uvg266/src/encoderstate.c

1754 lines
65 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "encoderstate.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cabac.h"
#include "context.h"
#include "encode_coding_tree.h"
#include "encoder_state-bitstream.h"
#include "filter.h"
#include "image.h"
#include "rate_control.h"
#include "sao.h"
#include "search.h"
#include "tables.h"
#include "threadqueue.h"
#include "alf.h"
#include "strategies/strategies-picture.h"
int kvz_encoder_state_match_children_of_previous_frame(encoder_state_t * const state) {
int i;
for (i = 0; state->children[i].encoder_control; ++i) {
//Child should also exist for previous encoder
assert(state->previous_encoder_state->children[i].encoder_control);
state->children[i].previous_encoder_state = &state->previous_encoder_state->children[i];
kvz_encoder_state_match_children_of_previous_frame(&state->children[i]);
}
return 1;
}
/**
* \brief Save edge pixels before SAO to buffers.
*
* Copies pixels at the edges of the area that will be filtered with SAO to
* the given buffers. If deblocking is enabled, the pixels must have been
* deblocked before this.
*
* The saved pixels will be needed later when doing SAO for the neighboring
* areas.
*/
static void encoder_state_recdata_before_sao_to_bufs(
encoder_state_t * const state,
const lcu_order_element_t * const lcu,
yuv_t * const hor_buf,
yuv_t * const ver_buf)
{
videoframe_t* const frame = state->tile->frame;
if (hor_buf && lcu->below) {
// Copy the bottommost row that will be filtered with SAO to the
// horizontal buffer.
vector2d_t pos = {
.x = lcu->position_px.x,
.y = lcu->position_px.y + LCU_WIDTH - SAO_DELAY_PX - 1,
};
// Copy all pixels that have been deblocked.
int length = lcu->size.x - DEBLOCK_DELAY_PX;
if (!lcu->right) {
// If there is no LCU to the right, the last pixels will be
// filtered too.
length += DEBLOCK_DELAY_PX;
}
if (lcu->left) {
// The rightmost pixels of the CTU to the left will also be filtered.
pos.x -= DEBLOCK_DELAY_PX;
length += DEBLOCK_DELAY_PX;
}
const unsigned from_index = pos.x + pos.y * frame->rec->stride;
// NOTE: The horizontal buffer is indexed by
// x_px + y_lcu * frame->width
// where x_px is in pixels and y_lcu in number of LCUs.
const unsigned to_index = pos.x + lcu->position.y * frame->width;
kvz_pixels_blit(&frame->rec->y[from_index],
&hor_buf->y[to_index],
length, 1,
frame->rec->stride,
frame->width);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
const unsigned from_index_c = (pos.x / 2) + (pos.y / 2) * frame->rec->stride / 2;
const unsigned to_index_c = (pos.x / 2) + lcu->position.y * frame->width / 2;
kvz_pixels_blit(&frame->rec->u[from_index_c],
&hor_buf->u[to_index_c],
length / 2, 1,
frame->rec->stride / 2,
frame->width / 2);
kvz_pixels_blit(&frame->rec->v[from_index_c],
&hor_buf->v[to_index_c],
length / 2, 1,
frame->rec->stride / 2,
frame->width / 2);
}
}
if (ver_buf && lcu->right) {
// Copy the rightmost column that will be filtered with SAO to the
// vertical buffer.
vector2d_t pos = {
.x = lcu->position_px.x + LCU_WIDTH - SAO_DELAY_PX - 1,
.y = lcu->position_px.y,
};
int length = lcu->size.y - DEBLOCK_DELAY_PX;
if (!lcu->below) {
// If there is no LCU below, the last pixels will be filtered too.
length += DEBLOCK_DELAY_PX;
}
if (lcu->above) {
// The bottommost pixels of the CTU above will also be filtered.
pos.y -= DEBLOCK_DELAY_PX;
length += DEBLOCK_DELAY_PX;
}
const unsigned from_index = pos.x + pos.y * frame->rec->stride;
// NOTE: The vertical buffer is indexed by
// x_lcu * frame->height + y_px
// where x_lcu is in number of LCUs and y_px in pixels.
const unsigned to_index = lcu->position.x * frame->height + pos.y;
kvz_pixels_blit(&frame->rec->y[from_index],
&ver_buf->y[to_index],
1, length,
frame->rec->stride, 1);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
const unsigned from_index_c = (pos.x / 2) + (pos.y / 2) * frame->rec->stride / 2;
const unsigned to_index_c = lcu->position.x * frame->height / 2 + pos.y / 2;
kvz_pixels_blit(&frame->rec->u[from_index_c],
&ver_buf->u[to_index_c],
1, length / 2,
frame->rec->stride / 2, 1);
kvz_pixels_blit(&frame->rec->v[from_index_c],
&ver_buf->v[to_index_c],
1, length / 2,
frame->rec->stride / 2, 1);
}
}
}
static void encoder_state_recdata_to_bufs(encoder_state_t * const state,
const lcu_order_element_t * const lcu,
yuv_t * const hor_buf,
yuv_t * const ver_buf)
{
videoframe_t* const frame = state->tile->frame;
if (hor_buf) {
//Copy the bottom row of this LCU to the horizontal buffer
vector2d_t bottom = { lcu->position_px.x, lcu->position_px.y + lcu->size.y - 1 };
const int lcu_row = lcu->position.y;
unsigned from_index = bottom.y * frame->rec->stride + bottom.x;
unsigned to_index = lcu->position_px.x + lcu_row * frame->width;
kvz_pixels_blit(&frame->rec->y[from_index],
&hor_buf->y[to_index],
lcu->size.x, 1,
frame->rec->stride, frame->width);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
unsigned from_index_c = (bottom.y / 2) * frame->rec->stride / 2 + (bottom.x / 2);
unsigned to_index_c = lcu->position_px.x / 2 + lcu_row * frame->width / 2;
kvz_pixels_blit(&frame->rec->u[from_index_c],
&hor_buf->u[to_index_c],
lcu->size.x / 2, 1,
frame->rec->stride / 2, frame->width / 2);
kvz_pixels_blit(&frame->rec->v[from_index_c],
&hor_buf->v[to_index_c],
lcu->size.x / 2, 1,
frame->rec->stride / 2, frame->width / 2);
}
}
if (ver_buf) {
//Copy the right row of this LCU to the vertical buffer.
const int lcu_col = lcu->position.x;
vector2d_t left = { lcu->position_px.x + lcu->size.x - 1, lcu->position_px.y };
kvz_pixels_blit(&frame->rec->y[left.y * frame->rec->stride + left.x],
&ver_buf->y[lcu->position_px.y + lcu_col * frame->height],
1, lcu->size.y,
frame->rec->stride, 1);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
unsigned from_index = (left.y / 2) * frame->rec->stride / 2 + (left.x / 2);
unsigned to_index = lcu->position_px.y / 2 + lcu_col * frame->height / 2;
kvz_pixels_blit(&frame->rec->u[from_index],
&ver_buf->u[to_index],
1, lcu->size.y / 2,
frame->rec->stride / 2, 1);
kvz_pixels_blit(&frame->rec->v[from_index],
&ver_buf->v[to_index],
1, lcu->size.y / 2,
frame->rec->stride / 2, 1);
}
}
}
/**
* \brief Do SAO reconstuction for all available pixels.
*
* Does SAO reconstruction for all pixels that are available after the
* given LCU has been deblocked. This means the following pixels:
* - bottom-right block of SAO_DELAY_PX times SAO_DELAY_PX in the lcu to
* the left and up
* - the rightmost SAO_DELAY_PX pixels of the LCU to the left (excluding
* the bottommost pixel)
* - the bottommost SAO_DELAY_PX pixels of the LCU above (excluding the
* rightmost pixels)
* - all pixels inside the LCU, excluding the rightmost SAO_DELAY_PX and
* bottommost SAO_DELAY_PX
*/
static void encoder_sao_reconstruct(const encoder_state_t *const state,
const lcu_order_element_t *const lcu)
{
videoframe_t *const frame = state->tile->frame;
// Temporary buffers for SAO input pixels. The buffers cover the pixels
// inside the LCU (LCU_WIDTH x LCU_WIDTH), SAO_DELAY_PX wide bands to the
// left and above the LCU, and one pixel border on the left and top
// sides. We add two extra pixels to the buffers because the AVX2 SAO
// reconstruction reads up to two extra bytes when using edge SAO in the
// horizontal direction.
#define SAO_BUF_WIDTH (1 + SAO_DELAY_PX + LCU_WIDTH)
#define SAO_BUF_WIDTH_C (1 + SAO_DELAY_PX/2 + LCU_WIDTH_C)
kvz_pixel sao_buf_y_array[SAO_BUF_WIDTH * SAO_BUF_WIDTH + 2];
kvz_pixel sao_buf_u_array[SAO_BUF_WIDTH_C * SAO_BUF_WIDTH_C + 2];
kvz_pixel sao_buf_v_array[SAO_BUF_WIDTH_C * SAO_BUF_WIDTH_C + 2];
// Pointers to the top-left pixel of the LCU in the buffers.
kvz_pixel *const sao_buf_y = &sao_buf_y_array[(SAO_DELAY_PX + 1) * (SAO_BUF_WIDTH + 1)];
kvz_pixel *const sao_buf_u = &sao_buf_u_array[(SAO_DELAY_PX/2 + 1) * (SAO_BUF_WIDTH_C + 1)];
kvz_pixel *const sao_buf_v = &sao_buf_v_array[(SAO_DELAY_PX/2 + 1) * (SAO_BUF_WIDTH_C + 1)];
const int x_offsets[3] = {
// If there is an lcu to the left, we need to filter its rightmost
// pixels.
lcu->left ? -SAO_DELAY_PX : 0,
0,
// If there is an lcu to the right, the rightmost pixels of this LCU
// are filtered when filtering that LCU. Otherwise we filter them now.
lcu->size.x - (lcu->right ? SAO_DELAY_PX : 0),
};
const int y_offsets[3] = {
// If there is an lcu above, we need to filter its bottommost pixels.
lcu->above ? -SAO_DELAY_PX : 0,
0,
// If there is an lcu below, the bottommost pixels of this LCU are
// filtered when filtering that LCU. Otherwise we filter them now.
lcu->size.y - (lcu->below ? SAO_DELAY_PX : 0),
};
// Number of pixels around the block that need to be copied to the
// buffers.
const int border_left = lcu->left ? 1 : 0;
const int border_right = lcu->right ? 1 : 0;
const int border_above = lcu->above ? 1 : 0;
const int border_below = lcu->below ? 1 : 0;
// Index of the pixel at the intersection of the top and left borders.
const int border_index = (x_offsets[0] - border_left) +
(y_offsets[0] - border_above) * SAO_BUF_WIDTH;
const int border_index_c = (x_offsets[0]/2 - border_left) +
(y_offsets[0]/2 - border_above) * SAO_BUF_WIDTH_C;
// Width and height of the whole area to filter.
const int width = x_offsets[2] - x_offsets[0];
const int height = y_offsets[2] - y_offsets[0];
// Copy bordering pixels from above and left to buffers.
if (lcu->above) {
const int from_index = (lcu->position_px.x + x_offsets[0] - border_left) +
(lcu->position.y - 1) * frame->width;
kvz_pixels_blit(&state->tile->hor_buf_before_sao->y[from_index],
&sao_buf_y[border_index],
width + border_left + border_right,
1,
frame->width,
SAO_BUF_WIDTH);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
const int from_index_c = (lcu->position_px.x + x_offsets[0])/2 - border_left +
(lcu->position.y - 1) * frame->width/2;
kvz_pixels_blit(&state->tile->hor_buf_before_sao->u[from_index_c],
&sao_buf_u[border_index_c],
width/2 + border_left + border_right,
1,
frame->width/2,
SAO_BUF_WIDTH_C);
kvz_pixels_blit(&state->tile->hor_buf_before_sao->v[from_index_c],
&sao_buf_v[border_index_c],
width/2 + border_left + border_right,
1,
frame->width/2,
SAO_BUF_WIDTH_C);
}
}
if (lcu->left) {
const int from_index = (lcu->position.x - 1) * frame->height +
(lcu->position_px.y + y_offsets[0] - border_above);
kvz_pixels_blit(&state->tile->ver_buf_before_sao->y[from_index],
&sao_buf_y[border_index],
1,
height + border_above + border_below,
1,
SAO_BUF_WIDTH);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
const int from_index_c = (lcu->position.x - 1) * frame->height/2 +
(lcu->position_px.y + y_offsets[0])/2 - border_above;
kvz_pixels_blit(&state->tile->ver_buf_before_sao->u[from_index_c],
&sao_buf_u[border_index_c],
1,
height/2 + border_above + border_below,
1,
SAO_BUF_WIDTH_C);
kvz_pixels_blit(&state->tile->ver_buf_before_sao->v[from_index_c],
&sao_buf_v[border_index_c],
1,
height/2 + border_above + border_below,
1,
SAO_BUF_WIDTH_C);
}
}
// Copy pixels that will be filtered and bordering pixels from right and
// below.
const int from_index = (lcu->position_px.x + x_offsets[0]) +
(lcu->position_px.y + y_offsets[0]) * frame->rec->stride;
const int to_index = x_offsets[0] + y_offsets[0] * SAO_BUF_WIDTH;
kvz_pixels_blit(&frame->rec->y[from_index],
&sao_buf_y[to_index],
width + border_right,
height + border_below,
frame->rec->stride,
SAO_BUF_WIDTH);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
const int from_index_c = (lcu->position_px.x + x_offsets[0])/2 +
(lcu->position_px.y + y_offsets[0])/2 * frame->rec->stride/2;
const int to_index_c = x_offsets[0]/2 + y_offsets[0]/2 * SAO_BUF_WIDTH_C;
kvz_pixels_blit(&frame->rec->u[from_index_c],
&sao_buf_u[to_index_c],
width/2 + border_right,
height/2 + border_below,
frame->rec->stride/2,
SAO_BUF_WIDTH_C);
kvz_pixels_blit(&frame->rec->v[from_index_c],
&sao_buf_v[to_index_c],
width/2 + border_right,
height/2 + border_below,
frame->rec->stride/2,
SAO_BUF_WIDTH_C);
}
// We filter the pixels in four parts:
// 1. Pixels that belong to the LCU above and to the left
// 2. Pixels that belong to the LCU above
// 3. Pixels that belong to the LCU to the left
// 4. Pixels that belong to the current LCU
for (int y_offset_index = 0; y_offset_index < 2; y_offset_index++) {
for (int x_offset_index = 0; x_offset_index < 2; x_offset_index++) {
const int x = x_offsets[x_offset_index];
const int y = y_offsets[y_offset_index];
const int width = x_offsets[x_offset_index + 1] - x;
const int height = y_offsets[y_offset_index + 1] - y;
if (width == 0 || height == 0) continue;
const int lcu_x = (lcu->position_px.x + x) >> LOG2_LCU_WIDTH;
const int lcu_y = (lcu->position_px.y + y) >> LOG2_LCU_WIDTH;
const int lcu_index = lcu_x + lcu_y * frame->width_in_lcu;
const sao_info_t *sao_luma = &frame->sao_luma[lcu_index];
const sao_info_t *sao_chroma = &frame->sao_chroma[lcu_index];
kvz_sao_reconstruct(state,
&sao_buf_y[x + y * SAO_BUF_WIDTH],
SAO_BUF_WIDTH,
lcu->position_px.x + x,
lcu->position_px.y + y,
width,
height,
sao_luma,
COLOR_Y);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
// Coordinates in chroma pixels.
int x_c = x >> 1;
int y_c = y >> 1;
kvz_sao_reconstruct(state,
&sao_buf_u[x_c + y_c * SAO_BUF_WIDTH_C],
SAO_BUF_WIDTH_C,
lcu->position_px.x / 2 + x_c,
lcu->position_px.y / 2 + y_c,
width / 2,
height / 2,
sao_chroma,
COLOR_U);
kvz_sao_reconstruct(state,
&sao_buf_v[x_c + y_c * SAO_BUF_WIDTH_C],
SAO_BUF_WIDTH_C,
lcu->position_px.x / 2 + x_c,
lcu->position_px.y / 2 + y_c,
width / 2,
height / 2,
sao_chroma,
COLOR_V);
}
}
}
}
static void encode_sao_color(encoder_state_t * const state, sao_info_t *sao,
color_t color_i)
{
cabac_data_t * const cabac = &state->cabac;
sao_eo_cat i;
int offset_index = (color_i == COLOR_V) ? 5 : 0;
// Skip colors with no SAO.
//FIXME: for now, we always have SAO for all channels
if (color_i == COLOR_Y && 0) return;
if (color_i != COLOR_Y && 0) return;
/// sao_type_idx_luma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass}
/// sao_type_idx_chroma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass}
// Encode sao_type_idx for Y and U+V.
if (color_i != COLOR_V) {
cabac->cur_ctx = &(cabac->ctx.sao_type_idx_model);
CABAC_BIN(cabac, sao->type != SAO_TYPE_NONE, "sao_type_idx");
if (sao->type == SAO_TYPE_BAND) {
CABAC_BIN_EP(cabac, 0, "sao_type_idx_ep");
} else if (sao->type == SAO_TYPE_EDGE) {
CABAC_BIN_EP(cabac, 1, "sao_type_idx_ep");
}
}
if (sao->type == SAO_TYPE_NONE) return;
/// sao_offset_abs[][][][]: TR, cMax = (1 << (Min(bitDepth, 10) - 5)) - 1,
/// cRiceParam = 0, bins = {bypass x N}
for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) {
kvz_cabac_write_unary_max_symbol_ep(cabac, abs(sao->offsets[i + offset_index]), SAO_ABS_OFFSET_MAX);
}
/// sao_offset_sign[][][][]: FL, cMax = 1, bins = {bypass}
/// sao_band_position[][][]: FL, cMax = 31, bins = {bypass x N}
/// sao_eo_class_luma: FL, cMax = 3, bins = {bypass x 3}
/// sao_eo_class_chroma: FL, cMax = 3, bins = {bypass x 3}
if (sao->type == SAO_TYPE_BAND) {
for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) {
// Positive sign is coded as 0.
if (sao->offsets[i + offset_index] != 0) {
CABAC_BIN_EP(cabac, sao->offsets[i + offset_index] < 0 ? 1 : 0, "sao_offset_sign");
}
}
// TODO: sao_band_position
// FL cMax=31 (5 bits)
CABAC_BINS_EP(cabac, sao->band_position[color_i == COLOR_V ? 1:0], 5, "sao_band_position");
} else if (color_i != COLOR_V) {
CABAC_BINS_EP(cabac, sao->eo_class, 2, "sao_eo_class");
}
}
static void encode_sao_merge_flags(encoder_state_t * const state, sao_info_t *sao, unsigned x_ctb, unsigned y_ctb)
{
cabac_data_t * const cabac = &state->cabac;
// SAO merge flags are not present for the first row and column.
if (x_ctb > 0) {
cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model);
CABAC_BIN(cabac, sao->merge_left_flag, "sao_merge_left_flag");
}
if (y_ctb > 0 && !sao->merge_left_flag) {
cabac->cur_ctx = &(cabac->ctx.sao_merge_flag_model);
CABAC_BIN(cabac, sao->merge_up_flag, "sao_merge_up_flag");
}
}
/**
* \brief Encode SAO information.
*/
static void encode_sao(encoder_state_t * const state,
unsigned x_lcu, uint16_t y_lcu,
sao_info_t *sao_luma, sao_info_t *sao_chroma)
{
// TODO: transmit merge flags outside sao_info
encode_sao_merge_flags(state, sao_luma, x_lcu, y_lcu);
// If SAO is merged, nothing else needs to be coded.
if (!sao_luma->merge_left_flag && !sao_luma->merge_up_flag) {
encode_sao_color(state, sao_luma, COLOR_Y);
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
encode_sao_color(state, sao_chroma, COLOR_U);
encode_sao_color(state, sao_chroma, COLOR_V);
}
}
}
/**
* \brief Sets the QP for each CU in state->tile->frame->cu_array.
*
* The QPs are used in deblocking and QP prediction.
*
* The QP delta for a quantization group is coded when the first CU with
* coded block flag set is encountered. Hence, for the purposes of
* deblocking and QP prediction, all CUs in before the first one that has
* cbf set use the QP predictor and all CUs after that use (QP predictor
* + QP delta).
*
* \param state encoder state
* \param x x-coordinate of the left edge of the root CU
* \param y y-coordinate of the top edge of the root CU
* \param depth depth in the CU quadtree
* \param last_qp QP of the last CU in the last quantization group
* \param prev_qp -1 if QP delta has not been coded in current QG,
* otherwise the QP of the current QG
*/
static void set_cu_qps(encoder_state_t *state, int x, int y, int depth, int *last_qp, int *prev_qp)
{
// Stop recursion if the CU is completely outside the frame.
if (x >= state->tile->frame->width || y >= state->tile->frame->height) return;
cu_info_t *cu = kvz_cu_array_at(state->tile->frame->cu_array, x, y);
const int cu_width = LCU_WIDTH >> depth;
if (depth <= state->encoder_control->max_qp_delta_depth) {
*prev_qp = -1;
}
if (cu->depth > depth) {
// Recursively process sub-CUs.
const int d = cu_width >> 1;
set_cu_qps(state, x, y, depth + 1, last_qp, prev_qp);
set_cu_qps(state, x + d, y, depth + 1, last_qp, prev_qp);
set_cu_qps(state, x, y + d, depth + 1, last_qp, prev_qp);
set_cu_qps(state, x + d, y + d, depth + 1, last_qp, prev_qp);
} else {
bool cbf_found = *prev_qp >= 0;
if (cu->tr_depth > depth) {
// The CU is split into smaller transform units. Check whether coded
// block flag is set for any of the TUs.
const int tu_width = LCU_WIDTH >> cu->tr_depth;
for (int y_scu = y; !cbf_found && y_scu < y + cu_width; y_scu += tu_width) {
for (int x_scu = x; !cbf_found && x_scu < x + cu_width; x_scu += tu_width) {
cu_info_t *tu = kvz_cu_array_at(state->tile->frame->cu_array, x_scu, y_scu);
if (cbf_is_set_any(tu->cbf, cu->depth)) {
cbf_found = true;
}
}
}
} else if (cbf_is_set_any(cu->cbf, cu->depth)) {
cbf_found = true;
}
int8_t qp;
if (cbf_found) {
*prev_qp = qp = cu->qp;
} else {
qp = kvz_get_cu_ref_qp(state, x, y, *last_qp);
}
// Set the correct QP for all state->tile->frame->cu_array elements in
// the area covered by the CU.
for (int y_scu = y; y_scu < y + cu_width; y_scu += SCU_WIDTH) {
for (int x_scu = x; x_scu < x + cu_width; x_scu += SCU_WIDTH) {
kvz_cu_array_at(state->tile->frame->cu_array, x_scu, y_scu)->qp = qp;
}
}
if (is_last_cu_in_qg(state, x, y, depth)) {
*last_qp = cu->qp;
}
}
}
static void encoder_state_worker_encode_lcu(void * opaque)
{
const lcu_order_element_t * const lcu = opaque;
encoder_state_t *state = lcu->encoder_state;
const encoder_control_t * const encoder = state->encoder_control;
videoframe_t* const frame = state->tile->frame;
encoder_state_config_slice_t *slice = state->slice;
switch (encoder->cfg.rc_algorithm) {
case KVZ_NO_RC:
case KVZ_LAMBDA:
kvz_set_lcu_lambda_and_qp(state, lcu->position);
break;
case KVZ_OBA:
kvz_set_ctu_qp_lambda(state, lcu->position);
break;
default:
assert(0);
}
lcu_coeff_t coeff;
state->coeff = &coeff;
//This part doesn't write to bitstream, it's only search, deblock and sao
kvz_search_lcu(state, lcu->position_px.x, lcu->position_px.y, state->tile->hor_buf_search, state->tile->ver_buf_search);
encoder_state_recdata_to_bufs(state, lcu, state->tile->hor_buf_search, state->tile->ver_buf_search);
if (encoder->max_qp_delta_depth >= 0) {
int last_qp = state->last_qp;
int prev_qp = -1;
set_cu_qps(state, lcu->position_px.x, lcu->position_px.y, 0, &last_qp, &prev_qp);
}
if (encoder->cfg.deblock_enable) {
kvz_filter_deblock_lcu(state, lcu->position_px.x, lcu->position_px.y);
}
if (encoder->cfg.sao_type) {
// Save the post-deblocking but pre-SAO pixels of the LCU to a buffer
// so that they can be used in SAO reconstruction later.
encoder_state_recdata_before_sao_to_bufs(state,
lcu,
state->tile->hor_buf_before_sao,
state->tile->ver_buf_before_sao);
kvz_sao_search_lcu(state, lcu->position.x, lcu->position.y);
encoder_sao_reconstruct(state, lcu);
}
//Now write data to bitstream (required to have a correct CABAC state)
const uint64_t existing_bits = kvz_bitstream_tell(&state->stream);
//Encode SAO
if (encoder->cfg.sao_type) {
encode_sao(state, lcu->position.x, lcu->position.y, &frame->sao_luma[lcu->position.y * frame->width_in_lcu + lcu->position.x], &frame->sao_chroma[lcu->position.y * frame->width_in_lcu + lcu->position.x]);
}
//Encode coding tree
kvz_encode_coding_tree(state, lcu->position.x * LCU_WIDTH, lcu->position.y * LCU_WIDTH, 0);
// Coeffs are not needed anymore.
state->coeff = NULL;
bool end_of_slice_segment_flag;
if (state->encoder_control->cfg.slices & KVZ_SLICES_WPP) {
// Slice segments end after each WPP row.
end_of_slice_segment_flag = lcu->last_column;
} else if (state->encoder_control->cfg.slices & KVZ_SLICES_TILES) {
// Slices end after each tile.
end_of_slice_segment_flag = lcu->last_column && lcu->last_row;
} else {
// Slice ends after the last row of the last tile.
int last_tile_id = -1 + encoder->cfg.tiles_width_count * encoder->cfg.tiles_height_count;
bool is_last_tile = state->tile->id == last_tile_id;
end_of_slice_segment_flag = is_last_tile && lcu->last_column && lcu->last_row;
}
//kvz_cabac_encode_bin_trm(&state->cabac, end_of_slice_segment_flag);
{
const bool end_of_tile = lcu->last_column && lcu->last_row;
const bool end_of_wpp_row = encoder->cfg.wpp && lcu->last_column;
if (end_of_tile || end_of_wpp_row) {
// end_of_sub_stream_one_bit
kvz_cabac_encode_bin_trm(&state->cabac, 1);
// Finish the substream by writing out remaining state.
kvz_cabac_finish(&state->cabac);
// Write a rbsp_trailing_bits or a byte_alignment. The first one is used
// for ending a slice_segment_layer_rbsp and the second one for ending
// a substream. They are identical and align the byte stream.
kvz_bitstream_put(state->cabac.stream, 1, 1);
kvz_bitstream_align_zero(state->cabac.stream);
kvz_cabac_start(&state->cabac);
kvz_crypto_delete(&state->crypto_hdl);
}
}
pthread_mutex_lock(&state->frame->rc_lock);
const uint32_t bits = kvz_bitstream_tell(&state->stream) - existing_bits;
state->frame->cur_frame_bits_coded += bits;
// This variable is used differently by intra and inter frames and shouldn't
// be touched in intra frames here
state->frame->remaining_weight -= !state->frame->is_irap ?
kvz_get_lcu_stats(state, lcu->position.x, lcu->position.y)->original_weight :
0;
pthread_mutex_unlock(&state->frame->rc_lock);
kvz_get_lcu_stats(state, lcu->position.x, lcu->position.y)->bits = bits;
uint8_t not_skip = false;
for(int y = 0; y < 64 && !not_skip; y+=8) {
for(int x = 0; x < 64 && !not_skip; x+=8) {
not_skip |= !kvz_cu_array_at_const(state->tile->frame->cu_array,
lcu->position_px.x + x,
lcu->position_px.y + y)->skipped;
}
}
kvz_get_lcu_stats(state, lcu->position.x, lcu->position.y)->skipped = !not_skip;
//Wavefronts need the context to be copied to the next row
if (state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW && lcu->index == 0) {
int j;
//Find next encoder (next row)
for (j=0; state->parent->children[j].encoder_control; ++j) {
if (state->parent->children[j].wfrow->lcu_offset_y == state->wfrow->lcu_offset_y + 1) {
//And copy context
kvz_context_copy(&state->parent->children[j], state);
}
}
}
}
static void encoder_state_worker_encode_lcu_search(void * opaque)
{
lcu_order_element_t * const lcu = opaque;
encoder_state_t *state = lcu->encoder_state;
const encoder_control_t * const encoder = state->encoder_control;
videoframe_t* const frame = state->tile->frame;
encoder_state_config_slice_t *slice = state->slice;
kvz_set_lcu_lambda_and_qp(state, lcu->position);
lcu->coeff = calloc(1, sizeof(lcu_coeff_t));
state->coeff = lcu->coeff;
//This part doesn't write to bitstream, it's only search, deblock and sao
kvz_search_lcu(state, lcu->position_px.x, lcu->position_px.y, state->tile->hor_buf_search, state->tile->ver_buf_search);
encoder_state_recdata_to_bufs(state, lcu, state->tile->hor_buf_search, state->tile->ver_buf_search);
if (encoder->max_qp_delta_depth >= 0) {
int last_qp = state->last_qp;
int prev_qp = -1;
set_cu_qps(state, lcu->position_px.x, lcu->position_px.y, 0, &last_qp, &prev_qp);
}
if (encoder->cfg.deblock_enable) {
kvz_filter_deblock_lcu(state, lcu->position_px.x, lcu->position_px.y);
}
if (encoder->cfg.sao_type) {
// Save the post-deblocking but pre-SAO pixels of the LCU to a buffer
// so that they can be used in SAO reconstruction later.
encoder_state_recdata_before_sao_to_bufs(state,
lcu,
state->tile->hor_buf_before_sao,
state->tile->ver_buf_before_sao);
kvz_sao_search_lcu(state, lcu->position.x, lcu->position.y);
encoder_sao_reconstruct(state, lcu);
}
}
static void encoder_state_worker_encode_lcu_bitstream(void * opaque)
{
lcu_order_element_t * const lcu = opaque;
encoder_state_t *state = lcu->encoder_state;
const encoder_control_t * const encoder = state->encoder_control;
videoframe_t* const frame = state->tile->frame;
encoder_state_config_slice_t *slice = state->slice;
kvz_set_lcu_lambda_and_qp(state, lcu->position);
state->coeff = lcu->coeff;
//Now write data to bitstream (required to have a correct CABAC state)
const uint64_t existing_bits = kvz_bitstream_tell(&state->stream);
//Encode SAO
if (encoder->cfg.sao_type) {
encode_sao(state, lcu->position.x, lcu->position.y, &frame->sao_luma[lcu->position.y * frame->width_in_lcu + lcu->position.x], &frame->sao_chroma[lcu->position.y * frame->width_in_lcu + lcu->position.x]);
}
//Encode ALF
kvz_encode_alf_bits(state, lcu->index);
//Encode coding tree
kvz_encode_coding_tree(state, lcu->position.x * LCU_WIDTH, lcu->position.y * LCU_WIDTH, 0);
// Coeffs are not needed anymore.
free(lcu->coeff);
lcu->coeff = NULL;
state->coeff = NULL;
bool end_of_slice_segment_flag;
if (state->encoder_control->cfg.slices & KVZ_SLICES_WPP) {
// Slice segments end after each WPP row.
end_of_slice_segment_flag = lcu->last_column;
}
else if (state->encoder_control->cfg.slices & KVZ_SLICES_TILES) {
// Slices end after each tile.
end_of_slice_segment_flag = lcu->last_column && lcu->last_row;
}
else {
// Slice ends after the last row of the last tile.
int last_tile_id = -1 + encoder->cfg.tiles_width_count * encoder->cfg.tiles_height_count;
bool is_last_tile = state->tile->id == last_tile_id;
end_of_slice_segment_flag = is_last_tile && lcu->last_column && lcu->last_row;
}
//kvz_cabac_encode_bin_trm(&state->cabac, end_of_slice_segment_flag);
{
const bool end_of_tile = lcu->last_column && lcu->last_row;
const bool end_of_wpp_row = encoder->cfg.wpp && lcu->last_column;
if (end_of_tile || end_of_wpp_row) {
// end_of_sub_stream_one_bit
kvz_cabac_encode_bin_trm(&state->cabac, 1);
// Finish the substream by writing out remaining state.
kvz_cabac_finish(&state->cabac);
// Write a rbsp_trailing_bits or a byte_alignment. The first one is used
// for ending a slice_segment_layer_rbsp and the second one for ending
// a substream. They are identical and align the byte stream.
kvz_bitstream_put(state->cabac.stream, 1, 1);
kvz_bitstream_align_zero(state->cabac.stream);
kvz_cabac_start(&state->cabac);
kvz_crypto_delete(&state->crypto_hdl);
}
}
const uint32_t bits = kvz_bitstream_tell(&state->stream) - existing_bits;
kvz_get_lcu_stats(state, lcu->position.x, lcu->position.y)->bits = bits;
//Wavefronts need the context to be copied to the next row
if (state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW && lcu->index == 1) {
int j;
//Find next encoder (next row)
for (j = 0; state->parent->children[j].encoder_control; ++j) {
if (state->parent->children[j].wfrow->lcu_offset_y == state->wfrow->lcu_offset_y + 1) {
//And copy context
kvz_context_copy(&state->parent->children[j], state);
}
}
}
}
static void encoder_state_encode_leaf(encoder_state_t * const state)
{
const encoder_control_t * const encoder = state->encoder_control;
assert(state->is_leaf);
assert(state->lcu_order_count > 0);
const encoder_control_t *ctrl = state->encoder_control;
const kvz_config *cfg = &ctrl->cfg;
// Signaled slice QP may be different to frame QP with set-qp-in-cu enabled.
state->last_qp = ctrl->cfg.set_qp_in_cu ? 26 : state->frame->QP;
if (cfg->crypto_features) {
state->crypto_hdl = kvz_crypto_create(cfg);
state->crypto_prev_pos = 0;
}
// Select whether to encode the frame/tile in current thread or to define
// wavefront jobs for other threads to handle.
bool wavefront = state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW;
bool use_parallel_encoding = (wavefront && state->parent->children[1].encoder_control);
if (!use_parallel_encoding) {
// Encode every LCU in order and perform SAO reconstruction after every
// frame is encoded. Deblocking and SAO search is done during LCU encoding.
for (int i = 0; i < state->lcu_order_count; ++i) {
encoder_state_worker_encode_lcu_search(&state->lcu_order[i]);
}
//Encode ALF
if (encoder->cfg.alf_type) {
kvz_alf_enc_process(state);
}
for (int i = 0; i < state->lcu_order_count; ++i) {
encoder_state_worker_encode_lcu_bitstream(&state->lcu_order[i]);
}
} else {
// Add each LCU in the wavefront row as it's own job to the queue.
// Select which frame dependancies should be set to.
const encoder_state_t * ref_state = NULL;
if (state->frame->slicetype == KVZ_SLICE_I) {
// I-frames have no references.
ref_state = NULL;
} else if (cfg->gop_lowdelay &&
cfg->gop_len > 0 &&
state->previous_encoder_state != state)
{
// For LP-gop, depend on the state of the first reference.
int ref_neg = cfg->gop[state->frame->gop_offset].ref_neg[0];
if (ref_neg > cfg->owf) {
// If frame is not within OWF range, it's already done.
ref_state = NULL;
} else {
ref_state = state->previous_encoder_state;
while (ref_neg > 1) {
ref_neg -= 1;
ref_state = ref_state->previous_encoder_state;
}
}
} else {
// Otherwise, depend on the previous frame.
ref_state = state->previous_encoder_state;
}
for (int i = 0; i < state->lcu_order_count; ++i) {
const lcu_order_element_t * const lcu = &state->lcu_order[i];
kvz_threadqueue_free_job(&state->tile->wf_jobs[lcu->id]);
state->tile->wf_jobs[lcu->id] = kvz_threadqueue_job_create(encoder_state_worker_encode_lcu, (void*)lcu);
threadqueue_job_t **job = &state->tile->wf_jobs[lcu->id];
// If job object was returned, add dependancies and allow it to run.
if (job[0]) {
// Add inter frame dependancies when ecoding more than one frame at
// once. The added dependancy is for the first LCU of each wavefront
// row to depend on the reconstruction status of the row below in the
// previous frame.
if (ref_state != NULL &&
state->previous_encoder_state->tqj_recon_done &&
state->frame->slicetype != KVZ_SLICE_I)
{
// We need to wait until the CTUs whose pixels we refer to are
// done before we can start this CTU.
const lcu_order_element_t *dep_lcu = lcu;
for (int i = 0; dep_lcu->below && i < ctrl->max_inter_ref_lcu.down; i++) {
dep_lcu = dep_lcu->below;
}
for (int i = 0; dep_lcu->right && i < ctrl->max_inter_ref_lcu.right; i++) {
dep_lcu = dep_lcu->right;
}
kvz_threadqueue_job_dep_add(job[0], ref_state->tile->wf_jobs[dep_lcu->id]);
//TODO: Preparation for the lock free implementation of the new rc
if (ref_state->frame->slicetype == KVZ_SLICE_I && ref_state->frame->num != 0 && state->encoder_control->cfg.owf > 1 && true) {
kvz_threadqueue_job_dep_add(job[0], ref_state->previous_encoder_state->tile->wf_jobs[dep_lcu->id]);
}
// Very spesific bug that happens when owf length is longer than the
// gop length. Takes care of that.
if(!state->encoder_control->cfg.gop_lowdelay &&
state->encoder_control->cfg.open_gop &&
state->encoder_control->cfg.gop_len != 0 &&
state->encoder_control->cfg.owf > state->encoder_control->cfg.gop_len &&
ref_state->frame->slicetype == KVZ_SLICE_I &&
ref_state->frame->num != 0){
while (ref_state->frame->poc != state->frame->poc - state->encoder_control->cfg.gop_len){
ref_state = ref_state->previous_encoder_state;
}
kvz_threadqueue_job_dep_add(job[0], ref_state->tile->wf_jobs[dep_lcu->id]);
}
}
// Add local WPP dependancy to the LCU on the left.
if (lcu->left) {
kvz_threadqueue_job_dep_add(job[0], job[-1]);
}
// Add local WPP dependancy to the LCU on the top.
if (lcu->above) {
kvz_threadqueue_job_dep_add(job[0], job[-state->tile->frame->width_in_lcu]);
}
kvz_threadqueue_submit(state->encoder_control->threadqueue, state->tile->wf_jobs[lcu->id]);
// The wavefront row is done when the last LCU in the row is done.
if (i + 1 == state->lcu_order_count) {
assert(!state->tqj_recon_done);
state->tqj_recon_done =
kvz_threadqueue_copy_ref(state->tile->wf_jobs[lcu->id]);
}
}
}
}
}
static void encoder_state_encode(encoder_state_t * const main_state);
static void encoder_state_worker_encode_children(void * opaque)
{
encoder_state_t *sub_state = opaque;
encoder_state_encode(sub_state);
if (sub_state->is_leaf && sub_state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
// Set the last wavefront job of this row as the job that completes
// the bitstream for this wavefront row state.
int wpp_row = sub_state->wfrow->lcu_offset_y;
int tile_width = sub_state->tile->frame->width_in_lcu;
int end_of_row = (wpp_row + 1) * tile_width - 1;
assert(!sub_state->tqj_bitstream_written);
if (sub_state->tile->wf_jobs[end_of_row]) {
sub_state->tqj_bitstream_written =
kvz_threadqueue_copy_ref(sub_state->tile->wf_jobs[end_of_row]);
}
}
}
static int encoder_state_tree_is_a_chain(const encoder_state_t * const state) {
if (!state->children[0].encoder_control) return 1;
if (state->children[1].encoder_control) return 0;
return encoder_state_tree_is_a_chain(&state->children[0]);
}
static void encoder_state_encode(encoder_state_t * const main_state) {
//If we have children, encode at child level
if (main_state->children[0].encoder_control) {
//If we have only one child, than it cannot be the last split in tree
int node_is_the_last_split_in_tree = (main_state->children[1].encoder_control != 0);
for (int i = 0; main_state->children[i].encoder_control; ++i) {
encoder_state_t *sub_state = &(main_state->children[i]);
if (sub_state->tile != main_state->tile) {
const int offset_x = sub_state->tile->offset_x;
const int offset_y = sub_state->tile->offset_y;
const int width = MIN(sub_state->tile->frame->width_in_lcu * LCU_WIDTH, main_state->tile->frame->width - offset_x);
const int height = MIN(sub_state->tile->frame->height_in_lcu * LCU_WIDTH, main_state->tile->frame->height - offset_y);
kvz_image_free(sub_state->tile->frame->source);
sub_state->tile->frame->source = NULL;
kvz_image_free(sub_state->tile->frame->rec);
sub_state->tile->frame->rec = NULL;
kvz_cu_array_free(&sub_state->tile->frame->cu_array);
sub_state->tile->frame->source = kvz_image_make_subimage(
main_state->tile->frame->source,
offset_x,
offset_y,
width,
height
);
sub_state->tile->frame->rec = kvz_image_make_subimage(
main_state->tile->frame->rec,
offset_x,
offset_y,
width,
height
);
sub_state->tile->frame->cu_array = kvz_cu_subarray(
main_state->tile->frame->cu_array,
offset_x,
offset_y,
sub_state->tile->frame->width_in_lcu * LCU_WIDTH,
sub_state->tile->frame->height_in_lcu * LCU_WIDTH
);
}
//To be the last split, we require that every child is a chain
node_is_the_last_split_in_tree =
node_is_the_last_split_in_tree &&
encoder_state_tree_is_a_chain(&main_state->children[i]);
}
//If it's the latest split point
if (node_is_the_last_split_in_tree) {
for (int i = 0; main_state->children[i].encoder_control; ++i) {
//If we don't have wavefronts, parallelize encoding of children.
if (main_state->children[i].type != ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
kvz_threadqueue_free_job(&main_state->children[i].tqj_recon_done);
main_state->children[i].tqj_recon_done =
kvz_threadqueue_job_create(encoder_state_worker_encode_children, &main_state->children[i]);
if (main_state->children[i].previous_encoder_state != &main_state->children[i] &&
main_state->children[i].previous_encoder_state->tqj_recon_done &&
!main_state->children[i].frame->is_irap)
{
#if 0
// Disabled due to non-determinism.
if (main_state->encoder_control->cfg->mv_constraint == KVZ_MV_CONSTRAIN_FRAME_AND_TILE_MARGIN)
{
// When MV's don't cross tile boundaries, add dependancy only to the same tile.
kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[i].previous_encoder_state->tqj_recon_done);
} else
#endif
{
// Add dependancy to each child in the previous frame.
for (int child_id = 0; main_state->children[child_id].encoder_control; ++child_id) {
kvz_threadqueue_job_dep_add(main_state->children[i].tqj_recon_done, main_state->children[child_id].previous_encoder_state->tqj_recon_done);
}
}
}
kvz_threadqueue_submit(main_state->encoder_control->threadqueue, main_state->children[i].tqj_recon_done);
} else {
//Wavefront rows have parallelism at LCU level, so we should not launch multiple threads here!
//FIXME: add an assert: we can only have wavefront children
encoder_state_worker_encode_children(&(main_state->children[i]));
}
}
} else {
for (int i = 0; main_state->children[i].encoder_control; ++i) {
encoder_state_worker_encode_children(&(main_state->children[i]));
}
}
} else {
switch (main_state->type) {
case ENCODER_STATE_TYPE_TILE:
case ENCODER_STATE_TYPE_SLICE:
case ENCODER_STATE_TYPE_WAVEFRONT_ROW:
encoder_state_encode_leaf(main_state);
break;
default:
fprintf(stderr, "Unsupported leaf type %c!\n", main_state->type);
assert(0);
}
}
}
static void encoder_ref_insertion_sort(const encoder_state_t *const state,
uint8_t reflist[16],
uint8_t length,
bool reverse)
{
for (uint8_t i = 1; i < length; ++i) {
const uint8_t cur_idx = reflist[i];
const int32_t cur_poc = state->frame->ref->pocs[cur_idx];
int8_t j = i;
while ((j > 0 && !reverse && cur_poc > state->frame->ref->pocs[reflist[j - 1]]) ||
(j > 0 && reverse && cur_poc < state->frame->ref->pocs[reflist[j - 1]]))
{
reflist[j] = reflist[j - 1];
--j;
}
reflist[j] = cur_idx;
}
}
/**
* \brief Generate reference picture lists.
*
* \param state main encoder state
*/
void kvz_encoder_create_ref_lists(const encoder_state_t *const state)
{
const kvz_config *cfg = &state->encoder_control->cfg;
FILL_ARRAY(state->frame->ref_LX_size, 0, 2);
int num_negative = 0;
int num_positive = 0;
// Add positive references to L1 list
for (int i = 0; i < state->frame->ref->used_size; i++) {
if (state->frame->ref->pocs[i] > state->frame->poc) {
state->frame->ref_LX[1][state->frame->ref_LX_size[1]] = i;
state->frame->ref_LX_size[1] += 1;
num_positive++;
}
}
// Add negative references to L1 list when bipred is enabled and GOP is
// either disabled or does not use picture reordering.
bool l1_negative_refs =
(cfg->bipred && (cfg->gop_len == 0 || cfg->gop_lowdelay));
// Add negative references to L0 and L1 lists.
for (int i = 0; i < state->frame->ref->used_size; i++) {
if (state->frame->ref->pocs[i] < state->frame->poc) {
state->frame->ref_LX[0][state->frame->ref_LX_size[0]] = i;
state->frame->ref_LX_size[0] += 1;
if (l1_negative_refs) {
state->frame->ref_LX[1][state->frame->ref_LX_size[1]] = i;
state->frame->ref_LX_size[1] += 1;
}
num_negative++;
}
}
// Fill the rest with -1.
for (int i = state->frame->ref_LX_size[0]; i < 16; i++) {
state->frame->ref_LX[0][i] = 0xff;
}
for (int i = state->frame->ref_LX_size[1]; i < 16; i++) {
state->frame->ref_LX[1][i] = 0xff;
}
// Sort reference lists.
encoder_ref_insertion_sort(state, state->frame->ref_LX[0], num_negative, false);
encoder_ref_insertion_sort(state, state->frame->ref_LX[1], num_positive, true);
if (l1_negative_refs) {
encoder_ref_insertion_sort(state, state->frame->ref_LX[1] + num_positive, num_negative, false);
}
}
/**
* \brief Remove any references that should no longer be used.
*/
static void encoder_state_remove_refs(encoder_state_t *state) {
const encoder_control_t * const encoder = state->encoder_control;
int neg_refs = encoder->cfg.gop[state->frame->gop_offset].ref_neg_count;
int pos_refs = encoder->cfg.gop[state->frame->gop_offset].ref_pos_count;
unsigned target_ref_num;
if (encoder->cfg.gop_len) {
target_ref_num = neg_refs + pos_refs;
} else {
target_ref_num = encoder->cfg.ref_frames;
}
if (state->frame->pictype == KVZ_NAL_IDR_W_RADL ||
state->frame->pictype == KVZ_NAL_IDR_N_LP)
{
target_ref_num = 0;
}
if (encoder->cfg.gop_len && target_ref_num > 0) {
// With GOP in use, go through all the existing reference pictures and
// remove any picture that is not referenced by the current picture.
for (int ref = state->frame->ref->used_size - 1; ref >= 0; --ref) {
bool is_referenced = false;
int ref_poc = state->frame->ref->pocs[ref];
for (int i = 0; i < neg_refs; i++) {
int ref_relative_poc = -encoder->cfg.gop[state->frame->gop_offset].ref_neg[i];
if (ref_poc == state->frame->poc + ref_relative_poc) {
is_referenced = true;
break;
}
}
for (int i = 0; i < pos_refs; i++) {
int ref_relative_poc = encoder->cfg.gop[state->frame->gop_offset].ref_pos[i];
if (ref_poc == state->frame->poc + ref_relative_poc) {
is_referenced = true;
break;
}
}
if (ref_poc < state->frame->irap_poc &&
state->frame->irap_poc < state->frame->poc)
{
// Trailing frames cannot refer to leading frames.
is_referenced = false;
}
if (encoder->cfg.intra_period > 0 &&
ref_poc < state->frame->irap_poc - encoder->cfg.intra_period)
{
// No frame can refer past the two preceding IRAP frames.
is_referenced = false;
}
if (!is_referenced) {
// This reference is not referred to by this frame, it must be removed.
kvz_image_list_rem(state->frame->ref, ref);
}
}
} else {
// Without GOP, remove the oldest picture.
while (state->frame->ref->used_size > target_ref_num) {
int8_t oldest_ref = state->frame->ref->used_size - 1;
kvz_image_list_rem(state->frame->ref, oldest_ref);
}
}
assert(state->frame->ref->used_size <= target_ref_num);
}
static void encoder_set_source_picture(encoder_state_t * const state, kvz_picture* frame)
{
assert(!state->tile->frame->source);
assert(!state->tile->frame->rec);
state->tile->frame->source = frame;
if (state->encoder_control->cfg.lossless) {
// In lossless mode, the reconstruction is equal to the source frame.
state->tile->frame->rec = kvz_image_copy_ref(frame);
} else {
state->tile->frame->rec = kvz_image_alloc(state->encoder_control->chroma_format, frame->width, frame->height);
state->tile->frame->rec->dts = frame->dts;
state->tile->frame->rec->pts = frame->pts;
}
kvz_videoframe_set_poc(state->tile->frame, state->frame->poc);
}
static void encoder_state_init_children(encoder_state_t * const state) {
kvz_bitstream_clear(&state->stream);
if (state->is_leaf) {
//Leaf states have cabac and context
kvz_cabac_start(&state->cabac);
kvz_init_contexts(state, state->encoder_control->cfg.set_qp_in_cu ? 26 : state->frame->QP, state->frame->slicetype);
}
//Clear the jobs
kvz_threadqueue_free_job(&state->tqj_bitstream_written);
kvz_threadqueue_free_job(&state->tqj_recon_done);
//Copy the constraint pointer
// TODO: Try to do it in the if (state->is_leaf)
//if (state->parent != NULL) {
// state->constraint = state->parent->constraint;
//}
for (int i = 0; state->children[i].encoder_control; ++i) {
encoder_state_init_children(&state->children[i]);
}
}
static void normalize_lcu_weights(encoder_state_t * const state)
{
if (state->frame->num == 0) return;
const uint32_t num_lcus = state->encoder_control->in.width_in_lcu *
state->encoder_control->in.height_in_lcu;
double sum = 0.0;
for (uint32_t i = 0; i < num_lcus; i++) {
sum += state->frame->lcu_stats[i].weight;
}
for (uint32_t i = 0; i < num_lcus; i++) {
state->frame->lcu_stats[i].weight /= sum;
}
}
// Check if lcu is edge lcu. Return false if frame dimensions are 64 divisible
static bool edge_lcu(int id, int lcus_x, int lcus_y, bool xdiv64, bool ydiv64)
{
if (xdiv64 && ydiv64) {
return false;
}
int last_row_first_id = (lcus_y - 1) * lcus_x;
if ((id % lcus_x == lcus_x - 1 && !xdiv64) || (id >= last_row_first_id && !ydiv64)) {
return true;
}
else {
return false;
}
}
static void encoder_state_init_new_frame(encoder_state_t * const state, kvz_picture* frame) {
assert(state->type == ENCODER_STATE_TYPE_MAIN);
const kvz_config * const cfg = &state->encoder_control->cfg;
encoder_set_source_picture(state, frame);
assert(!state->tile->frame->cu_array);
state->tile->frame->cu_array = kvz_cu_array_alloc(
state->tile->frame->width,
state->tile->frame->height
);
// Variance adaptive quantization
if (cfg->vaq) {
const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400;
double d = cfg->vaq * 0.1; // Empirically decided constant. Affects delta-QP strength
// Calculate frame pixel variance
uint32_t len = state->tile->frame->width * state->tile->frame->height;
uint32_t c_len = len / 4;
double frame_var = kvz_pixel_var(state->tile->frame->source->y, len);
if (has_chroma) {
frame_var += kvz_pixel_var(state->tile->frame->source->u, c_len);
frame_var += kvz_pixel_var(state->tile->frame->source->v, c_len);
}
// Loop through LCUs
// For each LCU calculate: D * (log(LCU pixel variance) - log(frame pixel variance))
unsigned x_lim = state->tile->frame->width_in_lcu;
unsigned y_lim = state->tile->frame->height_in_lcu;
unsigned id = 0;
for (int y = 0; y < y_lim; ++y) {
for (int x = 0; x < x_lim; ++x) {
kvz_pixel tmp[LCU_LUMA_SIZE];
int pxl_x = x * LCU_WIDTH;
int pxl_y = y * LCU_WIDTH;
int x_max = MIN(pxl_x + LCU_WIDTH, frame->width) - pxl_x;
int y_max = MIN(pxl_y + LCU_WIDTH, frame->height) - pxl_y;
bool xdiv64 = false;
bool ydiv64 = false;
if (frame->width % 64 == 0) xdiv64 = true;
if (frame->height % 64 == 0) ydiv64 = true;
// Luma variance
if (!edge_lcu(id, x_lim, y_lim, xdiv64, ydiv64)) {
kvz_pixels_blit(&state->tile->frame->source->y[pxl_x + pxl_y * state->tile->frame->source->stride], tmp,
x_max, y_max, state->tile->frame->source->stride, LCU_WIDTH);
} else {
// Extend edge pixels for edge lcus
for (int y = 0; y < LCU_WIDTH; y++) {
for (int x = 0; x < LCU_WIDTH; x++) {
int src_y = CLIP(0, frame->height - 1, pxl_y + y);
int src_x = CLIP(0, frame->width - 1, pxl_x + x);
tmp[y * LCU_WIDTH + x] = state->tile->frame->source->y[src_y * state->tile->frame->source->stride + src_x];
}
}
}
double lcu_var = kvz_pixel_var(tmp, LCU_LUMA_SIZE);
if (has_chroma) {
// Add chroma variance if not monochrome
int32_t c_stride = state->tile->frame->source->stride >> 1;
kvz_pixel chromau_tmp[LCU_CHROMA_SIZE];
kvz_pixel chromav_tmp[LCU_CHROMA_SIZE];
int lcu_chroma_width = LCU_WIDTH >> 1;
int c_pxl_x = x * lcu_chroma_width;
int c_pxl_y = y * lcu_chroma_width;
int c_x_max = MIN(c_pxl_x + lcu_chroma_width, frame->width >> 1) - c_pxl_x;
int c_y_max = MIN(c_pxl_y + lcu_chroma_width, frame->height >> 1) - c_pxl_y;
if (!edge_lcu(id, x_lim, y_lim, xdiv64, ydiv64)) {
kvz_pixels_blit(&state->tile->frame->source->u[c_pxl_x + c_pxl_y * c_stride], chromau_tmp, c_x_max, c_y_max, c_stride, lcu_chroma_width);
kvz_pixels_blit(&state->tile->frame->source->v[c_pxl_x + c_pxl_y * c_stride], chromav_tmp, c_x_max, c_y_max, c_stride, lcu_chroma_width);
}
else {
for (int y = 0; y < lcu_chroma_width; y++) {
for (int x = 0; x < lcu_chroma_width; x++) {
int src_y = CLIP(0, (frame->height >> 1) - 1, c_pxl_y + y);
int src_x = CLIP(0, (frame->width >> 1) - 1, c_pxl_x + x);
chromau_tmp[y * lcu_chroma_width + x] = state->tile->frame->source->u[src_y * c_stride + src_x];
chromav_tmp[y * lcu_chroma_width + x] = state->tile->frame->source->v[src_y * c_stride + src_x];
}
}
}
lcu_var += kvz_pixel_var(chromau_tmp, LCU_CHROMA_SIZE);
lcu_var += kvz_pixel_var(chromav_tmp, LCU_CHROMA_SIZE);
}
state->frame->aq_offsets[id] = d * (log(lcu_var) - log(frame_var));
id++;
}
}
}
// Variance adaptive quantization - END
// Use this flag to handle closed gop irap picture selection.
// If set to true, irap is already set and we avoid
// setting it based on the intra period
bool is_closed_normal_gop = false;
encoder_state_t *previous = state->previous_encoder_state;
int owf = MIN(state->encoder_control->cfg.owf, state->frame->num);
const int layer = state->encoder_control->cfg.gop[state->frame->gop_offset].layer;
while (--owf > 0 && layer != state->encoder_control->cfg.gop[previous->frame->gop_offset].layer) {
previous = previous->previous_encoder_state;
}
if (owf == 0) previous = state;
state->frame->previous_layer_state = previous;
// Set POC.
if (state->frame->num == 0) {
state->frame->poc = 0;
} else if (cfg->gop_len && !cfg->gop_lowdelay) {
int32_t framenum = state->frame->num - 1;
// Handle closed GOP
// Closed GOP structure has an extra IDR between the GOPs
if (cfg->intra_period > 0 && !cfg->open_gop) {
is_closed_normal_gop = true;
if (framenum % (cfg->intra_period + 1) == cfg->intra_period) {
// Insert IDR before each new GOP after intra period in closed GOP configuration
state->frame->poc = 0;
} else {
// Calculate frame number again and use that for the POC
framenum = framenum % (cfg->intra_period + 1);
int32_t poc_offset = cfg->gop[state->frame->gop_offset].poc_offset;
state->frame->poc = framenum - framenum % cfg->gop_len + poc_offset;
// This should not be an irap picture in closed GOP
state->frame->is_irap = false;
}
} else { // Open GOP
// Calculate POC according to the global frame counter and GOP structure
int32_t poc_offset = cfg->gop[state->frame->gop_offset].poc_offset;
state->frame->poc = framenum - framenum % cfg->gop_len + poc_offset;
}
kvz_videoframe_set_poc(state->tile->frame, state->frame->poc);
} else if (cfg->intra_period > 1) {
state->frame->poc = state->frame->num % cfg->intra_period;
} else {
state->frame->poc = state->frame->num;
}
// Check whether the frame is a keyframe or not.
if (state->frame->num == 0 || state->frame->poc == 0) {
state->frame->is_irap = true;
} else if(!is_closed_normal_gop) { // In closed-GOP IDR frames are poc==0 so skip this check
state->frame->is_irap =
cfg->intra_period > 0 &&
(state->frame->poc % cfg->intra_period) == 0;
}
if (state->frame->is_irap) {
state->frame->irap_poc = state->frame->poc;
}
// Set pictype.
if (state->frame->is_irap) {
if (state->frame->num == 0 ||
cfg->intra_period == 1 ||
cfg->gop_len == 0 ||
cfg->gop_lowdelay ||
!cfg->open_gop) // Closed GOP uses IDR pictures
{
state->frame->pictype = KVZ_NAL_IDR_N_LP;
if (cfg->intra_period == 1 && state->frame->num > 0) state->frame->pictype = KVZ_NAL_IDR_W_RADL;
} else {
state->frame->pictype = KVZ_NAL_CRA_NUT;
}
} else if (state->frame->poc < state->frame->irap_poc) {
state->frame->pictype = KVZ_NAL_RASL;
} else {
state->frame->pictype = KVZ_NAL_TRAIL;
}
encoder_state_remove_refs(state);
kvz_encoder_create_ref_lists(state);
// Set slicetype.
if (state->frame->is_irap) {
state->frame->slicetype = KVZ_SLICE_I;
} else if (state->frame->ref_LX_size[1] > 0) {
state->frame->slicetype = KVZ_SLICE_B;
} else {
state->frame->slicetype = KVZ_SLICE_P;
}
if (cfg->target_bitrate > 0 && state->frame->num > cfg->owf) {
normalize_lcu_weights(state);
}
state->frame->cur_frame_bits_coded = 0;
switch (state->encoder_control->cfg.rc_algorithm) {
case KVZ_NO_RC:
case KVZ_LAMBDA:
kvz_set_picture_lambda_and_qp(state);
break;
case KVZ_OBA:
kvz_estimate_pic_lambda(state);
break;
default:
assert(0);
}
encoder_state_init_children(state);
}
static void _encode_one_frame_add_bitstream_deps(const encoder_state_t * const state, threadqueue_job_t * const job) {
int i;
for (i = 0; state->children[i].encoder_control; ++i) {
_encode_one_frame_add_bitstream_deps(&state->children[i], job);
}
if (state->tqj_bitstream_written) {
kvz_threadqueue_job_dep_add(job, state->tqj_bitstream_written);
}
if (state->tqj_recon_done) {
kvz_threadqueue_job_dep_add(job, state->tqj_recon_done);
}
}
void kvz_encode_one_frame(encoder_state_t * const state, kvz_picture* frame)
{
#if KVZ_DEBUG_PRINT_CABAC == 1
kvz_cabac_bins_count = 0;
if (state->frame->num == 0) kvz_cabac_bins_verbose = true;
else kvz_cabac_bins_verbose = false;
#endif
encoder_state_init_new_frame(state, frame);
encoder_state_encode(state);
threadqueue_job_t *job =
kvz_threadqueue_job_create(kvz_encoder_state_worker_write_bitstream, state);
_encode_one_frame_add_bitstream_deps(state, job);
if (state->previous_encoder_state != state && state->previous_encoder_state->tqj_bitstream_written) {
//We need to depend on previous bitstream generation
kvz_threadqueue_job_dep_add(job, state->previous_encoder_state->tqj_bitstream_written);
}
kvz_threadqueue_submit(state->encoder_control->threadqueue, job);
assert(!state->tqj_bitstream_written);
state->tqj_bitstream_written = job;
state->frame->done = 0;
}
/**
* Prepare the encoder state for encoding the next frame.
*
* - Add the previous reconstructed picture as a reference, if needed.
* - Free the previous reconstructed and source pictures.
* - Create a new cu array, if needed.
* - Update frame count and POC.
*/
void kvz_encoder_prepare(encoder_state_t *state)
{
const encoder_control_t * const encoder = state->encoder_control;
// The previous frame must be done before the next one is started.
assert(state->frame->done);
if (state->frame->num == -1) {
// We're at the first frame, so don't care about all this stuff.
state->frame->num = 0;
state->frame->poc = 0;
state->frame->irap_poc = 0;
assert(!state->tile->frame->source);
assert(!state->tile->frame->rec);
assert(!state->tile->frame->cu_array);
state->frame->prepared = 1;
return;
}
// NOTE: prev_state is equal to state when OWF is zero
encoder_state_t *prev_state = state->previous_encoder_state;
if (state->previous_encoder_state != state) {
kvz_cu_array_free(&state->tile->frame->cu_array);
unsigned width = state->tile->frame->width_in_lcu * LCU_WIDTH;
unsigned height = state->tile->frame->height_in_lcu * LCU_WIDTH;
state->tile->frame->cu_array = kvz_cu_array_alloc(width, height);
kvz_image_list_copy_contents(state->frame->ref, prev_state->frame->ref);
kvz_encoder_create_ref_lists(state);
}
if (!encoder->cfg.gop_len ||
!prev_state->frame->poc ||
encoder->cfg.gop[prev_state->frame->gop_offset].is_ref) {
// Store current list of POCs for use in TMVP derivation
memcpy(prev_state->tile->frame->rec->ref_pocs, state->frame->ref->pocs, sizeof(int32_t)*state->frame->ref->used_size);
// Add previous reconstructed picture as a reference
kvz_image_list_add(state->frame->ref,
prev_state->tile->frame->rec,
prev_state->tile->frame->cu_array,
prev_state->frame->poc,
prev_state->frame->ref_LX);
kvz_cu_array_free(&state->tile->frame->cu_array);
unsigned height = state->tile->frame->height_in_lcu * LCU_WIDTH;
unsigned width = state->tile->frame->width_in_lcu * LCU_WIDTH;
state->tile->frame->cu_array = kvz_cu_array_alloc(width, height);
}
// Remove source and reconstructed picture.
kvz_image_free(state->tile->frame->source);
state->tile->frame->source = NULL;
kvz_image_free(state->tile->frame->rec);
state->tile->frame->rec = NULL;
kvz_cu_array_free(&state->tile->frame->cu_array);
// Update POC and frame count.
state->frame->num = prev_state->frame->num + 1;
state->frame->poc = prev_state->frame->poc + 1;
state->frame->irap_poc = prev_state->frame->irap_poc;
state->frame->prepared = 1;
}
coeff_scan_order_t kvz_get_scan_order(int8_t cu_type, int intra_mode, int depth)
{
// Scan mode is diagonal, except for 4x4+8x8 luma and 4x4 chroma, where:
// - angular 6-14 = vertical
// - angular 22-30 = horizontal
#if HEVC_USE_MDCS
if (cu_type == CU_INTRA && depth >= 3) {
if (intra_mode >= 6 && intra_mode <= 14) {
return SCAN_VER;
} else if (intra_mode >= 22 && intra_mode <= 30) {
return SCAN_HOR;
}
}
#endif
return SCAN_DIAG;
}
lcu_stats_t* kvz_get_lcu_stats(encoder_state_t *state, int lcu_x, int lcu_y)
{
const int index = lcu_x + state->tile->lcu_offset_x +
(lcu_y + state->tile->lcu_offset_y) *
state->encoder_control->in.width_in_lcu;
return &state->frame->lcu_stats[index];
}
int kvz_get_cu_ref_qp(const encoder_state_t *state, int x, int y, int last_qp)
{
const encoder_control_t *ctrl = state->encoder_control;
const cu_array_t *cua = state->tile->frame->cu_array;
// Quantization group width
const int qg_width = LCU_WIDTH >> MIN(ctrl->max_qp_delta_depth, kvz_cu_array_at_const(cua, x, y)->depth);
// Coordinates of the top-left corner of the quantization group
const int x_qg = x & ~(qg_width - 1);
const int y_qg = y & ~(qg_width - 1);
int qp_pred_a = last_qp;
if (x_qg % LCU_WIDTH > 0) {
qp_pred_a = kvz_cu_array_at_const(cua, x_qg - 1, y_qg)->qp;
}
int qp_pred_b = last_qp;
if (y_qg % LCU_WIDTH > 0) {
qp_pred_b = kvz_cu_array_at_const(cua, x_qg, y_qg - 1)->qp;
}
return ((qp_pred_a + qp_pred_b + 1) >> 1);
}