uvg266/src/inter.c

327 lines
12 KiB
C

/**
* \file
*
* \author Marko Viitanen ( fador@iki.fi ),
* Tampere University of Technology,
* Department of Pervasive Computing.
* \author Ari Koivula ( ari@koivu.la ),
* Tampere University of Technology,
* Department of Pervasive Computing.
*/
#include "inter.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "filter.h"
/**
* \brief Set block info to the CU structure
* \param pic picture to use
* \param x_cu x CU position (smallest CU)
* \param y_cu y CU position (smallest CU)
* \param depth current CU depth
* \param cur_cu CU to take the settings from
* \returns Void
*/
void inter_set_block(picture* pic, uint32_t x_cu, uint32_t y_cu, uint8_t depth, cu_info* cur_cu)
{
uint32_t x, y;
// Width in smallest CU
int width_in_scu = pic->width_in_lcu<<MAX_DEPTH;
int block_scu_width = (LCU_WIDTH>>depth)/(LCU_WIDTH>>MAX_DEPTH);
// Loop through all the block in the area of cur_cu
for (y = y_cu; y < y_cu + block_scu_width; y++) {
int cu_pos = y * width_in_scu; //!< calculate y-position once, use with every x
for (x = x_cu; x < x_cu + block_scu_width; x++) {
// Set all SCU's to this blocks values at the bottom most depth.
pic->cu_array[MAX_DEPTH][cu_pos + x].depth = depth;
pic->cu_array[MAX_DEPTH][cu_pos + x].type = CU_INTER;
pic->cu_array[MAX_DEPTH][cu_pos + x].inter.mode = cur_cu->inter.mode;
pic->cu_array[MAX_DEPTH][cu_pos + x].inter.mv[0] = cur_cu->inter.mv[0];
pic->cu_array[MAX_DEPTH][cu_pos + x].inter.mv[1] = cur_cu->inter.mv[1];
pic->cu_array[MAX_DEPTH][cu_pos + x].inter.mv_dir = cur_cu->inter.mv_dir;
}
}
}
/**
* \brief Reconstruct inter block
* \param ref picture to copy the data from
* \param xpos block x position
* \param ypos block y position
* \param width block width
* \param mv[2] motion vector
* \param dst destination picture
* \returns Void
*/
void inter_recon(picture* ref,int32_t xpos, int32_t ypos,int32_t width, const int16_t mv_param[2], picture *dst)
{
int x,y,coord_x,coord_y;
int16_t mv[2] = { mv_param[0], mv_param[1] };
int32_t dst_width_c = dst->width>>1; //!< Destination picture width in chroma pixels
int32_t ref_width_c = ref->width>>1; //!< Reference picture width in chroma pixels
// negative overflow flag
int8_t overflow_neg_x = (xpos + (mv[0]>>2) < 0)?1:0;
int8_t overflow_neg_y = (ypos + (mv[1]>>2) < 0)?1:0;
// positive overflow flag
int8_t overflow_pos_x = (xpos + (mv[0]>>2) + width > ref->width )?1:0;
int8_t overflow_pos_y = (ypos + (mv[1]>>2) + width > ref->height)?1:0;
// Chroma half-pel
#define HALFPEL_CHROMA_WIDTH ((LCU_WIDTH>>1) + 8)
int8_t chroma_halfpel = ((mv[0]>>2)&1) || ((mv[1]>>2)&1); //!< (luma integer mv) lsb is set -> chroma is half-pel
int16_t halfpel_src_u[HALFPEL_CHROMA_WIDTH * HALFPEL_CHROMA_WIDTH]; //!< U source block for interpolation
int16_t halfpel_src_v[HALFPEL_CHROMA_WIDTH * HALFPEL_CHROMA_WIDTH]; //!< V source block for interpolation
int16_t *halfpel_src_off_u = &halfpel_src_u[HALFPEL_CHROMA_WIDTH*4 + 4]; //!< halfpel_src_u with offset (4,4)
int16_t *halfpel_src_off_v = &halfpel_src_v[HALFPEL_CHROMA_WIDTH*4 + 4]; //!< halfpel_src_v with offset (4,4)
int16_t halfpel_u[LCU_WIDTH * LCU_WIDTH]; //!< interpolated 2W x 2H block (u)
int16_t halfpel_v[LCU_WIDTH * LCU_WIDTH]; //!< interpolated 2W x 2H block (v)
// TODO: Fractional pixel support
mv[0] >>= 2;
mv[1] >>= 2;
// Chroma half-pel
// get half-pel interpolated block and push it to output
if(chroma_halfpel) {
int halfpel_y, halfpel_x;
int abs_mv_x = mv[0]&1;
int abs_mv_y = mv[1]&1;
// Fill source blocks with data from reference, -4...width+4
for (halfpel_y = 0, y = (ypos>>1) - 4; y < ((ypos + width)>>1) + 4; halfpel_y++, y++) {
// calculate y-pixel offset
coord_y = y + (mv[1]>>1);
// On y-overflow set coord_y accordingly
overflow_neg_y = (coord_y < 0) ? 1 : 0;
overflow_pos_y = (coord_y >= ref->height>>1) ? 1 : 0;
if (overflow_neg_y) coord_y = 0;
else if (overflow_pos_y) coord_y = (ref->height>>1) - 1;
coord_y *= ref_width_c;
for (halfpel_x = 0, x = (xpos>>1) - 4; x < ((xpos + width)>>1) + 4; halfpel_x++, x++) {
coord_x = x + (mv[0]>>1);
// On x-overflow set coord_x accordingly
overflow_neg_x = (coord_x < 0) ? 1 : 0;
overflow_pos_x = (coord_x >= ref_width_c) ? 1 : 0;
if (overflow_neg_x) coord_x = 0;
else if (overflow_pos_x) coord_x = ref_width_c - 1;
// Store source block data (with extended borders)
halfpel_src_u[halfpel_y*HALFPEL_CHROMA_WIDTH + halfpel_x] = ref->u_recdata[coord_y + coord_x];
halfpel_src_v[halfpel_y*HALFPEL_CHROMA_WIDTH + halfpel_x] = ref->v_recdata[coord_y + coord_x];
}
}
// Filter the block to half-pel resolution
filter_inter_halfpel_chroma(halfpel_src_off_u, HALFPEL_CHROMA_WIDTH, width>>1, width>>1, halfpel_u, LCU_WIDTH, abs_mv_x, abs_mv_y);
filter_inter_halfpel_chroma(halfpel_src_off_v, HALFPEL_CHROMA_WIDTH, width>>1, width>>1, halfpel_v, LCU_WIDTH, abs_mv_x, abs_mv_y);
// Assign filtered pixels to output, take every second half-pel sample with offset of abs_mv_y/x
for (halfpel_y = abs_mv_y, y = ypos>>1; y < (ypos + width)>>1; halfpel_y += 2, y++) {
for (halfpel_x = abs_mv_x, x = xpos>>1; x < (xpos + width)>>1; halfpel_x += 2, x++) {
dst->u_recdata[y*dst_width_c + x] = (uint8_t)halfpel_u[halfpel_y*LCU_WIDTH + halfpel_x];
dst->v_recdata[y*dst_width_c + x] = (uint8_t)halfpel_v[halfpel_y*LCU_WIDTH + halfpel_x];
}
}
}
// With overflow present, more checking
if (overflow_neg_x || overflow_neg_y || overflow_pos_x || overflow_pos_y) {
// Copy Luma with boundary checking
for (y = ypos; y < ypos + width; y++) {
for (x = xpos; x < xpos + width; x++) {
coord_x = x + mv[0];
coord_y = y + mv[1];
overflow_neg_x = (coord_x < 0)?1:0;
overflow_neg_y = (coord_y < 0)?1:0;
overflow_pos_x = (coord_x >= ref->width )?1:0;
overflow_pos_y = (coord_y >= ref->height)?1:0;
// On x-overflow set coord_x accordingly
if (overflow_neg_x) {
coord_x = 0;
} else if (overflow_pos_x) {
coord_x = ref->width - 1;
}
// On y-overflow set coord_y accordingly
if (overflow_neg_y) {
coord_y = 0;
} else if (overflow_pos_y) {
coord_y = ref->height - 1;
}
// set destination to (corrected) pixel value from the reference
dst->y_recdata[y * dst->width + x] = ref->y_recdata[coord_y*ref->width + coord_x];
}
}
if(!chroma_halfpel) {
// Copy Chroma with boundary checking
// TODO: chroma fractional pixel interpolation
for (y = ypos>>1; y < (ypos + width)>>1; y++) {
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
coord_x = x + (mv[0]>>1);
coord_y = y + (mv[1]>>1);
overflow_neg_x = (coord_x < 0)?1:0;
overflow_neg_y = (y + (mv[1]>>1) < 0)?1:0;
overflow_pos_x = (coord_x >= ref->width>>1 )?1:0;
overflow_pos_y = (coord_y >= ref->height>>1)?1:0;
// On x-overflow set coord_x accordingly
if(overflow_neg_x) {
coord_x = 0;
} else if(overflow_pos_x) {
coord_x = (ref->width>>1) - 1;
}
// On y-overflow set coord_y accordingly
if(overflow_neg_y) {
coord_y = 0;
} else if(overflow_pos_y) {
coord_y = (ref->height>>1) - 1;
}
// set destinations to (corrected) pixel value from the reference
dst->u_recdata[y*dst_width_c + x] = ref->u_recdata[coord_y*ref_width_c + coord_x];
dst->v_recdata[y*dst_width_c + x] = ref->v_recdata[coord_y*ref_width_c + coord_x];
}
}
}
} else { //If no overflow, we can copy without checking boundaries
// Copy Luma
for (y = ypos; y < ypos + width; y++) {
coord_y = (y + mv[1]) * ref->width; // pre-calculate
for (x = xpos; x < xpos + width; x++) {
dst->y_recdata[y * dst->width + x] = ref->y_recdata[coord_y + x + mv[0]];
}
}
if(!chroma_halfpel) {
// Copy Chroma
// TODO: chroma fractional pixel interpolation
for (y = ypos>>1; y < (ypos + width)>>1; y++) {
coord_y = (y + (mv[1]>>1)) * ref_width_c; // pre-calculate
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
dst->u_recdata[y*dst_width_c + x] = ref->u_recdata[coord_y + x + (mv[0]>>1)];
dst->v_recdata[y*dst_width_c + x] = ref->v_recdata[coord_y + x + (mv[0]>>1)];
}
}
}
}
}
/**
* \brief Get MV prediction for current block
* \param encoder encoder control struct to use
* \param x_cu block x position in SCU
* \param y_cu block y position in SCU
* \param depth current block depth
* \param mv_pred[2][2] 2x motion vector prediction
*/
void inter_get_mv_cand(encoder_control *encoder, int32_t x_cu, int32_t y_cu, int8_t depth, int16_t mv_cand[2][2])
{
uint8_t cur_block_in_scu = (LCU_WIDTH>>depth) / CU_MIN_SIZE_PIXELS; //!< the width of the current block on SCU
uint8_t candidates = 0;
/*
Predictor block locations
____ _______
|B2|______|B1|B0|
| |
| Cur CU |
__| |
|A1|_________|
|A0|
*/
cu_info *b0, *b1, *b2, *a0, *a1;
b0 = b1 = b2 = a0 = a1 = NULL;
// A0 and A1 availability testing
if (x_cu != 0) {
a1 = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu - 1 + (y_cu + cur_block_in_scu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if (!a1->coded) a1 = NULL;
if (y_cu + cur_block_in_scu < encoder->in.height_in_lcu<<MAX_DEPTH) {
a0 = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu - 1 + (y_cu + cur_block_in_scu) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if (!a0->coded) a0 = NULL;
}
}
// B0, B1 and B2 availability testing
if (y_cu != 0) {
if (x_cu + cur_block_in_scu < encoder->in.width_in_lcu<<MAX_DEPTH) {
b0 = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu + cur_block_in_scu + (y_cu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if (!b0->coded) b0 = NULL;
}
b1 = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu + cur_block_in_scu - 1 + (y_cu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if (!b1->coded) b1 = NULL;
if (x_cu != 0) {
b2 = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_cu - 1 + (y_cu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
if(!b2->coded) b2 = NULL;
}
}
// Left predictors
if (a0 && a0->type == CU_INTER) {
mv_cand[candidates][0] = a0->inter.mv[0];
mv_cand[candidates][1] = a0->inter.mv[1];
candidates++;
} else if (a1 && a1->type == CU_INTER) {
mv_cand[candidates][0] = a1->inter.mv[0];
mv_cand[candidates][1] = a1->inter.mv[1];
candidates++;
}
// Top predictors
if (b0 && b0->type == CU_INTER) {
mv_cand[candidates][0] = b0->inter.mv[0];
mv_cand[candidates][1] = b0->inter.mv[1];
candidates++;
} else if (b1 && b1->type == CU_INTER) {
mv_cand[candidates][0] = b1->inter.mv[0];
mv_cand[candidates][1] = b1->inter.mv[1];
candidates++;
} else if(b2 && b2->type == CU_INTER) {
mv_cand[candidates][0] = b2->inter.mv[0];
mv_cand[candidates][1] = b2->inter.mv[1];
candidates++;
}
// Remove identical candidate
if(candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) {
candidates = 1;
}
#if ENABLE_TEMPORAL_MVP
if(candidates < 2) {
//TODO: add temporal mv predictor
}
#endif
// Fill with (0,0)
while (candidates < 2) {
mv_cand[candidates][0] = 0;
mv_cand[candidates][1] = 0;
candidates++;
}
}