uvg266/src/encmain.c
2013-11-13 08:46:31 +02:00

246 lines
8.4 KiB
C

/**
* \file
* \brief User interface for the encoder.
*
* \author Marko Viitanen ( fador@iki.fi ),
* Tampere University of Technology,
* Department of Pervasive Computing.
* \author Ari Koivula ( ari@koivu.la ),
* Tampere University of Technology,
* Department of Pervasive Computing.
*
* TODO: Check that these usage instructions are correct.
* \subsection options_subsec All program options:
* - -i <filename>: input
* - -o <filename>: output
* - -w <width>: frame width
* - -h <height>: frame height
* - -n <n>: encode only n frames
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "global.h"
#include "config.h"
#include "encoder.h"
#include "cabac.h"
#include "picture.h"
#include "transform.h"
// Assembly optimization headers
#ifdef X86_64
#include "x64/test64.h"
#else
#include "x86/test.h"
#endif
/**
* \brief Program main function.
* \param argc Argument count from commandline
* \param argv Argument list
* \return Program exit state
*/
int main(int argc, char *argv[])
{
int ecx = 0,edx =0;
/* CPU feature bits */
enum { BIT_SSE3 = 0,BIT_SSSE3 = 9, BIT_SSE41 = 19, BIT_SSE42 = 20, BIT_MMX = 24, BIT_SSE = 25, BIT_SSE2 = 26, BIT_AVX = 28};
uint32_t cur_frame = 0;
config *cfg = NULL; //!< Global configuration
FILE *input = NULL; //!< input file (YUV)
FILE *output = NULL; //!< output file (HEVC NAL stream)
double psnr[3] = { 0.0, 0.0, 0.0 };
uint64_t curpos = 0;
uint64_t lastpos = 0;
#ifdef _DEBUG
FILE *recout = fopen("encrec.yuv","wb"); //!< reconstructed YUV output (only on debug mode)
#endif
encoder_control *encoder = (encoder_control*)malloc(sizeof(encoder_control));
// Handle configuration
cfg = config_alloc();
// If problem with configuration, print banner and shutdown
if (!config_init(cfg) || !config_read(cfg,argc,argv)) {
fprintf(stderr, "/***********************************************/\r\n");
fprintf(stderr, " * HEVC Encoder v. " VERSION_STRING "*\r\n");
fprintf(stderr, " * Tampere University of Technology 2013 *\r\n");
fprintf(stderr, "/***********************************************/\r\n\r\n");
fprintf(stderr, "Usage:\r\n");
fprintf(stderr, "hevc_encoder -i <input> -w <width> -h <height> -o <output>\r\n");
fprintf(stderr, "Optional parameters:\r\n");
fprintf(stderr, " -n <frames> : number of frames to decode\r\n");
fprintf(stderr, " -s <frames> : number of frames to skip from the beginning\r\n");
config_destroy(cfg);
return EXIT_FAILURE;
}
// Dig CPU features with cpuid
#ifdef X86_64
cpuId64(&ecx,&edx);
#else
cpuId32(&ecx,&edx);
#endif
printf("CPU features enabled: ");
// EDX
if (edx & (1<<BIT_MMX)) printf("MMX ");
if (edx & (1<<BIT_SSE)) printf("SSE ");
if (edx & (1<<BIT_SSE2)) printf("SSE2 ");
// ECX
if (ecx & (1<<BIT_SSE3)) printf("SSE3 ");
if (ecx & (1<<BIT_SSSE3)) printf("SSSE3 ");
if (ecx & (1<<BIT_SSE41)) printf("SSE4.1 ");
if (ecx & (1<<BIT_SSE42)) printf("SSE4.2 ");
if (ecx & (1<<BIT_AVX)) printf("AVX ");
printf("\r\n");
printf("Input: %s, output: %s\n", cfg->input, cfg->output);
printf(" Video size: %dx%d\n", cfg->width, cfg->height);
// Open input file and check that it was opened correctly
input = fopen(cfg->input, "rb");
if (input == NULL) {
fprintf(stderr, "Could not open input file, shutting down!\n");
config_destroy(cfg);
return EXIT_FAILURE;
}
// Open output file and check that it was opened correctly
output = fopen(cfg->output, "wb");
if (output == NULL) {
fprintf(stderr, "Could not open output file, shutting down!\n");
config_destroy(cfg);
return EXIT_FAILURE;
}
// Initialization
init_tables();
init_exp_golomb(4096*8); //Allocate and init exp golomb table
scalinglist_init();
init_encoder_control(encoder, (bitstream*)malloc(sizeof(bitstream)));
encoder->ref = picture_list_init(MAX_REF_PIC_COUNT);
// Init bitstream
bitstream_init(encoder->stream);
encoder->stream->buffer_pos = 0;
encoder->stream->output = 0;
// Alloc 2kB*width for bitstream buffer (for one coded frame)
bitstream_alloc(encoder->stream, 1024*2*cfg->width);
// Config pointer to encoder struct
encoder->cfg = cfg;
// Set output file
encoder->output = output;
// Set CABAC output bitstream
cabac.stream = encoder->stream;
// input init (TODO: read from commandline / config)
encoder->bitdepth = 8;
encoder->frame = 0;
encoder->QP = 32;
encoder->in.video_format = FORMAT_420;
// deblocking filter
encoder->deblock_enable = 1;
encoder->beta_offset_div2 = 0;
encoder->tc_offset_div2 = 0;
// SAO
encoder->sao_enable = 1;
init_encoder_input(&encoder->in, input, cfg->width, cfg->height);
// Init coeff data table
encoder->in.cur_pic->coeff_y = MALLOC(coefficient, cfg->width * cfg->height);
encoder->in.cur_pic->coeff_u = MALLOC(coefficient, (cfg->width * cfg->height) >> 2);
encoder->in.cur_pic->coeff_v = MALLOC(coefficient, (cfg->width * cfg->height) >> 2);
// Init predicted data table
encoder->in.cur_pic->pred_y = MALLOC(pixel, cfg->width * cfg->height);
encoder->in.cur_pic->pred_u = MALLOC(pixel, (cfg->width * cfg->height) >> 2);
encoder->in.cur_pic->pred_v = MALLOC(pixel, (cfg->width * cfg->height) >> 2);
// Start coding cycle while data on input and not on the last frame
while(!feof(input) && (!cfg->frames || encoder->frame < cfg->frames)) {
int32_t diff;
double temp_psnr[3];
// Read one frame from the input
read_one_frame(input, encoder);
// The actual coding happens here, after this function we have a coded frame
encode_one_frame(encoder);
#ifdef _DEBUG
// Write reconstructed frame out (for debugging purposes)
fwrite(encoder->in.cur_pic->y_recdata, cfg->width * cfg->height, 1, recout);
fwrite(encoder->in.cur_pic->u_recdata, (cfg->width * cfg->height)>>2, 1, recout);
fwrite(encoder->in.cur_pic->v_recdata, (cfg->width * cfg->height)>>2, 1, recout);
#endif
// Calculate the bytes pushed to output for this frame
fgetpos(output,(fpos_t*)&curpos);
diff = (int32_t)(curpos-lastpos);
lastpos = curpos;
// PSNR calculations
temp_psnr[0] = image_psnr(encoder->in.cur_pic->y_data, encoder->in.cur_pic->y_recdata, cfg->width, cfg->height);
temp_psnr[1] = image_psnr(encoder->in.cur_pic->u_data, encoder->in.cur_pic->u_recdata, cfg->width>>1, cfg->height>>1);
temp_psnr[2] = image_psnr(encoder->in.cur_pic->v_data, encoder->in.cur_pic->v_recdata, cfg->width>>1, cfg->height>>1);
printf("POC %4d (%c-frame) %10d bits PSNR: %2.4f %2.4f %2.4f\n", encoder->frame,
"BPI"[encoder->in.cur_pic->slicetype%3], diff<<3,
temp_psnr[0], temp_psnr[1], temp_psnr[2]);
// Increment total PSNR
psnr[0] += temp_psnr[0];
psnr[1] += temp_psnr[1];
psnr[2] += temp_psnr[2];
// TODO: add more than one reference
// Remove the ref pic (if present)
picture_list_rem(encoder->ref, 0, 1);
// Add current picture as reference
picture_list_add(encoder->ref, encoder->in.cur_pic);
// Allocate new memory to current picture
// TODO: reuse memory from old reference
encoder->in.cur_pic = picture_init(encoder->in.width, encoder->in.height, encoder->in.width_in_lcu, encoder->in.height_in_lcu);
// Copy pointer from the last cur_pic because we don't want to reallocate it
MOVE_POINTER(encoder->in.cur_pic->coeff_y,encoder->ref->pics[0]->coeff_y);
MOVE_POINTER(encoder->in.cur_pic->coeff_u,encoder->ref->pics[0]->coeff_u);
MOVE_POINTER(encoder->in.cur_pic->coeff_v,encoder->ref->pics[0]->coeff_v);
MOVE_POINTER(encoder->in.cur_pic->pred_y,encoder->ref->pics[0]->pred_y);
MOVE_POINTER(encoder->in.cur_pic->pred_u,encoder->ref->pics[0]->pred_u);
MOVE_POINTER(encoder->in.cur_pic->pred_v,encoder->ref->pics[0]->pred_v);
encoder->frame++;
}
// Coding finished
fgetpos(output,(fpos_t*)&curpos);
// Print statistics of the coding
printf(" Processed %d frames, %10d bits AVG PSNR: %2.4f %2.4f %2.4f\n", encoder->frame, ((int32_t)curpos)<<3,
psnr[0] / encoder->frame, psnr[1] / encoder->frame, psnr[2] / encoder->frame);
fclose(input);
fclose(output);
#ifdef _DEBUG
fclose(recout);
#endif
// Deallocating
config_destroy(cfg);
scalinglist_destroy();
picture_list_destroy(encoder->ref);
return EXIT_SUCCESS;
}