uvg266/src/transform.c
Ari Koivula 44a5498e30 Reorder includes to avoid hidden dependencies.
- Includes of global.h have been moved to headers because most headers
  require stdint.h.
- Includes required by the header have been moved from the .c to the header.
- Spaces have been added between includes to distinguish classes of includes.
2013-09-18 12:29:23 +03:00

1050 lines
35 KiB
C

/**
* HEVC Encoder
* - Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Pervasive Computing.
*/
/*! \file transform.c
\brief Transform functions
\author Marko Viitanen
\date 2012-09
Transform functions
*/
#include "transform.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "config.h"
#include "nal.h"
const int16_t g_aiT4[4][4] =
{
{ 64, 64, 64, 64},
{ 83, 36,-36,-83},
{ 64,-64,-64, 64},
{ 36,-83, 83,-36}
};
const int16_t g_aiT8[8][8] =
{
{ 64, 64, 64, 64, 64, 64, 64, 64},
{ 89, 75, 50, 18,-18,-50,-75,-89},
{ 83, 36,-36,-83,-83,-36, 36, 83},
{ 75,-18,-89,-50, 50, 89, 18,-75},
{ 64,-64,-64, 64, 64,-64,-64, 64},
{ 50,-89, 18, 75,-75,-18, 89,-50},
{ 36,-83, 83,-36,-36, 83,-83, 36},
{ 18,-50, 75,-89, 89,-75, 50,-18}
};
const int16_t g_aiT16[16][16] =
{
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64},
{ 90, 87, 80, 70, 57, 43, 25, 9, -9,-25,-43,-57,-70,-80,-87,-90},
{ 89, 75, 50, 18,-18,-50,-75,-89,-89,-75,-50,-18, 18, 50, 75, 89},
{ 87, 57, 9,-43,-80,-90,-70,-25, 25, 70, 90, 80, 43, -9,-57,-87},
{ 83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,-83,-83,-36, 36, 83},
{ 80, 9,-70,-87,-25, 57, 90, 43,-43,-90,-57, 25, 87, 70, -9,-80},
{ 75,-18,-89,-50, 50, 89, 18,-75,-75, 18, 89, 50,-50,-89,-18, 75},
{ 70,-43,-87, 9, 90, 25,-80,-57, 57, 80,-25,-90, -9, 87, 43,-70},
{ 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64},
{ 57,-80,-25, 90, -9,-87, 43, 70,-70,-43, 87, 9,-90, 25, 80,-57},
{ 50,-89, 18, 75,-75,-18, 89,-50,-50, 89,-18,-75, 75, 18,-89, 50},
{ 43,-90, 57, 25,-87, 70, 9,-80, 80, -9,-70, 87,-25,-57, 90,-43},
{ 36,-83, 83,-36,-36, 83,-83, 36, 36,-83, 83,-36,-36, 83,-83, 36},
{ 25,-70, 90,-80, 43, 9,-57, 87,-87, 57, -9,-43, 80,-90, 70,-25},
{ 18,-50, 75,-89, 89,-75, 50,-18,-18, 50,-75, 89,-89, 75,-50, 18},
{ 9,-25, 43,-57, 70,-80, 87,-90, 90,-87, 80,-70, 57,-43, 25, -9}
};
const int16_t g_aiT32[32][32] =
{
{ 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64},
{ 90, 90, 88, 85, 82, 78, 73, 67, 61, 54, 46, 38, 31, 22, 13, 4, -4,-13,-22,-31,-38,-46,-54,-61,-67,-73,-78,-82,-85,-88,-90,-90},
{ 90, 87, 80, 70, 57, 43, 25, 9, -9,-25,-43,-57,-70,-80,-87,-90,-90,-87,-80,-70,-57,-43,-25, -9, 9, 25, 43, 57, 70, 80, 87, 90},
{ 90, 82, 67, 46, 22, -4,-31,-54,-73,-85,-90,-88,-78,-61,-38,-13, 13, 38, 61, 78, 88, 90, 85, 73, 54, 31, 4,-22,-46,-67,-82,-90},
{ 89, 75, 50, 18,-18,-50,-75,-89,-89,-75,-50,-18, 18, 50, 75, 89, 89, 75, 50, 18,-18,-50,-75,-89,-89,-75,-50,-18, 18, 50, 75, 89},
{ 88, 67, 31,-13,-54,-82,-90,-78,-46, -4, 38, 73, 90, 85, 61, 22,-22,-61,-85,-90,-73,-38, 4, 46, 78, 90, 82, 54, 13,-31,-67,-88},
{ 87, 57, 9,-43,-80,-90,-70,-25, 25, 70, 90, 80, 43, -9,-57,-87,-87,-57, -9, 43, 80, 90, 70, 25,-25,-70,-90,-80,-43, 9, 57, 87},
{ 85, 46,-13,-67,-90,-73,-22, 38, 82, 88, 54, -4,-61,-90,-78,-31, 31, 78, 90, 61, 4,-54,-88,-82,-38, 22, 73, 90, 67, 13,-46,-85},
{ 83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,-83,-83,-36, 36, 83},
{ 82, 22,-54,-90,-61, 13, 78, 85, 31,-46,-90,-67, 4, 73, 88, 38,-38,-88,-73, -4, 67, 90, 46,-31,-85,-78,-13, 61, 90, 54,-22,-82},
{ 80, 9,-70,-87,-25, 57, 90, 43,-43,-90,-57, 25, 87, 70, -9,-80,-80, -9, 70, 87, 25,-57,-90,-43, 43, 90, 57,-25,-87,-70, 9, 80},
{ 78, -4,-82,-73, 13, 85, 67,-22,-88,-61, 31, 90, 54,-38,-90,-46, 46, 90, 38,-54,-90,-31, 61, 88, 22,-67,-85,-13, 73, 82, 4,-78},
{ 75,-18,-89,-50, 50, 89, 18,-75,-75, 18, 89, 50,-50,-89,-18, 75, 75,-18,-89,-50, 50, 89, 18,-75,-75, 18, 89, 50,-50,-89,-18, 75},
{ 73,-31,-90,-22, 78, 67,-38,-90,-13, 82, 61,-46,-88, -4, 85, 54,-54,-85, 4, 88, 46,-61,-82, 13, 90, 38,-67,-78, 22, 90, 31,-73},
{ 70,-43,-87, 9, 90, 25,-80,-57, 57, 80,-25,-90, -9, 87, 43,-70,-70, 43, 87, -9,-90,-25, 80, 57,-57,-80, 25, 90, 9,-87,-43, 70},
{ 67,-54,-78, 38, 85,-22,-90, 4, 90, 13,-88,-31, 82, 46,-73,-61, 61, 73,-46,-82, 31, 88,-13,-90, -4, 90, 22,-85,-38, 78, 54,-67},
{ 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64},
{ 61,-73,-46, 82, 31,-88,-13, 90, -4,-90, 22, 85,-38,-78, 54, 67,-67,-54, 78, 38,-85,-22, 90, 4,-90, 13, 88,-31,-82, 46, 73,-61},
{ 57,-80,-25, 90, -9,-87, 43, 70,-70,-43, 87, 9,-90, 25, 80,-57,-57, 80, 25,-90, 9, 87,-43,-70, 70, 43,-87, -9, 90,-25,-80, 57},
{ 54,-85, -4, 88,-46,-61, 82, 13,-90, 38, 67,-78,-22, 90,-31,-73, 73, 31,-90, 22, 78,-67,-38, 90,-13,-82, 61, 46,-88, 4, 85,-54},
{ 50,-89, 18, 75,-75,-18, 89,-50,-50, 89,-18,-75, 75, 18,-89, 50, 50,-89, 18, 75,-75,-18, 89,-50,-50, 89,-18,-75, 75, 18,-89, 50},
{ 46,-90, 38, 54,-90, 31, 61,-88, 22, 67,-85, 13, 73,-82, 4, 78,-78, -4, 82,-73,-13, 85,-67,-22, 88,-61,-31, 90,-54,-38, 90,-46},
{ 43,-90, 57, 25,-87, 70, 9,-80, 80, -9,-70, 87,-25,-57, 90,-43,-43, 90,-57,-25, 87,-70, -9, 80,-80, 9, 70,-87, 25, 57,-90, 43},
{ 38,-88, 73, -4,-67, 90,-46,-31, 85,-78, 13, 61,-90, 54, 22,-82, 82,-22,-54, 90,-61,-13, 78,-85, 31, 46,-90, 67, 4,-73, 88,-38},
{ 36,-83, 83,-36,-36, 83,-83, 36, 36,-83, 83,-36,-36, 83,-83, 36, 36,-83, 83,-36,-36, 83,-83, 36, 36,-83, 83,-36,-36, 83,-83, 36},
{ 31,-78, 90,-61, 4, 54,-88, 82,-38,-22, 73,-90, 67,-13,-46, 85,-85, 46, 13,-67, 90,-73, 22, 38,-82, 88,-54, -4, 61,-90, 78,-31},
{ 25,-70, 90,-80, 43, 9,-57, 87,-87, 57, -9,-43, 80,-90, 70,-25,-25, 70,-90, 80,-43, -9, 57,-87, 87,-57, 9, 43,-80, 90,-70, 25},
{ 22,-61, 85,-90, 73,-38, -4, 46,-78, 90,-82, 54,-13,-31, 67,-88, 88,-67, 31, 13,-54, 82,-90, 78,-46, 4, 38,-73, 90,-85, 61,-22},
{ 18,-50, 75,-89, 89,-75, 50,-18,-18, 50,-75, 89,-89, 75,-50, 18, 18,-50, 75,-89, 89,-75, 50,-18,-18, 50,-75, 89,-89, 75,-50, 18},
{ 13,-38, 61,-78, 88,-90, 85,-73, 54,-31, 4, 22,-46, 67,-82, 90,-90, 82,-67, 46,-22, -4, 31,-54, 73,-85, 90,-88, 78,-61, 38,-13},
{ 9,-25, 43,-57, 70,-80, 87,-90, 90,-87, 80,-70, 57,-43, 25, -9, -9, 25,-43, 57,-70, 80,-87, 90,-90, 87,-80, 70,-57, 43,-25, 9},
{ 4,-13, 22,-31, 38,-46, 54,-61, 67,-73, 78,-82, 85,-88, 90,-90, 90,-90, 88,-85, 82,-78, 73,-67, 61,-54, 46,-38, 31,-22, 13, -4}
};
const int32_t g_quantTSDefault4x4[16] =
{
16,16,16,16,
16,16,16,16,
16,16,16,16,
16,16,16,16
};
const int32_t g_quantIntraDefault8x8[64] =
{
16,16,16,16,17,18,21,24,
16,16,16,16,17,19,22,25,
16,16,17,18,20,22,25,29,
16,16,18,21,24,27,31,36,
17,17,20,24,30,35,41,47,
18,19,22,27,35,44,54,65,
21,22,25,31,41,54,70,88,
24,25,29,36,47,65,88,115
};
const int32_t g_quantInterDefault8x8[64] =
{
16,16,16,16,17,18,20,24,
16,16,16,17,18,20,24,25,
16,16,17,18,20,24,25,28,
16,17,18,20,24,25,28,33,
17,18,20,24,25,28,33,41,
18,20,24,25,28,33,41,54,
20,24,25,28,33,41,54,71,
24,25,28,33,41,54,71,91
};
const uint8_t g_aucChromaScale[58]=
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,29,30,31,32,
33,33,34,34,35,35,36,36,37,37,38,39,40,41,42,43,44,
45,46,47,48,49,50,51
};
int32_t* g_quant_coeff[4][6][6];
int32_t* g_de_quant_coeff[4][6][6];
const uint8_t g_scalingListNum[4]={6,6,6,2};
const uint16_t g_scalingListSize[4] = {16,64,256,1024};
const uint8_t g_scalingListSizeX[4] = { 4, 8, 16, 32};
const int16_t g_quantScales[6] = { 26214,23302,20560,18396,16384,14564 };
const int16_t g_invQuantScales[6] = { 40,45,51,57,64,72 };
//static int32_t m_scalingListDC[4][6];
void scalinglist_init()
{
uint32_t sizeId,listId,qp;
for(sizeId = 0; sizeId < 4; sizeId++)
{
for(listId = 0; listId < g_scalingListNum[sizeId]; listId++)
{
for(qp = 0; qp < 6; qp++)
{
if(!(sizeId == 3 && listId == 3))
{
g_quant_coeff [sizeId][listId][qp] = (int32_t*)malloc(sizeof(int32_t)*g_scalingListSize[sizeId]);
memset(g_quant_coeff[sizeId][listId][qp],0,sizeof(int32_t)*g_scalingListSize[sizeId]);
g_de_quant_coeff [sizeId][listId][qp] = (int32_t*)malloc(sizeof(int32_t)*g_scalingListSize[sizeId]);
memset(g_de_quant_coeff[sizeId][listId][qp],0,sizeof(int32_t)*g_scalingListSize[sizeId]);
//m_dequantCoef [sizeId][listId][qp][SCALING_LIST_SQT] = new Int [g_scalingListSize[sizeId]];
//m_errScale [sizeId][listId][qp][SCALING_LIST_SQT] = new double [g_scalingListSize[sizeId]];
}
}
}
}
//Alias
for(qp = 0; qp < 6; qp++)
{
g_quant_coeff[3][3][qp] = g_quant_coeff[3][1][qp];
g_de_quant_coeff[3][3][qp] = g_de_quant_coeff[3][1][qp];
}
}
void scalinglist_destroy()
{
uint32_t sizeId,listId,qp;
for(sizeId = 0; sizeId < 4; sizeId++)
{
for(listId = 0; listId < g_scalingListNum[sizeId]; listId++)
{
for(qp = 0; qp < 6; qp++)
{
free(g_quant_coeff[sizeId][listId][qp]);
free(g_de_quant_coeff[sizeId][listId][qp]);
}
}
}
}
void scalinglist_process()
{
uint32_t size,list,qp;
for(size=0;size</*SCALING_LIST_SIZE_NUM*/4;size++)
{
int32_t* list_ptr = (int32_t *)g_quantIntraDefault8x8; /* Default to "8x8" intra */
for(list = 0; list < g_scalingListNum[size]; list++)
{
switch(size)
{
case 0: /* 4x4 */
list_ptr = (int32_t *)g_quantTSDefault4x4;
break;
case 1: /* 8x8 */
case 2: /* 16x16 */
if(list > 2) list_ptr = (int32_t*)g_quantInterDefault8x8;
break;
case 3: /* 32x32 */
if(list > 0) list_ptr = (int32_t*)g_quantInterDefault8x8;
break;
}
for(qp=0;qp</*SCALING_LIST_REM_NUM*/6;qp++)
{
scalinglist_set(list_ptr,list,size,qp);
}
}
}
}
void scalinglist_processEnc( int32_t *coeff, int32_t *quantcoeff, int32_t quantScales, uint32_t height,uint32_t width, uint32_t ratio, int32_t sizuNum, uint32_t dc, uint8_t flat)
{
uint32_t j,i;
int32_t nsqth = (height < width) ? 4: 1; //height ratio for NSQT
int32_t nsqtw = (width < height) ? 4: 1; //width ratio for NSQT
if(flat)
{
for(j=0;j<height*width;j++)
{
*quantcoeff++ = quantScales>>4;
}
}
else
{
for(j=0;j<height;j++)
{
for(i=0;i<width;i++)
{
uint32_t coeffpos = sizuNum * (j * nsqth / ratio) + i * nsqtw /ratio;
quantcoeff[j*width + i] = quantScales / ((coeffpos>63)?1:coeff[coeffpos]);
}
}
if(ratio > 1)
{
quantcoeff[0] = quantScales / dc;
}
}
}
void scalinglist_processDec( int32_t *coeff, int32_t *dequantcoeff, int32_t invQuantScales, uint32_t height,uint32_t width, uint32_t ratio, int32_t sizuNum, uint32_t dc, uint8_t flat)
{
uint32_t j,i;
if(flat)
{
for(j=0;j<height*width;j++)
{
*dequantcoeff++ = invQuantScales<<4;
}
}
else
{
for(j=0;j<height;j++)
{
for(i=0;i<width;i++)
{
dequantcoeff[j*width + i] = invQuantScales * coeff[sizuNum * (j / ratio) + i / ratio];
}
}
if(ratio > 1)
{
dequantcoeff[0] = invQuantScales * dc;
}
}
}
void scalinglist_set(int32_t *coeff, uint32_t listId, uint32_t sizeId, uint32_t qp)
{
uint32_t width = g_scalingListSizeX[sizeId];
uint32_t height = g_scalingListSizeX[sizeId];
uint32_t ratio = g_scalingListSizeX[sizeId]/MIN(8,g_scalingListSizeX[sizeId]);
int32_t *quantcoeff = g_quant_coeff[sizeId][listId][qp];
int32_t *dequantcoeff = g_de_quant_coeff[sizeId][listId][qp];
scalinglist_processEnc(coeff,quantcoeff,g_quantScales[qp]<<4,height,width,ratio,MIN(8,g_scalingListSizeX[sizeId]),/*SCALING_LIST_DC*/16, ENABLE_SCALING_LIST?0:1);
scalinglist_processDec(coeff,dequantcoeff,g_invQuantScales[qp],height,width,ratio,MIN(8,g_scalingListSizeX[sizeId]),/*SCALING_LIST_DC*/16, ENABLE_SCALING_LIST?0:1);
//TODO: support NSQT
//if(sizeId == /*SCALING_LIST_32x32*/3 || sizeId == /*SCALING_LIST_16x16*/2) //for NSQT
//{
// quantcoeff = g_quant_coeff[listId][qp][sizeId-1][/*SCALING_LIST_VER*/1];
// scalinglist_processEnc(coeff,quantcoeff,g_quantScales[qp]<<4,height,width>>2,ratio,MIN(8,g_scalingListSizeX[sizeId]),/*scalingList->getScalingListDC(sizeId,listId)*/0);
// quantcoeff = g_quant_coeff[listId][qp][sizeId-1][/*SCALING_LIST_HOR*/2];
// scalinglist_processEnc(coeff,quantcoeff,g_quantScales[qp]<<4,height>>2,width,ratio,MIN(8,g_scalingListSizeX[sizeId]),/*scalingList->getScalingListDC(sizeId,listId)*/0);
//}
}
void partialButterfly4(short *src,short *dst,int32_t shift, int32_t line)
{
int32_t j;
int32_t E[2],O[2];
int32_t add = 1<<(shift-1);
for (j=0; j<line; j++)
{
/* E and O */
E[0] = src[0] + src[3];
O[0] = src[0] - src[3];
E[1] = src[1] + src[2];
O[1] = src[1] - src[2];
dst[0] = (g_aiT4[0][0]*E[0] + g_aiT4[0][1]*E[1] + add)>>shift;
dst[2*line] = (g_aiT4[2][0]*E[0] + g_aiT4[2][1]*E[1] + add)>>shift;
dst[line] = (g_aiT4[1][0]*O[0] + g_aiT4[1][1]*O[1] + add)>>shift;
dst[3*line] = (g_aiT4[3][0]*O[0] + g_aiT4[3][1]*O[1] + add)>>shift;
src += 4;
dst ++;
}
}
void partialButterflyInverse4(short *src,short *dst,int shift, int line)
{
int j;
int E[2],O[2];
int add = 1<<(shift-1);
for (j=0; j<line; j++)
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
O[0] = g_aiT4[1][0]*src[line] + g_aiT4[3][0]*src[3*line];
O[1] = g_aiT4[1][1]*src[line] + g_aiT4[3][1]*src[3*line];
E[0] = g_aiT4[0][0]*src[0] + g_aiT4[2][0]*src[2*line];
E[1] = g_aiT4[0][1]*src[0] + g_aiT4[2][1]*src[2*line];
/* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */
dst[0] = CLIP( -32768, 32767, (E[0] + O[0] + add)>>shift );
dst[1] = CLIP( -32768, 32767, (E[1] + O[1] + add)>>shift );
dst[2] = CLIP( -32768, 32767, (E[1] - O[1] + add)>>shift );
dst[3] = CLIP( -32768, 32767, (E[0] - O[0] + add)>>shift );
src ++;
dst += 4;
}
}
// Fast DST Algorithm. Full matrix multiplication for DST and Fast DST algorithm
// give identical results
void fastForwardDst(short *block,short *coeff,int32_t shift) // input block, output coeff
{
int32_t i, c[4];
int32_t rnd_factor = 1<<(shift-1);
for (i=0; i<4; i++)
{
// int32_termediate Variables
c[0] = block[4*i+0] + block[4*i+3];
c[1] = block[4*i+1] + block[4*i+3];
c[2] = block[4*i+0] - block[4*i+1];
c[3] = 74* block[4*i+2];
coeff[ i] = ( 29 * c[0] + 55 * c[1] + c[3] + rnd_factor ) >> shift;
coeff[ 4+i] = ( 74 * (block[4*i+0]+ block[4*i+1] - block[4*i+3]) + rnd_factor ) >> shift;
coeff[ 8+i] = ( 29 * c[2] + 55 * c[0] - c[3] + rnd_factor ) >> shift;
coeff[12+i] = ( 55 * c[2] - 29 * c[1] + c[3] + rnd_factor ) >> shift;
}
}
void fastInverseDst(short *tmp,short *block,int shift) // input tmp, output block
{
int i, c[4];
int rnd_factor = 1<<(shift-1);
for (i=0; i<4; i++)
{
// Intermediate Variables
c[0] = tmp[ i] + tmp[ 8+i];
c[1] = tmp[8+i] + tmp[12+i];
c[2] = tmp[ i] - tmp[12+i];
c[3] = 74* tmp[4+i];
block[4*i+0] = CLIP( -32768, 32767, ( 29 * c[0] + 55 * c[1] + c[3] + rnd_factor ) >> shift );
block[4*i+1] = CLIP( -32768, 32767, ( 55 * c[2] - 29 * c[1] + c[3] + rnd_factor ) >> shift );
block[4*i+2] = CLIP( -32768, 32767, ( 74 * (tmp[i] - tmp[8+i] + tmp[12+i]) + rnd_factor ) >> shift );
block[4*i+3] = CLIP( -32768, 32767, ( 55 * c[0] + 29 * c[2] - c[3] + rnd_factor ) >> shift );
}
}
void partialButterfly8(short *src,short *dst,int32_t shift, int32_t line)
{
int32_t j,k;
int32_t E[4],O[4];
int32_t EE[2],EO[2];
int32_t add = 1<<(shift-1);
for (j=0; j<line; j++)
{
/* E and O*/
for (k=0;k<4;k++)
{
E[k] = src[k] + src[7-k];
O[k] = src[k] - src[7-k];
}
/* EE and EO */
EE[0] = E[0] + E[3];
EO[0] = E[0] - E[3];
EE[1] = E[1] + E[2];
EO[1] = E[1] - E[2];
dst[0] = (g_aiT8[0][0]*EE[0] + g_aiT8[0][1]*EE[1] + add)>>shift;
dst[4*line] = (g_aiT8[4][0]*EE[0] + g_aiT8[4][1]*EE[1] + add)>>shift;
dst[2*line] = (g_aiT8[2][0]*EO[0] + g_aiT8[2][1]*EO[1] + add)>>shift;
dst[6*line] = (g_aiT8[6][0]*EO[0] + g_aiT8[6][1]*EO[1] + add)>>shift;
dst[line] = (g_aiT8[1][0]*O[0] + g_aiT8[1][1]*O[1] + g_aiT8[1][2]*O[2] + g_aiT8[1][3]*O[3] + add)>>shift;
dst[3*line] = (g_aiT8[3][0]*O[0] + g_aiT8[3][1]*O[1] + g_aiT8[3][2]*O[2] + g_aiT8[3][3]*O[3] + add)>>shift;
dst[5*line] = (g_aiT8[5][0]*O[0] + g_aiT8[5][1]*O[1] + g_aiT8[5][2]*O[2] + g_aiT8[5][3]*O[3] + add)>>shift;
dst[7*line] = (g_aiT8[7][0]*O[0] + g_aiT8[7][1]*O[1] + g_aiT8[7][2]*O[2] + g_aiT8[7][3]*O[3] + add)>>shift;
src += 8;
dst ++;
}
}
void partialButterflyInverse8(int16_t *src,int16_t *dst,int32_t shift, int32_t line)
{
int32_t j,k;
int32_t E[4],O[4];
int32_t EE[2],EO[2];
int32_t add = 1<<(shift-1);
for (j=0; j<line; j++)
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for (k=0;k<4;k++)
{
O[k] = g_aiT8[ 1][k]*src[line] + g_aiT8[ 3][k]*src[3*line] + g_aiT8[ 5][k]*src[5*line] + g_aiT8[ 7][k]*src[7*line];
}
EO[0] = g_aiT8[2][0]*src[ 2*line ] + g_aiT8[6][0]*src[ 6*line ];
EO[1] = g_aiT8[2][1]*src[ 2*line ] + g_aiT8[6][1]*src[ 6*line ];
EE[0] = g_aiT8[0][0]*src[ 0 ] + g_aiT8[4][0]*src[ 4*line ];
EE[1] = g_aiT8[0][1]*src[ 0 ] + g_aiT8[4][1]*src[ 4*line ];
/* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */
E[0] = EE[0] + EO[0];
E[3] = EE[0] - EO[0];
E[1] = EE[1] + EO[1];
E[2] = EE[1] - EO[1];
for (k=0;k<4;k++)
{
dst[ k ] = MAX( -32768, MIN(32767, (E[k] + O[k] + add)>>shift ));
dst[ k+4 ] = MAX( -32768, MIN(32767, (E[3-k] - O[3-k] + add)>>shift ));
}
src ++;
dst += 8;
}
}
void partialButterfly16(short *src,short *dst,int32_t shift, int32_t line)
{
int32_t j,k;
int32_t E[8],O[8];
int32_t EE[4],EO[4];
int32_t EEE[2],EEO[2];
int32_t add = 1<<(shift-1);
for (j=0; j<line; j++)
{
/* E and O*/
for (k=0;k<8;k++)
{
E[k] = src[k] + src[15-k];
O[k] = src[k] - src[15-k];
}
/* EE and EO */
for (k=0;k<4;k++)
{
EE[k] = E[k] + E[7-k];
EO[k] = E[k] - E[7-k];
}
/* EEE and EEO */
EEE[0] = EE[0] + EE[3];
EEO[0] = EE[0] - EE[3];
EEE[1] = EE[1] + EE[2];
EEO[1] = EE[1] - EE[2];
dst[ 0 ] = (g_aiT16[ 0][0]*EEE[0] + g_aiT16[ 0][1]*EEE[1] + add)>>shift;
dst[ 8*line ] = (g_aiT16[ 8][0]*EEE[0] + g_aiT16[ 8][1]*EEE[1] + add)>>shift;
dst[ 4*line ] = (g_aiT16[ 4][0]*EEO[0] + g_aiT16[ 4][1]*EEO[1] + add)>>shift;
dst[ 12*line] = (g_aiT16[12][0]*EEO[0] + g_aiT16[12][1]*EEO[1] + add)>>shift;
for (k=2;k<16;k+=4)
{
dst[ k*line ] = (g_aiT16[k][0]*EO[0] + g_aiT16[k][1]*EO[1] + g_aiT16[k][2]*EO[2] + g_aiT16[k][3]*EO[3] + add)>>shift;
}
for (k=1;k<16;k+=2)
{
dst[ k*line ] = (g_aiT16[k][0]*O[0] + g_aiT16[k][1]*O[1] + g_aiT16[k][2]*O[2] + g_aiT16[k][3]*O[3] +
g_aiT16[k][4]*O[4] + g_aiT16[k][5]*O[5] + g_aiT16[k][6]*O[6] + g_aiT16[k][7]*O[7] + add)>>shift;
}
src += 16;
dst ++;
}
}
void partialButterflyInverse16(int16_t *src,int16_t *dst,int32_t shift, int32_t line)
{
int32_t j,k;
int32_t E[8],O[8];
int32_t EE[4],EO[4];
int32_t EEE[2],EEO[2];
int32_t add = 1<<(shift-1);
for (j=0; j<line; j++)
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for (k=0;k<8;k++)
{
O[k] = g_aiT16[ 1][k]*src[ line] + g_aiT16[ 3][k]*src[ 3*line] + g_aiT16[ 5][k]*src[ 5*line] + g_aiT16[ 7][k]*src[ 7*line] +
g_aiT16[ 9][k]*src[ 9*line] + g_aiT16[11][k]*src[11*line] + g_aiT16[13][k]*src[13*line] + g_aiT16[15][k]*src[15*line];
}
for (k=0;k<4;k++)
{
EO[k] = g_aiT16[ 2][k]*src[ 2*line] + g_aiT16[ 6][k]*src[ 6*line] + g_aiT16[10][k]*src[10*line] + g_aiT16[14][k]*src[14*line];
}
EEO[0] = g_aiT16[4][0]*src[ 4*line ] + g_aiT16[12][0]*src[ 12*line ];
EEE[0] = g_aiT16[0][0]*src[ 0 ] + g_aiT16[ 8][0]*src[ 8*line ];
EEO[1] = g_aiT16[4][1]*src[ 4*line ] + g_aiT16[12][1]*src[ 12*line ];
EEE[1] = g_aiT16[0][1]*src[ 0 ] + g_aiT16[ 8][1]*src[ 8*line ];
/* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */
for (k=0;k<2;k++)
{
EE[k] = EEE[k] + EEO[k];
EE[k+2] = EEE[1-k] - EEO[1-k];
}
for (k=0;k<4;k++)
{
E[k] = EE[k] + EO[k];
E[k+4] = EE[3-k] - EO[3-k];
}
for (k=0;k<8;k++)
{
dst[k] = MAX( -32768, MIN(32767, (E[k] + O[k] + add)>>shift));
dst[k+8] = MAX( -32768, MIN(32767, (E[7-k] - O[7-k] + add)>>shift));
}
src ++;
dst += 16;
}
}
void partialButterfly32(short *src,short *dst,int32_t shift, int32_t line)
{
int32_t j,k;
int32_t E[16],O[16];
int32_t EE[8],EO[8];
int32_t EEE[4],EEO[4];
int32_t EEEE[2],EEEO[2];
int32_t add = 1<<(shift-1);
for (j=0; j<line; j++)
{
/* E and O*/
for (k=0;k<16;k++)
{
E[k] = src[k] + src[31-k];
O[k] = src[k] - src[31-k];
}
/* EE and EO */
for (k=0;k<8;k++)
{
EE[k] = E[k] + E[15-k];
EO[k] = E[k] - E[15-k];
}
/* EEE and EEO */
for (k=0;k<4;k++)
{
EEE[k] = EE[k] + EE[7-k];
EEO[k] = EE[k] - EE[7-k];
}
/* EEEE and EEEO */
EEEE[0] = EEE[0] + EEE[3];
EEEO[0] = EEE[0] - EEE[3];
EEEE[1] = EEE[1] + EEE[2];
EEEO[1] = EEE[1] - EEE[2];
dst[ 0 ] = (g_aiT32[ 0][0]*EEEE[0] + g_aiT32[ 0][1]*EEEE[1] + add)>>shift;
dst[ 16*line ] = (g_aiT32[16][0]*EEEE[0] + g_aiT32[16][1]*EEEE[1] + add)>>shift;
dst[ 8*line ] = (g_aiT32[ 8][0]*EEEO[0] + g_aiT32[ 8][1]*EEEO[1] + add)>>shift;
dst[ 24*line ] = (g_aiT32[24][0]*EEEO[0] + g_aiT32[24][1]*EEEO[1] + add)>>shift;
for (k=4;k<32;k+=8)
{
dst[ k*line ] = (g_aiT32[k][0]*EEO[0] + g_aiT32[k][1]*EEO[1] + g_aiT32[k][2]*EEO[2] + g_aiT32[k][3]*EEO[3] + add)>>shift;
}
for (k=2;k<32;k+=4)
{
dst[ k*line ] = (g_aiT32[k][0]*EO[0] + g_aiT32[k][1]*EO[1] + g_aiT32[k][2]*EO[2] + g_aiT32[k][3]*EO[3] +
g_aiT32[k][4]*EO[4] + g_aiT32[k][5]*EO[5] + g_aiT32[k][6]*EO[6] + g_aiT32[k][7]*EO[7] + add)>>shift;
}
for (k=1;k<32;k+=2)
{
dst[ k*line ] = (g_aiT32[k][ 0]*O[ 0] + g_aiT32[k][ 1]*O[ 1] + g_aiT32[k][ 2]*O[ 2] + g_aiT32[k][ 3]*O[ 3] +
g_aiT32[k][ 4]*O[ 4] + g_aiT32[k][ 5]*O[ 5] + g_aiT32[k][ 6]*O[ 6] + g_aiT32[k][ 7]*O[ 7] +
g_aiT32[k][ 8]*O[ 8] + g_aiT32[k][ 9]*O[ 9] + g_aiT32[k][10]*O[10] + g_aiT32[k][11]*O[11] +
g_aiT32[k][12]*O[12] + g_aiT32[k][13]*O[13] + g_aiT32[k][14]*O[14] + g_aiT32[k][15]*O[15] + add)>>shift;
}
src += 32;
dst ++;
}
}
void partialButterflyInverse32(int16_t *src,int16_t *dst,int32_t shift, int32_t line)
{
int32_t j,k;
int32_t E[16],O[16];
int32_t EE[8],EO[8];
int32_t EEE[4],EEO[4];
int32_t EEEE[2],EEEO[2];
int32_t add = 1<<(shift-1);
for (j=0; j<line; j++)
{
/* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
for (k=0;k<16;k++)
{
O[k] = g_aiT32[ 1][k]*src[ line ] + g_aiT32[ 3][k]*src[ 3*line ] + g_aiT32[ 5][k]*src[ 5*line ] + g_aiT32[ 7][k]*src[ 7*line ] +
g_aiT32[ 9][k]*src[ 9*line ] + g_aiT32[11][k]*src[ 11*line ] + g_aiT32[13][k]*src[ 13*line ] + g_aiT32[15][k]*src[ 15*line ] +
g_aiT32[17][k]*src[ 17*line ] + g_aiT32[19][k]*src[ 19*line ] + g_aiT32[21][k]*src[ 21*line ] + g_aiT32[23][k]*src[ 23*line ] +
g_aiT32[25][k]*src[ 25*line ] + g_aiT32[27][k]*src[ 27*line ] + g_aiT32[29][k]*src[ 29*line ] + g_aiT32[31][k]*src[ 31*line ];
}
for (k=0;k<8;k++)
{
EO[k] = g_aiT32[ 2][k]*src[ 2*line ] + g_aiT32[ 6][k]*src[ 6*line ] + g_aiT32[10][k]*src[ 10*line ] + g_aiT32[14][k]*src[ 14*line ] +
g_aiT32[18][k]*src[ 18*line ] + g_aiT32[22][k]*src[ 22*line ] + g_aiT32[26][k]*src[ 26*line ] + g_aiT32[30][k]*src[ 30*line ];
}
for (k=0;k<4;k++)
{
EEO[k] = g_aiT32[4][k]*src[ 4*line ] + g_aiT32[12][k]*src[ 12*line ] + g_aiT32[20][k]*src[ 20*line ] + g_aiT32[28][k]*src[ 28*line ];
}
EEEO[0] = g_aiT32[8][0]*src[ 8*line ] + g_aiT32[24][0]*src[ 24*line ];
EEEO[1] = g_aiT32[8][1]*src[ 8*line ] + g_aiT32[24][1]*src[ 24*line ];
EEEE[0] = g_aiT32[0][0]*src[ 0 ] + g_aiT32[16][0]*src[ 16*line ];
EEEE[1] = g_aiT32[0][1]*src[ 0 ] + g_aiT32[16][1]*src[ 16*line ];
/* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */
EEE[0] = EEEE[0] + EEEO[0];
EEE[3] = EEEE[0] - EEEO[0];
EEE[1] = EEEE[1] + EEEO[1];
EEE[2] = EEEE[1] - EEEO[1];
for (k=0;k<4;k++)
{
EE[k] = EEE[k] + EEO[k];
EE[k+4] = EEE[3-k] - EEO[3-k];
}
for (k=0;k<8;k++)
{
E[k] = EE[k] + EO[k];
E[k+8] = EE[7-k] - EO[7-k];
}
for (k=0;k<16;k++)
{
dst[k] = MAX( -32768, MIN(32767, (E[k] + O[k] + add)>>shift ));
dst[k+16] = MAX( -32768, MIN(32767, (E[15-k] - O[15-k] + add)>>shift ));
}
src ++;
dst += 32;
}
}
/** forward transform (2D)
* \param block input residual
* \param coeff transform coefficients
* \param blockSize width of transform
*/
void transform2d(int16_t *block,int16_t *coeff, int8_t blockSize, int32_t uiMode)
{
int32_t shift_1st = g_aucConvertToBit[blockSize] + 1 + g_uiBitIncrement; // log2(iWidth) - 1 + g_uiBitIncrement
int32_t shift_2nd = g_aucConvertToBit[blockSize] + 8; // log2(iHeight) + 6
int16_t tmp[LCU_WIDTH*LCU_WIDTH];
if(blockSize== 4)
{
if (uiMode != 65535)
{
fastForwardDst(block,tmp,shift_1st); // Forward DST BY FAST ALGORITHM, block input, tmp output
fastForwardDst(tmp,coeff,shift_2nd); // Forward DST BY FAST ALGORITHM, tmp input, coeff output
}
else
{
partialButterfly4(block, tmp, shift_1st, blockSize);
partialButterfly4(tmp, coeff, shift_2nd, blockSize);
}
}
else
{
switch(blockSize)
{
case 8:
{
partialButterfly8( block, tmp, shift_1st, blockSize );
partialButterfly8( tmp, coeff, shift_2nd, blockSize );
break;
}
case 16:
{
partialButterfly16( block, tmp, shift_1st, blockSize );
partialButterfly16( tmp, coeff, shift_2nd, blockSize );
break;
}
case 32:
{
partialButterfly32( block, tmp, shift_1st, blockSize );
partialButterfly32( tmp, coeff, shift_2nd, blockSize );
break;
}
}
}
}
/*! \brief NxN inverse transform (2D)
\param coeff input data (transform coefficients)
\param block output data (residual)
\param blockSize input data (width of transform)
\param uiMode
*/
void itransform2d(int16_t *block,int16_t *coeff, int8_t blockSize, int32_t uiMode)
//(Int bitDepth, Short *coeff,Short *block, Int iWidth, Int iHeight, UInt uiMode)
{
int32_t shift_1st = 7;
int32_t shift_2nd = 12 - (g_bitDepth-8);
int16_t tmp[LCU_WIDTH*LCU_WIDTH];
if( blockSize == 4)
{
if (uiMode != 65535)
{
fastInverseDst(coeff,tmp,shift_1st); // Inverse DST by FAST Algorithm, coeff input, tmp output
fastInverseDst(tmp,block,shift_2nd); // Inverse DST by FAST Algorithm, tmp input, coeff output
}
else
{
partialButterflyInverse4(coeff,tmp,shift_1st,blockSize);
partialButterflyInverse4(tmp,block,shift_2nd,blockSize);
}
}
else if( blockSize == 8)
{
partialButterflyInverse8(coeff,tmp,shift_1st,blockSize);
partialButterflyInverse8(tmp,block,shift_2nd,blockSize);
}
else if( blockSize == 16)
{
partialButterflyInverse16(coeff,tmp,shift_1st,blockSize);
partialButterflyInverse16(tmp,block,shift_2nd,blockSize);
}
else if( blockSize == 32)
{
partialButterflyInverse32(coeff,tmp,shift_1st,blockSize);
partialButterflyInverse32(tmp,block,shift_2nd,blockSize);
}
}
#define QUANT_SHIFT 14
void quant(encoder_control* encoder, int16_t* pSrc, int16_t* pDes, int32_t iWidth,
int32_t iHeight, uint32_t *uiAcSum, int8_t eTType, int8_t scanIdx )
{
int16_t* piCoef = pSrc;
int16_t* piQCoef = pDes;
int8_t useRDOQForTransformSkip = 0;
uint32_t log2BlockSize = g_aucConvertToBit[ iWidth ] + 2;
uint32_t* scan = g_auiSigLastScan[ scanIdx ][ log2BlockSize - 1 ];
//uint32_t scanIdx = SCAN_DIAG;
#if ENABLE_SIGN_HIDING == 1
int32_t deltaU[LCU_WIDTH*LCU_WIDTH>>2];
#endif
int32_t iQpBase = encoder->QP;
int32_t qpScaled;
int32_t qpBDOffset = 0;//(eTType == 0)? pcCU->getSlice()->getSPS()->getQpBDOffsetY() : pcCU->getSlice()->getSPS()->getQpBDOffsetC();
if(eTType == 0)
{
qpScaled = iQpBase + qpBDOffset;
}
else
{
qpScaled = CLIP(-qpBDOffset, 57, iQpBase);
if(qpScaled < 0)
{
qpScaled = qpScaled + qpBDOffset;
}
else
{
qpScaled = g_aucChromaScale[ qpScaled ] + qpBDOffset;
}
}
//New block for variable definitions
{
int32_t n;
uint32_t dir = 0;//SCALING_LIST_SQT;
uint32_t uiLog2TrSize = g_aucConvertToBit[ iWidth ] + 2;
int32_t scalingListType = (/*pcCU->isint32_tra(uiAbsPartIdx)*/0 ? 0 : 3) + (int8_t)("\0\3\1\2"[eTType]);
int32_t *piQuantCoeff = g_quant_coeff[uiLog2TrSize-2][scalingListType][/*m_cQP.m_iRem*/qpScaled%6];
uint32_t uiBitDepth = g_bitDepth;
int32_t iTransformShift = /*MAX_TR_DYNAMIC_RANGE*/15 - uiBitDepth - uiLog2TrSize; // Represents scaling through forward transform
int32_t iQBits = QUANT_SHIFT + /*cQpBase.m_iPer +*/qpScaled/6 + iTransformShift;
int32_t iAdd = ((encoder->in.cur_pic->slicetype == SLICE_I) ? 171 : 85) << (iQBits-9);
int32_t qBits8 = iQBits-8;
for(n = 0; n < iWidth*iHeight; n++)
{
int32_t level;
int32_t sign;
//int64_t tmpLevel;
level = piCoef[n];
sign = (level < 0 ? -1: 1);
level = ((int64_t)abs(level) * piQuantCoeff[n] + iAdd ) >> iQBits;
#if ENABLE_SIGN_HIDING == 1
deltaU[n] = (int32_t)( ((int64_t)abs(piCoef[n]) * piQuantCoeff[n] - (level<<iQBits) )>> qBits8 );
*uiAcSum += level;
#endif
level *= sign;
piQCoef[n] = CLIP( -32768, 32767, level);
} // for n
#if ENABLE_SIGN_HIDING == 1
if(*uiAcSum >= 2)
{
#define SCAN_SET_SIZE 16
#define LOG2_SCAN_SET_SIZE 4
int32_t n,lastCG = -1, abssum = 0, subset, subpos;
uint32_t* scan_subpos;
for(subset = (iWidth*iHeight-1)>>LOG2_SCAN_SET_SIZE; subset >= 0; subset--)
{
int32_t firstNZPosInCG=SCAN_SET_SIZE , lastNZPosInCG=-1;
subpos = subset<<LOG2_SCAN_SET_SIZE;
//scan_subpos = &scan[subpos];
abssum = 0;
/* Find last coeff pos */
for(n = SCAN_SET_SIZE-1; n>=0; n--)
{
if(piQCoef[scan[n + subpos]])
{
lastNZPosInCG = n;
break;
}
}
/* First coeff pos */
for(n = 0; n <SCAN_SET_SIZE; n++)
{
if(piQCoef[scan[n + subpos]])
{
firstNZPosInCG = n;
break;
}
}
/* Sum all quant coeffs between first and last */
for(n = firstNZPosInCG; n <= lastNZPosInCG; n++)
{
abssum += piQCoef[scan[n + subpos]];
}
if(lastNZPosInCG>=0 && lastCG==-1)
{
lastCG = 1;
}
if(lastNZPosInCG-firstNZPosInCG >= /*SBH_THRESHOLD*/4)
{
uint32_t signbit = (piQCoef[scan[subpos+firstNZPosInCG]]>0?0:1) ;
if(signbit != (abssum&0x1)) /* compare signbit with sum_parity */
{
int32_t minCostInc = 0x7fffffff, minPos =-1, finalChange=0, curCost=0x7fffffff, curChange=0;
for(n = (lastCG==1?lastNZPosInCG:SCAN_SET_SIZE-1) ; n >= 0; n--)
{
uint32_t blkPos = scan[n+subpos];
if(piQCoef[blkPos] != 0)
{
if(deltaU[blkPos] > 0)
{
curCost = -deltaU[blkPos];
curChange=1;
}
else if(n == firstNZPosInCG && abs(piQCoef[blkPos]) == 1)
{
curCost=0x7fffffff;
}
else
{
curCost = deltaU[blkPos];
curChange =-1;
}
}
else if(n < firstNZPosInCG && ((piCoef[blkPos] >= 0)?0:1) != signbit)
{
curCost = 0x7fffffff;
}
else
{
curCost = -deltaU[blkPos];
curChange = 1;
}
if(curCost < minCostInc)
{
minCostInc = curCost;
finalChange = curChange;
minPos = blkPos;
}
} //CG loop
if(piQCoef[minPos] == 32767 || piQCoef[minPos] == -32768)
{
finalChange = -1;
}
if(piCoef[minPos] >= 0)
{
piQCoef[minPos] += finalChange;
}
else
{
piQCoef[minPos] -= finalChange;
}
} // Hide
}
if(lastCG == 1)
{
lastCG=0;
}
}
#undef SCAN_SET_SIZE
#undef LOG2_SCAN_SET_SIZE
}
#endif
}
}
void dequant(encoder_control* encoder, int16_t* piQCoef, int16_t* piCoef, int32_t iWidth, int32_t iHeight,int8_t eTType)
{
int32_t iShift,iAdd,iCoeffQ;
uint32_t uiLog2TrSize = g_aucConvertToBit[ iWidth ] + 2;
int16_t clipQCoef;
int32_t n;
int32_t iTransformShift = 15 - g_bitDepth - (g_aucConvertToBit[ iWidth ] + 2);
int32_t qpScaled;
int32_t iQpBase = encoder->QP;
int32_t scalingListType = (/*pcCU->isintra(uiAbsPartIdx)*/1 ? 0 : 3) + (int8_t)("\0\3\1\2"[eTType]);
int32_t *piDequantCoef;
if(eTType == 0)
{
qpScaled = iQpBase;
}
else
{
qpScaled = CLIP( 0, 57, iQpBase);
if(qpScaled < 0)
{
qpScaled = qpScaled;
}
else
{
qpScaled = g_aucChromaScale[ qpScaled ];
}
}
iShift = 20 - QUANT_SHIFT - iTransformShift;
#if ENABLE_SCALING_LIST == 1
piDequantCoef = g_de_quant_coeff[uiLog2TrSize-2][scalingListType][qpScaled%6];
iShift += 4;
if(iShift >qpScaled/6)
{
iAdd = 1 << (iShift - qpScaled/6 - 1);
for(n = 0; n < iWidth*iHeight; n++ )
{
clipQCoef = CLIP( -32768, 32767, piQCoef[n] );
iCoeffQ = ((clipQCoef * piDequantCoef[n]) + iAdd ) >> (iShift - qpScaled/6);
piCoef[n] = CLIP(-32768,32767,iCoeffQ);
}
}
else
{
for(n = 0; n < iWidth*iHeight; n++ )
{
clipQCoef = CLIP( -32768, 32767, piQCoef[n] );
iCoeffQ = CLIP( -32768, 32767, clipQCoef * piDequantCoef[n] ); // Clip to avoid possible overflow in following shift left operation
piCoef[n] = CLIP( -32768, 32767, iCoeffQ << ( qpScaled/6 - iShift ) );
}
}
#else
{
int32_t scale = g_invQuantScales[encoder->QP%6] << (encoder->QP/6);
iAdd = 1 << (iShift-1);
for(n = 0; n < iWidth*iHeight; n++)
{
clipQCoef = CLIP( -32768, 32767, piQCoef[n]);
iCoeffQ = ( clipQCoef * scale + iAdd ) >> iShift;
piCoef[n] = CLIP( -32768, 32767, iCoeffQ);
}
}
#endif
}