAC_BIN(cabac, 1, "part_mode 2Nx2N");
return;
}
CABAC_BIN(cabac, 0, "part_mode split");
cabac->cur_ctx = &(cabac->ctx.part_size_model[1]);
if (cur_cu->part_size == SIZE_2NxN ||
cur_cu->part_size == SIZE_2NxnU ||
cur_cu->part_size == SIZE_2NxnD) {
CABAC_BIN(cabac, 1, "part_mode vertical");
} else {
CABAC_BIN(cabac, 0, "part_mode horizontal");
}
if (state->encoder_control->cfg.amp_enable && depth < MAX_DEPTH) {
cabac->cur_ctx = &(cabac->ctx.part_size_model[3]);
if (cur_cu->part_size == SIZE_2NxN ||
cur_cu->part_size == SIZE_Nx2N) {
CABAC_BIN(cabac, 1, "part_mode SMP");
return;
}
CABAC_BIN(cabac, 0, "part_mode AMP");
if (cur_cu->part_size == SIZE_2NxnU ||
cur_cu->part_size == SIZE_nLx2N) {
CABAC_BINS_EP(cabac, 0, 1, "part_mode AMP");
} else {
CABAC_BINS_EP(cabac, 1, 1, "part_mode AMP");
}
}
}
}
**/
void kvz_encode_coding_tree(encoder_state_t * const state,
uint16_t x,
uint16_t y,
uint8_t depth,
lcu_coeff_t *coeff)
{
cabac_data_t * const cabac = &state->cabac;
const encoder_control_t * const ctrl = state->encoder_control;
const videoframe_t * const frame = state->tile->frame;
const cu_info_t *cur_cu = kvz_cu_array_at_const((const cu_array_t * )frame->cu_array, x, y);
const int cu_width = LCU_WIDTH >> depth;
const int half_cu = cu_width >> 1;
const cu_info_t *left_cu = NULL;
if (x > 0) {
left_cu = kvz_cu_array_at_const((const cu_array_t*)frame->cu_array, x - 1, y);
}
const cu_info_t *above_cu = NULL;
if (y > 0) {
above_cu = kvz_cu_array_at_const((const cu_array_t*)frame->cu_array, x, y - 1);
}
uint8_t split_flag = GET_SPLITDATA(cur_cu, depth);
uint8_t split_model = 0;
// Absolute coordinates
uint16_t abs_x = x + state->tile->offset_x;
uint16_t abs_y = y + state->tile->offset_y;
// Check for slice border
bool border_x = ctrl->in.width < abs_x + cu_width;
bool border_y = ctrl->in.height < abs_y + cu_width;
bool border_split_x = ctrl->in.width >= abs_x + (LCU_WIDTH >> MAX_DEPTH) + half_cu;
bool border_split_y = ctrl->in.height >= abs_y + (LCU_WIDTH >> MAX_DEPTH) + half_cu;
bool border = border_x || border_y; /*!< are we in any border CU */
if (depth <= ctrl->max_qp_delta_depth) {
state->must_code_qp_delta = true;
}
// When not in MAX_DEPTH, insert split flag and split the blocks if needed
if (depth != MAX_DEPTH) {
// Implisit split flag when on border
// Exception made in VVC with flag not being implicit if the BT can be used for
// horizontal or vertical split, then this flag tells if QT or BT is used
bool no_split, allow_qt, bh_split, bv_split, th_split, tv_split;
no_split = allow_qt = bh_split = bv_split = th_split = tv_split = true;
if(depth > MAX_DEPTH) allow_qt = false;
// ToDo: update this when btt is actually used
bool allow_btt = false;// when mt_depth < MAX_BT_DEPTH
uint8_t implicit_split_mode = KVZ_NO_SPLIT;
//bool implicit_split = border;
bool bottom_left_available = ((abs_y + cu_width - 1) < ctrl->in.height);
bool top_right_available = ((abs_x + cu_width - 1) < ctrl->in.width);
/*
if((depth >= 1 && (border_x != border_y))) implicit_split = false;
if (state->frame->slicetype != KVZ_SLICE_I) {
if (border_x != border_y) implicit_split = false;
if (!bottom_left_available && top_right_available) implicit_split = false;
if (!top_right_available && bottom_left_available) implicit_split = false;
}
*/
if (!bottom_left_available && !top_right_available && allow_qt) {
implicit_split_mode = KVZ_QUAD_SPLIT;
} else if (!bottom_left_available && allow_btt) {
implicit_split_mode = KVZ_HORZ_SPLIT;
} else if (!top_right_available && allow_btt) {
implicit_split_mode = KVZ_VERT_SPLIT;
} else if (!bottom_left_available || !top_right_available) {
implicit_split_mode = KVZ_QUAD_SPLIT;
}
//split_flag = implicit_split_mode != KVZ_NO_SPLIT;
// Check split conditions
if (implicit_split_mode != KVZ_NO_SPLIT) {
no_split = th_split = tv_split = false;
bh_split = (implicit_split_mode == KVZ_HORZ_SPLIT);
bv_split = (implicit_split_mode == KVZ_VERT_SPLIT);
}
if (!allow_btt) {
bh_split = bv_split = th_split = tv_split = false;
}
bool allow_split = allow_qt | bh_split | bv_split | th_split | tv_split;
split_flag |= implicit_split_mode != KVZ_NO_SPLIT;
if (no_split && allow_split) {
split_model = 0;
// Get left and top block split_flags and if they are present and true, increase model number
// ToDo: should use height and width to increase model, PU_GET_W() ?
if (left_cu && PU_GET_H(left_cu->part_size,LCU_WIDTH>>left_cu->depth,0) < LCU_WIDTH>>depth) {
split_model++;
}
if (above_cu && PU_GET_W(above_cu->part_size, LCU_WIDTH >> above_cu->depth, 0) < LCU_WIDTH >> depth) {
split_model++;
}
uint32_t split_num = 0;
if (allow_qt) split_num+=2;
if (bh_split) split_num++;
if (bv_split) split_num++;
if (th_split) split_num++;
if (tv_split) split_num++;
if (split_num > 0) split_num--;
split_model += 3 * (split_num >> 1);
cabac->cur_ctx = &(cabac->ctx.split_flag_model[split_model]);
CABAC_BIN(cabac, split_flag, "SplitFlag");
//fprintf(stdout, "split_model=%d %d / %d / %d / %d / %d\n", split_model, allow_qt, bh_split, bv_split, th_split, tv_split);
}
bool qt_split = split_flag || implicit_split_mode == KVZ_QUAD_SPLIT;
if (!(implicit_split_mode == KVZ_NO_SPLIT) && (allow_qt && allow_btt)) {
split_model = (left_cu && GET_SPLITDATA(left_cu, depth)) + (above_cu && GET_SPLITDATA(above_cu, depth)) + (depth < 2 ? 0 : 3);
cabac->cur_ctx = &(cabac->ctx.qt_split_flag_model[split_model]);
CABAC_BIN(cabac, qt_split, "QT_SplitFlag");
}
// Only signal split when it is not implicit, currently only Qt split supported
if (!(implicit_split_mode == KVZ_NO_SPLIT) && !qt_split && (bh_split | bv_split | th_split | tv_split)) {
split_model = 0;
// Get left and top block split_flags and if they are present and true, increase model number
if (left_cu && GET_SPLITDATA(left_cu, depth) == 1) {
split_model++;
}
if (above_cu && GET_SPLITDATA(above_cu, depth) == 1) {
split_model++;
}
split_model += (depth > 2 ? 0 : 3);
cabac->cur_ctx = &(cabac->ctx.qt_split_flag_model[split_model]);
CABAC_BIN(cabac, split_flag, "split_cu_mode");
}
if (split_flag || border) {
// Split blocks and remember to change x and y block positions
kvz_encode_coding_tree(state, x, y, depth + 1, coeff);
if (!border_x || border_split_x) {
kvz_encode_coding_tree(state, x + half_cu, y, depth + 1, coeff);
}
if (!border_y || border_split_y) {
kvz_encode_coding_tree(state, x, y + half_cu, depth + 1, coeff);
}
if (!border || (border_split_x && border_split_y)) {
kvz_encode_coding_tree(state, x + half_cu, y + half_cu, depth + 1, coeff);
}
return;
}
}
//ToDo: check if we can actually split
//ToDo: Implement MT split
if (depth < MAX_PU_DEPTH)
{
// cabac->cur_ctx = &(cabac->ctx.trans_subdiv_model[5 - ((kvz_g_convert_to_bit[LCU_WIDTH] + 2) - depth)]);
// CABAC_BIN(cabac, 0, "split_transform_flag");
}
if (ctrl->cfg.lossless) {
cabac->cur_ctx = &cabac->ctx.cu_transquant_bypass;
CABAC_BIN(cabac, 1, "cu_transquant_bypass_flag");
}
// Encode skip flag
if (state->frame->slicetype != KVZ_SLICE_I && cu_width != 4) {
int8_t ctx_skip = 0;
if (left_cu && left_cu->skipped) {
ctx_skip++;
}
if (above_cu && above_cu->skipped) {
ctx_skip++;
}
cabac->cur_ctx = &(cabac->ctx.cu_skip_flag_model[ctx_skip]);
CABAC_BIN(cabac, cur_cu->skipped, "SkipFlag");
if (cur_cu->skipped) {
kvz_hmvp_add_mv(state, x, y, (uint32_t)cu_width, (uint32_t)cu_width, cur_cu);
int16_t num_cand = state->encoder_control->cfg.max_merge;
if (num_cand > 1) {
for (int ui = 0; ui < num_cand - 1; ui++) {
int32_t symbol = (ui != cur_cu->merge_idx);
if (ui == 0) {
cabac->cur_ctx = &(cabac->ctx.cu_merge_idx_ext_model);
CABAC_BIN(cabac, symbol, "MergeIndex");
} else {
CABAC_BIN_EP(cabac,symbol,"MergeIndex");
}
if (symbol == 0) {
break;
}
}
}
#ifdef KVZ_DEBUG_PRINT_YUVIEW_CSV
if (cur_cu->inter.mv_dir & 1) DBG_YUVIEW_MV(state->frame->poc, DBG_YUVIEW_MVSKIP_L0, abs_x, abs_y, cu_width, cu_width, cur_cu->inter.mv[0][0], cur_cu->inter.mv[0][1]);
if (cur_cu->inter.mv_dir & 2) DBG_YUVIEW_MV(state->frame->poc, DBG_YUVIEW_MVSKIP_L1, abs_x, abs_y, cu_width, cu_width, cur_cu->inter.mv[1][0], cur_cu->inter.mv[1][1]);
#endif
goto end;
}
}
// Prediction mode
if (state->frame->slicetype != KVZ_SLICE_I) {
int8_t ctx_predmode = 0;
if ((left_cu && left_cu->type == CU_INTRA) || (above_cu && above_cu->type == CU_INTRA)) {
ctx_predmode=1;
}
cabac->cur_ctx = &(cabac->ctx.cu_pred_mode_model[ctx_predmode]);
CABAC_BIN(cabac, (cur_cu->type == CU_INTRA), "PredMode");
}
// part_mode
//encode_part_mode(state, cabac, cur_cu, depth);
#if ENABLE_PCM
// Code IPCM block
if (FORCE_PCM || cur_cu->type == CU_PCM) {
kvz_cabac_encode_bin_trm(cabac, 1); // IPCMFlag == 1
kvz_cabac_finish(cabac);
kvz_bitstream_add_rbsp_trailing_bits(cabac->stream);
// PCM sample
kvz_pixel *base_y = &frame->source->y[x + y * ctrl->in.width];
kvz_pixel *base_u = &frame->source->u[x / 2 + y / 2 * ctrl->in.width / 2];
kvz_pixel *base_v = &frame->source->v[x / 2 + y / 2 * ctrl->in.width / 2];
kvz_pixel *rec_base_y = &frame->rec->y[x + y * ctrl->in.width];
kvz_pixel *rec_base_u = &frame->rec->u[x / 2 + y / 2 * ctrl->in.width / 2];
kvz_pixel *rec_base_v = &frame->rec->v[x / 2 + y / 2 * ctrl->in.width / 2];
// Luma
for (unsigned y_px = 0; y_px < LCU_WIDTH >> depth; y_px++) {
for (unsigned x_px = 0; x_px < LCU_WIDTH >> depth; x_px++) {
kvz_bitstream_put(cabac->stream, base_y[x_px + y_px * ctrl->in.width], 8);
rec_base_y[x_px + y_px * ctrl->in.width] = base_y[x_px + y_px * ctrl->in.width];
}
}
// Chroma
if (ctrl->chroma_format != KVZ_CSP_400) {
for (unsigned y_px = 0; y_px < LCU_WIDTH >> (depth + 1); y_px++) {
for (unsigned x_px = 0; x_px < LCU_WIDTH >> (depth + 1); x_px++) {
kvz_bitstream_put(cabac->stream, base_u[x_px + y_px * (ctrl->in.width >> 1)], 8);
rec_base_u[x_px + y_px * (ctrl->in.width >> 1)] = base_u[x_px + y_px * (ctrl->in.width >> 1)];
}
}
for (unsigned y_px = 0; y_px < LCU_WIDTH >> (depth + 1); y_px++) {
for (unsigned x_px = 0; x_px < LCU_WIDTH >> (depth + 1); x_px++) {
kvz_bitstream_put(cabac->stream, base_v[x_px + y_px * (ctrl->in.width >> 1)], 8);
rec_base_v[x_px + y_px * (ctrl->in.width >> 1)] = base_v[x_px + y_px * (ctrl->in.width >> 1)];
}
}
}
kvz_cabac_start(cabac);
} else
#endif
if (cur_cu->type == CU_INTER) {
uint8_t imv_mode = KVZ_IMV_OFF;
const int num_pu = kvz_part_mode_num_parts[cur_cu->part_size];
bool non_zero_mvd = false;
for (int i = 0; i < num_pu; ++i) {
const int pu_x = PU_GET_X(cur_cu->part_size, cu_width, x, i);
const int pu_y = PU_GET_Y(cur_cu->part_size, cu_width, y, i);
const int pu_w = PU_GET_W(cur_cu->part_size, cu_width, i);
const int pu_h = PU_GET_H(cur_cu->part_size, cu_width, i);
const cu_info_t *cur_pu = kvz_cu_array_at_const(frame->cu_array, pu_x, pu_y);
non_zero_mvd |= encode_inter_prediction_unit(state, cabac, cur_pu, pu_x, pu_y, pu_w, pu_h, depth);
kvz_hmvp_add_mv(state, x, y, pu_w, pu_h, cur_pu);
}
// imv mode, select between fullpel, half-pel and quarter-pel resolutions
// 0 = off, 1 = fullpel, 2 = 4-pel, 3 = half-pel
if (ctrl->cfg.amvr && non_zero_mvd) {
cabac->cur_ctx = &(cabac->ctx.imv_flag[0]);
CABAC_BIN(cabac, (imv_mode > KVZ_IMV_OFF), "imv_flag");
if (imv_mode > KVZ_IMV_OFF) {
cabac->cur_ctx = &(cabac->ctx.imv_flag[4]);
CABAC_BIN(cabac, (imv_mode < KVZ_IMV_HPEL), "imv_flag");
if (imv_mode < KVZ_IMV_HPEL) {
cabac->cur_ctx = &(cabac->ctx.imv_flag[1]);
CABAC_BIN(cabac, (imv_mode > KVZ_IMV_FPEL), "imv_flag"); // 1 indicates 4PEL, 0 FPEL
}
}
}
{
int cbf = cbf_is_set_any(cur_cu->cbf, depth);
// Only need to signal coded block flag if not skipped or merged
// skip = no coded residual, merge = coded residual
if (cur_cu->part_size != SIZE_2Nx2N || !cur_cu->merged) {
cabac->cur_ctx = &(cabac->ctx.cu_qt_root_cbf_model);
CABAC_BIN(cabac, cbf, "rqt_root_cbf");
}
// Code (possible) coeffs to bitstream
if (cbf) {
encode_transform_coeff(state, x, y, depth, 0, 0, 0, 0, coeff);
}
}
} else if (cur_cu->type == CU_INTRA) {
encode_intra_coding_unit(state, cabac, cur_cu, x, y, depth, coeff);
}
else {
// CU type not set. Should not happen.
assert(0);
exit(1);
}
end:
if (is_last_cu_in_qg(state, x, y, depth)) {
state->last_qp = cur_cu->qp;
}
}
void kvz_encode_mvd(encoder_state_t * const state,
cabac_data_t *cabac,
int32_t mvd_hor,
int32_t mvd_ver)
{
const int8_t hor_abs_gr0 = mvd_hor != 0;
const int8_t ver_abs_gr0 = mvd_ver != 0;
const uint32_t mvd_hor_abs = abs(mvd_hor);
const uint32_t mvd_ver_abs = abs(mvd_ver);
cabac->cur_ctx = &cabac->ctx.cu_mvd_model[0];
CABAC_BIN(cabac, (mvd_hor != 0), "abs_mvd_greater0_flag_hor");
CABAC_BIN(cabac, (mvd_ver != 0), "abs_mvd_greater0_flag_ver");
cabac->cur_ctx = &cabac->ctx.cu_mvd_model[1];
if (hor_abs_gr0) {
CABAC_BIN(cabac, (mvd_hor_abs>1), "abs_mvd_greater1_flag_hor");
}
if (ver_abs_gr0) {
CABAC_BIN(cabac, (mvd_ver_abs>1), "abs_mvd_greater1_flag_ver");
}
if (hor_abs_gr0) {
if (mvd_hor_abs > 1) {
kvz_cabac_write_ep_ex_golomb(state, cabac, mvd_hor_abs - 2, 1);
}
uint32_t mvd_hor_sign = (mvd_hor > 0) ? 0 : 1;
CABAC_BIN_EP(cabac, mvd_hor_sign, "mvd_sign_flag_hor");
}
if (ver_abs_gr0) {
if (mvd_ver_abs > 1) {
kvz_cabac_write_ep_ex_golomb(state, cabac, mvd_ver_abs - 2, 1);
}
uint32_t mvd_ver_sign = mvd_ver > 0 ? 0 : 1;
CABAC_BIN_EP(cabac, mvd_ver_sign, "mvd_sign_flag_ver");
}
}