mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-12-04 21:54:05 +00:00
1222 lines
48 KiB
C
1222 lines
48 KiB
C
/*****************************************************************************
|
||
* This file is part of Kvazaar HEVC encoder.
|
||
*
|
||
* Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
|
||
* All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without modification,
|
||
* are permitted provided that the following conditions are met:
|
||
*
|
||
* * Redistributions of source code must retain the above copyright notice, this
|
||
* list of conditions and the following disclaimer.
|
||
*
|
||
* * Redistributions in binary form must reproduce the above copyright notice, this
|
||
* list of conditions and the following disclaimer in the documentation and/or
|
||
* other materials provided with the distribution.
|
||
*
|
||
* * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
|
||
* contributors may be used to endorse or promote products derived from
|
||
* this software without specific prior written permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
* INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
|
||
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
* INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
****************************************************************************/
|
||
|
||
#include "search.h"
|
||
|
||
#include <limits.h>
|
||
#include <string.h>
|
||
|
||
#include "cabac.h"
|
||
#include "encoder.h"
|
||
#include "encode_coding_tree.h"
|
||
#include "imagelist.h"
|
||
#include "inter.h"
|
||
#include "intra.h"
|
||
#include "kvazaar.h"
|
||
#include "rdo.h"
|
||
#include "search_inter.h"
|
||
#include "search_intra.h"
|
||
#include "threadqueue.h"
|
||
#include "transform.h"
|
||
#include "videoframe.h"
|
||
#include "strategies/strategies-picture.h"
|
||
#include "strategies/strategies-quant.h"
|
||
|
||
|
||
#define IN_FRAME(x, y, width, height, block_width, block_height) \
|
||
((x) >= 0 && (y) >= 0 \
|
||
&& (x) + (block_width) <= (width) \
|
||
&& (y) + (block_height) <= (height))
|
||
|
||
// Cost threshold for doing intra search in inter frames with --rd=0.
|
||
static const int INTRA_THRESHOLD = 8;
|
||
|
||
|
||
static INLINE void copy_cu_info(int x_local, int y_local, int width, lcu_t *from, lcu_t *to)
|
||
{
|
||
for (int y = y_local; y < y_local + width; y += SCU_WIDTH) {
|
||
for (int x = x_local; x < x_local + width; x += SCU_WIDTH) {
|
||
*LCU_GET_CU_AT_PX(to, x, y) = *LCU_GET_CU_AT_PX(from, x, y);
|
||
}
|
||
}
|
||
}
|
||
|
||
static INLINE void copy_cu_pixels(int x_local, int y_local, int width, lcu_t *from, lcu_t *to)
|
||
{
|
||
const int luma_index = x_local + y_local * LCU_WIDTH;
|
||
const int chroma_index = (x_local / 2) + (y_local / 2) * (LCU_WIDTH / 2);
|
||
|
||
kvz_pixels_blit(&from->rec.y[luma_index], &to->rec.y[luma_index],
|
||
width, width, LCU_WIDTH, LCU_WIDTH);
|
||
if (from->rec.chroma_format != KVZ_CSP_400) {
|
||
kvz_pixels_blit(&from->rec.u[chroma_index], &to->rec.u[chroma_index],
|
||
width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
|
||
kvz_pixels_blit(&from->rec.v[chroma_index], &to->rec.v[chroma_index],
|
||
width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
|
||
}
|
||
}
|
||
|
||
static INLINE void copy_cu_coeffs(int x_local, int y_local, int width, lcu_t *from, lcu_t *to)
|
||
{
|
||
const int luma_z = xy_to_zorder(LCU_WIDTH, x_local, y_local);
|
||
copy_coeffs(&from->coeff.y[luma_z], &to->coeff.y[luma_z], width);
|
||
|
||
if (from->rec.chroma_format != KVZ_CSP_400) {
|
||
const int chroma_z = xy_to_zorder(LCU_WIDTH_C, x_local >> 1, y_local >> 1);
|
||
copy_coeffs(&from->coeff.u[chroma_z], &to->coeff.u[chroma_z], width >> 1);
|
||
copy_coeffs(&from->coeff.v[chroma_z], &to->coeff.v[chroma_z], width >> 1);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Copy all non-reference CU data from next level to current level.
|
||
*/
|
||
static void work_tree_copy_up(int x_local, int y_local, int depth, lcu_t *work_tree)
|
||
{
|
||
const int width = LCU_WIDTH >> depth;
|
||
copy_cu_info (x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]);
|
||
copy_cu_pixels(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]);
|
||
copy_cu_coeffs(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]);
|
||
}
|
||
|
||
|
||
/**
|
||
* Copy all non-reference CU data from current level to all lower levels.
|
||
*/
|
||
static void work_tree_copy_down(int x_local, int y_local, int depth, lcu_t *work_tree)
|
||
{
|
||
const int width = LCU_WIDTH >> depth;
|
||
for (int i = depth + 1; i <= MAX_PU_DEPTH; i++) {
|
||
copy_cu_info (x_local, y_local, width, &work_tree[depth], &work_tree[i]);
|
||
copy_cu_pixels(x_local, y_local, width, &work_tree[depth], &work_tree[i]);
|
||
}
|
||
}
|
||
|
||
void kvz_lcu_fill_trdepth(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth)
|
||
{
|
||
const int x_local = SUB_SCU(x_px);
|
||
const int y_local = SUB_SCU(y_px);
|
||
const int width = LCU_WIDTH >> depth;
|
||
|
||
for (unsigned y = 0; y < width; y += SCU_WIDTH) {
|
||
for (unsigned x = 0; x < width; x += SCU_WIDTH) {
|
||
LCU_GET_CU_AT_PX(lcu, x_local + x, y_local + y)->tr_depth = tr_depth;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void lcu_fill_cu_info(lcu_t *lcu, int x_local, int y_local, int width, int height, cu_info_t *cu)
|
||
{
|
||
// Set mode in every CU covered by part_mode in this depth.
|
||
for (int y = y_local; y < y_local + height; y += SCU_WIDTH) {
|
||
for (int x = x_local; x < x_local + width; x += SCU_WIDTH) {
|
||
cu_info_t *to = LCU_GET_CU_AT_PX(lcu, x, y);
|
||
to->type = cu->type;
|
||
to->depth = cu->depth;
|
||
to->part_size = cu->part_size;
|
||
to->qp = cu->qp;
|
||
|
||
if (cu->type == CU_INTRA) {
|
||
to->intra.mode = cu->intra.mode;
|
||
to->intra.mode_chroma = cu->intra.mode_chroma;
|
||
} else {
|
||
to->skipped = cu->skipped;
|
||
to->merged = cu->merged;
|
||
to->merge_idx = cu->merge_idx;
|
||
to->inter = cu->inter;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void lcu_fill_inter(lcu_t *lcu, int x_local, int y_local, int cu_width)
|
||
{
|
||
const part_mode_t part_mode = LCU_GET_CU_AT_PX(lcu, x_local, y_local)->part_size;
|
||
const int num_pu = kvz_part_mode_num_parts[part_mode];
|
||
|
||
for (int i = 0; i < num_pu; ++i) {
|
||
const int x_pu = PU_GET_X(part_mode, cu_width, x_local, i);
|
||
const int y_pu = PU_GET_Y(part_mode, cu_width, y_local, i);
|
||
const int width_pu = PU_GET_W(part_mode, cu_width, i);
|
||
const int height_pu = PU_GET_H(part_mode, cu_width, i);
|
||
|
||
cu_info_t *pu = LCU_GET_CU_AT_PX(lcu, x_pu, y_pu);
|
||
pu->type = CU_INTER;
|
||
lcu_fill_cu_info(lcu, x_pu, y_pu, width_pu, height_pu, pu);
|
||
}
|
||
}
|
||
|
||
static void lcu_fill_cbf(lcu_t *lcu, int x_local, int y_local, int width, cu_info_t *cur_cu)
|
||
{
|
||
const uint32_t tr_split = cur_cu->tr_depth - cur_cu->depth;
|
||
const uint32_t mask = ~((width >> tr_split)-1);
|
||
|
||
// Set coeff flags in every CU covered by part_mode in this depth.
|
||
for (uint32_t y = y_local; y < y_local + width; y += SCU_WIDTH) {
|
||
for (uint32_t x = x_local; x < x_local + width; x += SCU_WIDTH) {
|
||
// Use TU top-left CU to propagate coeff flags
|
||
cu_info_t *cu_from = LCU_GET_CU_AT_PX(lcu, x & mask, y & mask);
|
||
cu_info_t *cu_to = LCU_GET_CU_AT_PX(lcu, x, y);
|
||
if (cu_from != cu_to) {
|
||
// Chroma coeff data is not used, luma is needed for deblocking
|
||
cbf_copy(&cu_to->cbf, cu_from->cbf, COLOR_Y);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
//Calculates cost for all zero coeffs
|
||
static double cu_zero_coeff_cost(const encoder_state_t *state, lcu_t *work_tree, const int x, const int y,
|
||
const int depth)
|
||
{
|
||
int x_local = SUB_SCU(x);
|
||
int y_local = SUB_SCU(y);
|
||
int cu_width = LCU_WIDTH >> depth;
|
||
lcu_t *const lcu = &work_tree[depth];
|
||
|
||
const int luma_index = y_local * LCU_WIDTH + x_local;
|
||
const int chroma_index = (y_local / 2) * LCU_WIDTH_C + (x_local / 2);
|
||
|
||
double ssd = 0.0;
|
||
ssd += KVZ_LUMA_MULT * kvz_pixels_calc_ssd(
|
||
&lcu->ref.y[luma_index], &lcu->rec.y[luma_index],
|
||
LCU_WIDTH, LCU_WIDTH, cu_width
|
||
);
|
||
if (x % 8 == 0 && y % 8 == 0 && state->encoder_control->chroma_format != KVZ_CSP_400) {
|
||
ssd += KVZ_CHROMA_MULT * kvz_pixels_calc_ssd(
|
||
&lcu->ref.u[chroma_index], &lcu->rec.u[chroma_index],
|
||
LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2
|
||
);
|
||
ssd += KVZ_CHROMA_MULT * kvz_pixels_calc_ssd(
|
||
&lcu->ref.v[chroma_index], &lcu->rec.v[chroma_index],
|
||
LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2
|
||
);
|
||
}
|
||
// Save the pixels at a lower level of the working tree.
|
||
copy_cu_pixels(x_local, y_local, cu_width, lcu, &work_tree[depth + 1]);
|
||
|
||
return ssd;
|
||
}
|
||
|
||
|
||
/**
|
||
* Calculate RD cost for a Coding Unit.
|
||
* \return Cost of block
|
||
* \param ref_cu CU used for prediction parameters.
|
||
*
|
||
* Calculates the RDO cost of a single CU that will not be split further.
|
||
* Takes into account SSD of reconstruction and the cost of encoding whatever
|
||
* prediction unit data needs to be coded.
|
||
*/
|
||
double kvz_cu_rd_cost_luma(const encoder_state_t *const state,
|
||
const int x_px, const int y_px, const int depth,
|
||
const cu_info_t *const pred_cu,
|
||
lcu_t *const lcu)
|
||
{
|
||
const int width = LCU_WIDTH >> depth;
|
||
const int skip_residual_coding = pred_cu->skipped || (pred_cu->type == CU_INTER && pred_cu->cbf == 0);
|
||
|
||
// cur_cu is used for TU parameters.
|
||
cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px);
|
||
|
||
double coeff_bits = 0;
|
||
double tr_tree_bits = 0;
|
||
|
||
// Check that lcu is not in
|
||
assert(x_px >= 0 && x_px < LCU_WIDTH);
|
||
assert(y_px >= 0 && y_px < LCU_WIDTH);
|
||
|
||
const uint8_t tr_depth = tr_cu->tr_depth - depth;
|
||
|
||
cabac_data_t* cabac = (cabac_data_t *)&state->search_cabac;
|
||
|
||
// Add transform_tree split_transform_flag bit cost.
|
||
bool intra_split_flag = pred_cu->type == CU_INTRA && pred_cu->part_size == SIZE_NxN && depth == 3;
|
||
int max_tr_depth;
|
||
if (pred_cu->type == CU_INTRA) {
|
||
max_tr_depth = state->encoder_control->cfg.tr_depth_intra + intra_split_flag;
|
||
}
|
||
else {
|
||
max_tr_depth = state->encoder_control->tr_depth_inter;
|
||
}
|
||
if (width <= TR_MAX_WIDTH
|
||
&& width > TR_MIN_WIDTH
|
||
&& !intra_split_flag
|
||
&& MIN(tr_cu->tr_depth, depth) - tr_cu->depth < max_tr_depth
|
||
&& !skip_residual_coding)
|
||
{
|
||
cabac_ctx_t *ctx = &(cabac->ctx.trans_subdiv_model[5 - (6 - depth)]);
|
||
CABAC_FBITS_UPDATE(cabac, ctx, tr_depth > 0, tr_tree_bits, "tr_split_search");
|
||
}
|
||
|
||
if (tr_depth > 0) {
|
||
int offset = width / 2;
|
||
double sum = 0;
|
||
|
||
sum += kvz_cu_rd_cost_luma(state, x_px, y_px, depth + 1, pred_cu, lcu);
|
||
sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
|
||
sum += kvz_cu_rd_cost_luma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
|
||
sum += kvz_cu_rd_cost_luma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
|
||
|
||
return sum + tr_tree_bits * state->lambda;
|
||
}
|
||
|
||
|
||
if (cabac->update && tr_cu->tr_depth == tr_cu->depth && !skip_residual_coding) {
|
||
// Because these need to be coded before the luma cbf they also need to be counted
|
||
// before the cabac state changes. However, since this branch is only executed when
|
||
// calculating the last RD cost it is not problem to include the chroma cbf costs in
|
||
// luma, because the chroma cost is calculated right after the luma cost.
|
||
// However, if we have different tr_depth, the bits cannot be written in correct
|
||
// order anyways so do not touch the chroma cbf here.
|
||
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
|
||
cabac_ctx_t* cr_ctx = &(cabac->ctx.qt_cbf_model_chroma[depth - tr_cu->depth]);
|
||
cabac->cur_ctx = cr_ctx;
|
||
int u_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_U);
|
||
int v_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_V);
|
||
CABAC_FBITS_UPDATE(cabac, cr_ctx, u_is_set, tr_tree_bits, "cbf_cb_search");
|
||
CABAC_FBITS_UPDATE(cabac, cr_ctx, v_is_set, tr_tree_bits, "cbf_cb_search");
|
||
}
|
||
}
|
||
|
||
// Add transform_tree cbf_luma bit cost.
|
||
const int is_tr_split = tr_cu->tr_depth - tr_cu->depth;
|
||
if (pred_cu->type == CU_INTRA ||
|
||
is_tr_split ||
|
||
cbf_is_set(tr_cu->cbf, depth, COLOR_U) ||
|
||
cbf_is_set(tr_cu->cbf, depth, COLOR_V))
|
||
{
|
||
cabac_ctx_t *ctx = &(cabac->ctx.qt_cbf_model_luma[!is_tr_split]);
|
||
int is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_Y);
|
||
|
||
CABAC_FBITS_UPDATE(cabac, ctx, is_set, tr_tree_bits, "cbf_y_search");
|
||
}
|
||
|
||
// SSD between reconstruction and original
|
||
int ssd = 0;
|
||
if (!state->encoder_control->cfg.lossless) {
|
||
int index = y_px * LCU_WIDTH + x_px;
|
||
ssd = kvz_pixels_calc_ssd(&lcu->ref.y[index], &lcu->rec.y[index],
|
||
LCU_WIDTH, LCU_WIDTH,
|
||
width);
|
||
}
|
||
|
||
|
||
if (!skip_residual_coding) {
|
||
int8_t luma_scan_mode = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode, depth);
|
||
const coeff_t *coeffs = &lcu->coeff.y[xy_to_zorder(LCU_WIDTH, x_px, y_px)];
|
||
|
||
coeff_bits += kvz_get_coeff_cost(state, coeffs, width, 0, luma_scan_mode);
|
||
}
|
||
|
||
double bits = tr_tree_bits + coeff_bits;
|
||
return (double)ssd * KVZ_LUMA_MULT + bits * state->lambda;
|
||
}
|
||
|
||
|
||
double kvz_cu_rd_cost_chroma(const encoder_state_t *const state,
|
||
const int x_px, const int y_px, const int depth,
|
||
const cu_info_t *const pred_cu,
|
||
lcu_t *const lcu)
|
||
{
|
||
const vector2d_t lcu_px = { x_px / 2, y_px / 2 };
|
||
const int width = (depth <= MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth;
|
||
cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px);
|
||
const int skip_residual_coding = pred_cu->skipped || (pred_cu->type == CU_INTER && pred_cu->cbf == 0);
|
||
|
||
double tr_tree_bits = 0;
|
||
double coeff_bits = 0;
|
||
|
||
assert(x_px >= 0 && x_px < LCU_WIDTH);
|
||
assert(y_px >= 0 && y_px < LCU_WIDTH);
|
||
|
||
if (x_px % 8 != 0 || y_px % 8 != 0) {
|
||
// For MAX_PU_DEPTH calculate chroma for previous depth for the first
|
||
// block and return 0 cost for all others.
|
||
return 0;
|
||
}
|
||
|
||
// See luma for why the second condition
|
||
if (depth < MAX_PU_DEPTH && (!state->search_cabac.update || tr_cu->tr_depth != tr_cu->depth) && !skip_residual_coding) {
|
||
const int tr_depth = depth - pred_cu->depth;
|
||
cabac_data_t* cabac = (cabac_data_t*)&state->search_cabac;
|
||
cabac_ctx_t *ctx = &(cabac->ctx.qt_cbf_model_chroma[tr_depth]);
|
||
cabac->cur_ctx = ctx;
|
||
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_U)) {
|
||
int u_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_U);
|
||
CABAC_FBITS_UPDATE(cabac, ctx, u_is_set, tr_tree_bits, "cbf_cb_search");
|
||
}
|
||
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_V)) {
|
||
int v_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_V);
|
||
CABAC_FBITS_UPDATE(cabac, ctx, v_is_set, tr_tree_bits, "cbf_cb_search");
|
||
}
|
||
}
|
||
|
||
if (tr_cu->tr_depth > depth) {
|
||
int offset = LCU_WIDTH >> (depth + 1);
|
||
double sum = 0;
|
||
|
||
sum += kvz_cu_rd_cost_chroma(state, x_px, y_px, depth + 1, pred_cu, lcu);
|
||
sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
|
||
sum += kvz_cu_rd_cost_chroma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
|
||
sum += kvz_cu_rd_cost_chroma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
|
||
|
||
return sum + tr_tree_bits * state->lambda;
|
||
}
|
||
|
||
// Chroma SSD
|
||
int ssd = 0;
|
||
if (!state->encoder_control->cfg.lossless) {
|
||
int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x;
|
||
int ssd_u = kvz_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.u[index],
|
||
LCU_WIDTH_C, LCU_WIDTH_C,
|
||
width);
|
||
int ssd_v = kvz_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.v[index],
|
||
LCU_WIDTH_C, LCU_WIDTH_C,
|
||
width);
|
||
ssd = ssd_u + ssd_v;
|
||
}
|
||
|
||
if (!skip_residual_coding)
|
||
{
|
||
int8_t scan_order = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode_chroma, depth);
|
||
const int index = xy_to_zorder(LCU_WIDTH_C, lcu_px.x, lcu_px.y);
|
||
|
||
coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.u[index], width, 2, scan_order);
|
||
coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.v[index], width, 2, scan_order);
|
||
}
|
||
|
||
double bits = tr_tree_bits + coeff_bits;
|
||
return (double)ssd * KVZ_CHROMA_MULT + bits * state->lambda;
|
||
}
|
||
|
||
static double cu_rd_cost_tr_split_accurate(const encoder_state_t* const state,
|
||
const int x_px, const int y_px, const int depth,
|
||
const cu_info_t* const pred_cu,
|
||
lcu_t* const lcu) {
|
||
const int width = LCU_WIDTH >> depth;
|
||
|
||
const int skip_residual_coding = pred_cu->skipped || (pred_cu->type == CU_INTER && pred_cu->cbf == 0);
|
||
// cur_cu is used for TU parameters.
|
||
cu_info_t* const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px);
|
||
|
||
double coeff_bits = 0;
|
||
double tr_tree_bits = 0;
|
||
|
||
// Check that lcu is not in
|
||
assert(x_px >= 0 && x_px < LCU_WIDTH);
|
||
assert(y_px >= 0 && y_px < LCU_WIDTH);
|
||
|
||
const uint8_t tr_depth = tr_cu->tr_depth - depth;
|
||
|
||
const int cb_flag_u = cbf_is_set(tr_cu->cbf, depth, COLOR_U);
|
||
const int cb_flag_v = cbf_is_set(tr_cu->cbf, depth, COLOR_V);
|
||
|
||
cabac_data_t* cabac = (cabac_data_t*)&state->search_cabac;
|
||
|
||
{
|
||
int cbf = cbf_is_set_any(pred_cu->cbf, depth);
|
||
// Only need to signal coded block flag if not skipped or merged
|
||
// skip = no coded residual, merge = coded residual
|
||
if (pred_cu->type == CU_INTER && (pred_cu->part_size != SIZE_2Nx2N || !pred_cu->merged)) {
|
||
CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_qt_root_cbf_model), cbf, tr_tree_bits, "rqt_root_cbf");
|
||
}
|
||
|
||
}
|
||
// Add transform_tree split_transform_flag bit cost.
|
||
bool intra_split_flag = pred_cu->type == CU_INTRA && pred_cu->part_size == SIZE_NxN && depth == 3;
|
||
int max_tr_depth;
|
||
if (pred_cu->type == CU_INTRA) {
|
||
max_tr_depth = state->encoder_control->cfg.tr_depth_intra + intra_split_flag;
|
||
}
|
||
else {
|
||
max_tr_depth = state->encoder_control->tr_depth_inter;
|
||
}
|
||
if (width <= TR_MAX_WIDTH
|
||
&& width > TR_MIN_WIDTH
|
||
&& !intra_split_flag
|
||
&& MIN(tr_cu->tr_depth, depth) - tr_cu->depth < max_tr_depth
|
||
&& !skip_residual_coding)
|
||
{
|
||
cabac_ctx_t* ctx = &(cabac->ctx.trans_subdiv_model[5 - (6 - depth)]);
|
||
CABAC_FBITS_UPDATE(cabac, ctx, tr_depth > 0, tr_tree_bits, "tr_split_search");
|
||
}
|
||
|
||
if(state->encoder_control->chroma_format != KVZ_CSP_400 && !skip_residual_coding) {
|
||
if(tr_cu->depth == depth || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_U)) {
|
||
CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.qt_cbf_model_chroma[depth - tr_cu->depth]), cb_flag_u, tr_tree_bits, "cbf_cb");
|
||
}
|
||
if(tr_cu->depth == depth || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_V)) {
|
||
CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.qt_cbf_model_chroma[depth - tr_cu->depth]), cb_flag_v, tr_tree_bits, "cbf_cr");
|
||
}
|
||
}
|
||
|
||
if (tr_depth > 0) {
|
||
int offset = LCU_WIDTH >> (depth + 1);
|
||
double sum = 0;
|
||
|
||
sum += cu_rd_cost_tr_split_accurate(state, x_px, y_px, depth + 1, pred_cu, lcu);
|
||
sum += cu_rd_cost_tr_split_accurate(state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
|
||
sum += cu_rd_cost_tr_split_accurate(state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
|
||
sum += cu_rd_cost_tr_split_accurate(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
|
||
return sum + tr_tree_bits * state->lambda;
|
||
}
|
||
const int cb_flag_y = cbf_is_set(tr_cu->cbf, depth, COLOR_Y) ;
|
||
|
||
// Add transform_tree cbf_luma bit cost.
|
||
const int is_tr_split = depth - tr_cu->depth;
|
||
if ((pred_cu->type == CU_INTRA ||
|
||
is_tr_split ||
|
||
cb_flag_u ||
|
||
cb_flag_v)
|
||
&& !skip_residual_coding)
|
||
{
|
||
cabac_ctx_t* ctx = &(cabac->ctx.qt_cbf_model_luma[!is_tr_split]);
|
||
|
||
CABAC_FBITS_UPDATE(cabac, ctx, cb_flag_y, tr_tree_bits, "cbf_y_search");
|
||
}
|
||
// SSD between reconstruction and original
|
||
unsigned luma_ssd = 0;
|
||
if (!state->encoder_control->cfg.lossless) {
|
||
int index = y_px * LCU_WIDTH + x_px;
|
||
luma_ssd = kvz_pixels_calc_ssd(&lcu->ref.y[index], &lcu->rec.y[index],
|
||
LCU_WIDTH, LCU_WIDTH,
|
||
width);
|
||
}
|
||
|
||
{
|
||
int8_t luma_scan_mode = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode, depth);
|
||
const coeff_t* coeffs = &lcu->coeff.y[xy_to_zorder(LCU_WIDTH, x_px, y_px)];
|
||
|
||
coeff_bits += kvz_get_coeff_cost(state, coeffs, width, 0, luma_scan_mode);
|
||
}
|
||
|
||
unsigned chroma_ssd = 0;
|
||
if(state->encoder_control->chroma_format != KVZ_CSP_400 && x_px % 8 == 0 && y_px % 8 == 0) {
|
||
const vector2d_t lcu_px = { x_px / 2, y_px / 2 };
|
||
const int chroma_width = (depth <= MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth;
|
||
if (!state->encoder_control->cfg.lossless) {
|
||
int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x;
|
||
unsigned ssd_u = kvz_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.u[index],
|
||
LCU_WIDTH_C, LCU_WIDTH_C,
|
||
chroma_width);
|
||
unsigned ssd_v = kvz_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.v[index],
|
||
LCU_WIDTH_C, LCU_WIDTH_C,
|
||
chroma_width);
|
||
chroma_ssd = ssd_u + ssd_v;
|
||
}
|
||
|
||
{
|
||
int8_t scan_order = kvz_get_scan_order(pred_cu->type, pred_cu->intra.mode_chroma, depth);
|
||
const unsigned index = xy_to_zorder(LCU_WIDTH_C, lcu_px.x, lcu_px.y);
|
||
|
||
coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.u[index], chroma_width, 2, scan_order);
|
||
coeff_bits += kvz_get_coeff_cost(state, &lcu->coeff.v[index], chroma_width, 2, scan_order);
|
||
}
|
||
}
|
||
|
||
double bits = tr_tree_bits + coeff_bits;
|
||
return luma_ssd * KVZ_LUMA_MULT + chroma_ssd * KVZ_CHROMA_MULT + bits * state->lambda;
|
||
}
|
||
|
||
|
||
// Return estimate of bits used to code prediction mode of cur_cu.
|
||
static double calc_mode_bits(const encoder_state_t *state,
|
||
const lcu_t *lcu,
|
||
const cu_info_t * cur_cu,
|
||
int x, int y)
|
||
{
|
||
int x_local = SUB_SCU(x);
|
||
int y_local = SUB_SCU(y);
|
||
|
||
assert(cur_cu->type == CU_INTRA);
|
||
|
||
int8_t candidate_modes[3];
|
||
{
|
||
const cu_info_t *left_cu = ((x >= SCU_WIDTH) ? LCU_GET_CU_AT_PX(lcu, x_local - SCU_WIDTH, y_local) : NULL);
|
||
const cu_info_t *above_cu = ((y >= SCU_WIDTH) ? LCU_GET_CU_AT_PX(lcu, x_local, y_local - SCU_WIDTH) : NULL);
|
||
kvz_intra_get_dir_luma_predictor(x, y, candidate_modes, cur_cu, left_cu, above_cu);
|
||
}
|
||
|
||
double mode_bits = kvz_luma_mode_bits(state, cur_cu->intra.mode, candidate_modes);
|
||
|
||
if (x % 8 == 0 && y % 8 == 0 && state->encoder_control->chroma_format != KVZ_CSP_400) {
|
||
mode_bits += kvz_chroma_mode_bits(state, cur_cu->intra.mode_chroma, cur_cu->intra.mode);
|
||
}
|
||
|
||
return mode_bits;
|
||
}
|
||
|
||
|
||
// TODO: replace usages of this by the kvz_sort_indices_by_cost function.
|
||
/**
|
||
* \brief Sort modes and costs to ascending order according to costs.
|
||
*/
|
||
void kvz_sort_modes(int8_t *__restrict modes, double *__restrict costs, uint8_t length)
|
||
{
|
||
// Length for intra is always between 5 and 23, and is either 21, 17, 9 or 8 about
|
||
// 60% of the time, so there should be no need for anything more complex
|
||
// than insertion sort.
|
||
// Length for merge is 5 or less.
|
||
for (uint8_t i = 1; i < length; ++i) {
|
||
const double cur_cost = costs[i];
|
||
const int8_t cur_mode = modes[i];
|
||
uint8_t j = i;
|
||
while (j > 0 && cur_cost < costs[j - 1]) {
|
||
costs[j] = costs[j - 1];
|
||
modes[j] = modes[j - 1];
|
||
--j;
|
||
}
|
||
costs[j] = cur_cost;
|
||
modes[j] = cur_mode;
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
* \brief Sort keys (indices) to ascending order according to costs.
|
||
*/
|
||
void kvz_sort_keys_by_cost(unit_stats_map_t *__restrict map)
|
||
{
|
||
// Size of sorted arrays is expected to be "small". No need for faster algorithm.
|
||
for (uint8_t i = 1; i < map->size; ++i) {
|
||
const int8_t cur_indx = map->keys[i];
|
||
const double cur_cost = map->cost[cur_indx];
|
||
uint8_t j = i;
|
||
while (j > 0 && cur_cost < map->cost[map->keys[j - 1]]) {
|
||
map->keys[j] = map->keys[j - 1];
|
||
--j;
|
||
}
|
||
map->keys[j] = cur_indx;
|
||
}
|
||
}
|
||
|
||
|
||
static uint8_t get_ctx_cu_split_model(const lcu_t *lcu, int x, int y, int depth)
|
||
{
|
||
vector2d_t lcu_cu = { SUB_SCU(x), SUB_SCU(y) };
|
||
bool condA = x >= 8 && LCU_GET_CU_AT_PX(lcu, lcu_cu.x - 1, lcu_cu.y )->depth > depth;
|
||
bool condL = y >= 8 && LCU_GET_CU_AT_PX(lcu, lcu_cu.x, lcu_cu.y - 1)->depth > depth;
|
||
return condA + condL;
|
||
}
|
||
|
||
/**
|
||
* Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode.
|
||
* - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH.
|
||
* - Data structure work_tree is maintained such that the neighbouring SCUs
|
||
* and pixels to the left and up of current CU are the final CUs decided
|
||
* via the search. This is done by copying the relevant data to all
|
||
* relevant levels whenever a decision is made whether to split or not.
|
||
* - All the final data for the LCU gets eventually copied to depth 0, which
|
||
* will be the final output of the recursion.
|
||
*/
|
||
static double search_cu(encoder_state_t * const state, int x, int y, int depth, lcu_t *work_tree)
|
||
{
|
||
const encoder_control_t* ctrl = state->encoder_control;
|
||
const videoframe_t * const frame = state->tile->frame;
|
||
int cu_width = LCU_WIDTH >> depth;
|
||
double cost = MAX_DOUBLE;
|
||
double inter_zero_coeff_cost = MAX_DOUBLE;
|
||
double inter_bitcost = MAX_INT;
|
||
cu_info_t *cur_cu;
|
||
cabac_data_t pre_search_cabac;
|
||
memcpy(&pre_search_cabac, &state->search_cabac, sizeof(pre_search_cabac));
|
||
|
||
struct {
|
||
int32_t min;
|
||
int32_t max;
|
||
} pu_depth_inter, pu_depth_intra;
|
||
|
||
lcu_t *const lcu = &work_tree[depth];
|
||
|
||
int x_local = SUB_SCU(x);
|
||
int y_local = SUB_SCU(y);
|
||
|
||
// Stop recursion if the CU is completely outside the frame.
|
||
if (x >= frame->width || y >= frame->height) {
|
||
// Return zero cost because this CU does not have to be coded.
|
||
return 0;
|
||
}
|
||
|
||
int gop_layer = ctrl->cfg.gop_len != 0 ? ctrl->cfg.gop[state->frame->gop_offset].layer - 1 : 0;
|
||
|
||
// Assign correct depth limit
|
||
constraint_t* constr = state->constraint;
|
||
if(constr->ml_intra_depth_ctu) {
|
||
pu_depth_intra.min = constr->ml_intra_depth_ctu->_mat_upper_depth[(x_local >> 3) + (y_local >> 3) * 8];
|
||
pu_depth_intra.max = constr->ml_intra_depth_ctu->_mat_lower_depth[(x_local >> 3) + (y_local >> 3) * 8];
|
||
}
|
||
else {
|
||
pu_depth_intra.min = ctrl->cfg.pu_depth_intra.min[gop_layer] >= 0 ? ctrl->cfg.pu_depth_intra.min[gop_layer] : ctrl->cfg.pu_depth_intra.min[0];
|
||
pu_depth_intra.max = ctrl->cfg.pu_depth_intra.max[gop_layer] >= 0 ? ctrl->cfg.pu_depth_intra.max[gop_layer] : ctrl->cfg.pu_depth_intra.max[0];
|
||
}
|
||
pu_depth_inter.min = ctrl->cfg.pu_depth_inter.min[gop_layer] >= 0 ? ctrl->cfg.pu_depth_inter.min[gop_layer] : ctrl->cfg.pu_depth_inter.min[0];
|
||
pu_depth_inter.max = ctrl->cfg.pu_depth_inter.max[gop_layer] >= 0 ? ctrl->cfg.pu_depth_inter.max[gop_layer] : ctrl->cfg.pu_depth_inter.max[0];
|
||
|
||
cur_cu = LCU_GET_CU_AT_PX(lcu, x_local, y_local);
|
||
// Assign correct depth
|
||
cur_cu->depth = depth > MAX_DEPTH ? MAX_DEPTH : depth;
|
||
cur_cu->tr_depth = depth > 0 ? depth : 1;
|
||
cur_cu->type = CU_NOTSET;
|
||
cur_cu->part_size = SIZE_2Nx2N;
|
||
cur_cu->qp = state->qp;
|
||
|
||
// If the CU is completely inside the frame at this depth, search for
|
||
// prediction modes at this depth.
|
||
if (x + cu_width <= frame->width &&
|
||
y + cu_width <= frame->height)
|
||
{
|
||
int cu_width_inter_min = LCU_WIDTH >> pu_depth_inter.max;
|
||
bool can_use_inter =
|
||
state->frame->slicetype != KVZ_SLICE_I &&
|
||
depth <= MAX_DEPTH &&
|
||
(
|
||
WITHIN(depth, pu_depth_inter.min, pu_depth_inter.max) ||
|
||
// When the split was forced because the CTU is partially outside the
|
||
// frame, we permit inter coding even if pu_depth_inter would
|
||
// otherwise forbid it.
|
||
(x & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame->width ||
|
||
(y & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame->height
|
||
);
|
||
|
||
if (can_use_inter) {
|
||
double mode_cost;
|
||
double mode_bitcost;
|
||
kvz_search_cu_inter(state,
|
||
x, y,
|
||
depth,
|
||
lcu,
|
||
&mode_cost, &mode_bitcost);
|
||
if (mode_cost < cost) {
|
||
cost = mode_cost;
|
||
inter_bitcost = mode_bitcost;
|
||
cur_cu->type = CU_INTER;
|
||
}
|
||
|
||
if (!(ctrl->cfg.early_skip && cur_cu->skipped)) {
|
||
// Try SMP and AMP partitioning.
|
||
static const part_mode_t mp_modes[] = {
|
||
// SMP
|
||
SIZE_2NxN, SIZE_Nx2N,
|
||
// AMP
|
||
SIZE_2NxnU, SIZE_2NxnD,
|
||
SIZE_nLx2N, SIZE_nRx2N,
|
||
};
|
||
|
||
const int first_mode = ctrl->cfg.smp_enable ? 0 : 2;
|
||
const int last_mode = (ctrl->cfg.amp_enable && cu_width >= 16) ? 5 : 1;
|
||
for (int i = first_mode; i <= last_mode; ++i) {
|
||
kvz_search_cu_smp(state,
|
||
x, y,
|
||
depth,
|
||
mp_modes[i],
|
||
&work_tree[depth + 1],
|
||
&mode_cost, &mode_bitcost);
|
||
if (mode_cost < cost) {
|
||
cost = mode_cost;
|
||
inter_bitcost = mode_bitcost;
|
||
// Copy inter prediction info to current level.
|
||
copy_cu_info(x_local, y_local, cu_width, &work_tree[depth + 1], lcu);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Try to skip intra search in rd==0 mode.
|
||
// This can be quite severe on bdrate. It might be better to do this
|
||
// decision after reconstructing the inter frame.
|
||
bool skip_intra = (state->encoder_control->cfg.rdo == 0
|
||
&& cur_cu->type != CU_NOTSET
|
||
&& cost / (cu_width * cu_width) < INTRA_THRESHOLD)
|
||
|| (ctrl->cfg.early_skip && cur_cu->skipped);
|
||
|
||
int32_t cu_width_intra_min = LCU_WIDTH >> pu_depth_intra.max;
|
||
bool can_use_intra =
|
||
(WITHIN(depth, pu_depth_intra.min, pu_depth_intra.max) ||
|
||
// When the split was forced because the CTU is partially outside
|
||
// the frame, we permit intra coding even if pu_depth_intra would
|
||
// otherwise forbid it.
|
||
(x & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame->width ||
|
||
(y & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame->height) &&
|
||
!(state->encoder_control->cfg.force_inter && state->frame->slicetype != KVZ_SLICE_I);
|
||
|
||
if (can_use_intra && !skip_intra) {
|
||
int8_t intra_mode;
|
||
double intra_cost;
|
||
kvz_search_cu_intra(state, x, y, depth, lcu,
|
||
&intra_mode, &intra_cost);
|
||
if(state->frame->slicetype != KVZ_SLICE_I) {
|
||
double pred_mode_type_bits = 0;
|
||
CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.cu_pred_mode_model, 1, pred_mode_type_bits, "pred_mode_flag");
|
||
CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.cu_skip_flag_model[kvz_get_skip_context(x, y, lcu, NULL)], 0, pred_mode_type_bits, "skip_flag");
|
||
intra_cost += pred_mode_type_bits * state->lambda;
|
||
}
|
||
if (intra_cost < cost) {
|
||
cost = intra_cost;
|
||
cur_cu->type = CU_INTRA;
|
||
cur_cu->part_size = depth > MAX_DEPTH ? SIZE_NxN : SIZE_2Nx2N;
|
||
cur_cu->intra.mode = intra_mode;
|
||
}
|
||
}
|
||
|
||
// Reconstruct best mode because we need the reconstructed pixels for
|
||
// mode search of adjacent CUs.
|
||
if (cur_cu->type == CU_INTRA) {
|
||
assert(cur_cu->part_size == SIZE_2Nx2N || cur_cu->part_size == SIZE_NxN);
|
||
cur_cu->intra.mode_chroma = cur_cu->intra.mode;
|
||
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
|
||
kvz_intra_recon_cu(state,
|
||
x, y,
|
||
depth,
|
||
cur_cu->intra.mode, -1, // skip chroma
|
||
NULL, lcu);
|
||
|
||
if (x % 8 == 0 && y % 8 == 0 && state->encoder_control->chroma_format != KVZ_CSP_400) {
|
||
// There is almost no benefit to doing the chroma mode search for
|
||
// rd2. Possibly because the luma mode search already takes chroma
|
||
// into account, so there is less of a chanse of luma mode being
|
||
// really bad for chroma.
|
||
if (ctrl->cfg.rdo == 3) {
|
||
cur_cu->intra.mode_chroma = kvz_search_cu_intra_chroma(state, x, y, depth, lcu);
|
||
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
|
||
}
|
||
|
||
kvz_intra_recon_cu(state,
|
||
x, y,
|
||
depth,
|
||
-1, cur_cu->intra.mode_chroma, // skip luma
|
||
NULL, lcu);
|
||
}
|
||
} else if (cur_cu->type == CU_INTER) {
|
||
|
||
if (!cur_cu->skipped) {
|
||
// Reset transform depth because intra messes with them.
|
||
// This will no longer be necessary if the transform depths are not shared.
|
||
int tr_depth = MAX(1, depth);
|
||
if (cur_cu->part_size != SIZE_2Nx2N) {
|
||
tr_depth = depth + 1;
|
||
}
|
||
kvz_lcu_fill_trdepth(lcu, x, y, depth, tr_depth);
|
||
|
||
const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400;
|
||
kvz_inter_recon_cu(state, lcu, x, y, cu_width, true, has_chroma);
|
||
|
||
if (ctrl->cfg.zero_coeff_rdo && !ctrl->cfg.lossless && !ctrl->cfg.rdoq_enable) {
|
||
//Calculate cost for zero coeffs
|
||
inter_zero_coeff_cost = cu_zero_coeff_cost(state, work_tree, x, y, depth) + inter_bitcost * state->lambda;
|
||
|
||
}
|
||
|
||
kvz_quantize_lcu_residual(state,
|
||
true, has_chroma,
|
||
x, y, depth,
|
||
NULL,
|
||
lcu,
|
||
false);
|
||
|
||
int cbf = cbf_is_set_any(cur_cu->cbf, depth);
|
||
|
||
if (cur_cu->merged && !cbf && cur_cu->part_size == SIZE_2Nx2N) {
|
||
cur_cu->merged = 0;
|
||
cur_cu->skipped = 1;
|
||
// Selecting skip reduces bits needed to code the CU
|
||
int skip_ctx = kvz_get_skip_context(x, y, lcu, NULL);
|
||
inter_bitcost = CTX_ENTROPY_FBITS(&state->search_cabac.ctx.cu_skip_flag_model[skip_ctx], 1);
|
||
inter_bitcost += CTX_ENTROPY_FBITS(&(state->search_cabac.ctx.cu_merge_idx_ext_model), cur_cu->merge_idx != 0);
|
||
inter_bitcost += cur_cu->merge_idx;
|
||
}
|
||
}
|
||
lcu_fill_inter(lcu, x_local, y_local, cu_width);
|
||
lcu_fill_cbf(lcu, x_local, y_local, cu_width, cur_cu);
|
||
}
|
||
}
|
||
|
||
if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) {
|
||
double bits = 0;
|
||
cabac_data_t* cabac = &state->search_cabac;
|
||
cabac->update = 1;
|
||
|
||
if(cur_cu->type != CU_INTRA || cur_cu->part_size == SIZE_2Nx2N) {
|
||
bits += kvz_mock_encode_coding_unit(
|
||
state,
|
||
cabac,
|
||
x, y, depth,
|
||
lcu,
|
||
cur_cu);
|
||
}
|
||
else {
|
||
// Intra 4<>4 PUs
|
||
if (state->frame->slicetype != KVZ_SLICE_I) {
|
||
cabac_ctx_t* ctx = &(cabac->ctx.cu_pred_mode_model);
|
||
CABAC_FBITS_UPDATE(cabac, ctx, 1, bits, "pred_mode_flag");
|
||
}
|
||
bits += calc_mode_bits(state, lcu, cur_cu, x, y);
|
||
}
|
||
|
||
cost = bits * state->lambda;
|
||
|
||
cost += cu_rd_cost_tr_split_accurate(state, x_local, y_local, depth, cur_cu, lcu);
|
||
|
||
if (ctrl->cfg.zero_coeff_rdo && inter_zero_coeff_cost <= cost) {
|
||
cost = inter_zero_coeff_cost;
|
||
|
||
// Restore saved pixels from lower level of the working tree.
|
||
copy_cu_pixels(x_local, y_local, cu_width, &work_tree[depth + 1], lcu);
|
||
|
||
if (cur_cu->merged && cur_cu->part_size == SIZE_2Nx2N) {
|
||
cur_cu->merged = 0;
|
||
cur_cu->skipped = 1;
|
||
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
|
||
}
|
||
|
||
if (cur_cu->tr_depth != depth) {
|
||
// Reset transform depth since there are no coefficients. This
|
||
// ensures that CBF is cleared for the whole area of the CU.
|
||
kvz_lcu_fill_trdepth(lcu, x, y, depth, depth);
|
||
}
|
||
|
||
cur_cu->cbf = 0;
|
||
lcu_fill_cbf(lcu, x_local, y_local, cu_width, cur_cu);
|
||
}
|
||
cabac->update = 0;
|
||
}
|
||
|
||
bool can_split_cu =
|
||
// If the CU is partially outside the frame, we need to split it even
|
||
// if pu_depth_intra and pu_depth_inter would not permit it.
|
||
cur_cu->type == CU_NOTSET ||
|
||
(depth < pu_depth_intra.max && !(state->encoder_control->cfg.force_inter&& state->frame->slicetype != KVZ_SLICE_I)) ||
|
||
(state->frame->slicetype != KVZ_SLICE_I &&
|
||
depth < pu_depth_inter.max);
|
||
|
||
// Recursively split all the way to max search depth.
|
||
if (can_split_cu) {
|
||
int half_cu = cu_width / 2;
|
||
double split_cost = 0.0;
|
||
int cbf = cbf_is_set_any(cur_cu->cbf, depth);
|
||
cabac_data_t post_seach_cabac;
|
||
memcpy(&post_seach_cabac, &state->search_cabac, sizeof(post_seach_cabac));
|
||
memcpy(&state->search_cabac, &pre_search_cabac, sizeof(post_seach_cabac));
|
||
state->search_cabac.update = 1;
|
||
|
||
double split_bits = 0;
|
||
|
||
if (depth < MAX_DEPTH) {
|
||
// Add cost of cu_split_flag.
|
||
uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth);
|
||
cabac_ctx_t *ctx = &(state->search_cabac.ctx.split_flag_model[split_model]);
|
||
CABAC_FBITS_UPDATE(&state->search_cabac, ctx, 1, split_bits, "split_search");
|
||
}
|
||
|
||
if (cur_cu->type == CU_INTRA && depth == MAX_DEPTH) {
|
||
// Add cost of intra part_size.
|
||
cabac_ctx_t *ctx = &(state->search_cabac.ctx.part_size_model[0]);
|
||
CABAC_FBITS_UPDATE(&state->search_cabac, ctx, 0, split_bits, "split_search");
|
||
}
|
||
state->search_cabac.update = 0;
|
||
split_cost += split_bits * state->lambda;
|
||
|
||
// If skip mode was selected for the block, skip further search.
|
||
// Skip mode means there's no coefficients in the block, so splitting
|
||
// might not give any better results but takes more time to do.
|
||
// It is ok to interrupt the search as soon as it is known that
|
||
// the split costs at least as much as not splitting.
|
||
if (cur_cu->type == CU_NOTSET || cbf || state->encoder_control->cfg.cu_split_termination == KVZ_CU_SPLIT_TERMINATION_OFF) {
|
||
if (split_cost < cost) split_cost += search_cu(state, x, y, depth + 1, work_tree);
|
||
if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y, depth + 1, work_tree);
|
||
if (split_cost < cost) split_cost += search_cu(state, x, y + half_cu, depth + 1, work_tree);
|
||
if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y + half_cu, depth + 1, work_tree);
|
||
} else {
|
||
split_cost = INT_MAX;
|
||
}
|
||
|
||
// If no search is not performed for this depth, try just the best mode
|
||
// of the top left CU from the next depth. This should ensure that 64x64
|
||
// gets used, at least in the most obvious cases, while avoiding any
|
||
// searching.
|
||
if (cur_cu->type == CU_NOTSET && depth < MAX_PU_DEPTH
|
||
&& x + cu_width <= frame->width && y + cu_width <= frame->height
|
||
&& state->encoder_control->cfg.combine_intra_cus)
|
||
{
|
||
|
||
cu_info_t *cu_d1 = LCU_GET_CU_AT_PX(&work_tree[depth + 1], x_local, y_local);
|
||
|
||
// If the best CU in depth+1 is intra and the biggest it can be, try it.
|
||
if (cu_d1->type == CU_INTRA && cu_d1->depth == depth + 1) {
|
||
cabac_data_t temp_cabac;
|
||
memcpy(&temp_cabac, &state->search_cabac, sizeof(temp_cabac));
|
||
memcpy(&state->search_cabac, &pre_search_cabac, sizeof(pre_search_cabac));
|
||
cost = 0;
|
||
double bits = 0;
|
||
if (depth < MAX_DEPTH) {
|
||
uint8_t split_model = get_ctx_cu_split_model(lcu, x, y, depth);
|
||
cabac_ctx_t* ctx = &(state->search_cabac.ctx.split_flag_model[split_model]);
|
||
CABAC_FBITS_UPDATE(&state->search_cabac, ctx, 0, bits, "no_split_search");
|
||
}
|
||
else if (depth == MAX_DEPTH && cur_cu->type == CU_INTRA) {
|
||
// Add cost of intra part_size.
|
||
cabac_ctx_t* ctx = &(state->search_cabac.ctx.part_size_model[0]);
|
||
CABAC_FBITS_UPDATE(&state->search_cabac, ctx, 1, bits, "no_split_search");
|
||
}
|
||
|
||
cur_cu->intra = cu_d1->intra;
|
||
cur_cu->type = CU_INTRA;
|
||
cur_cu->part_size = SIZE_2Nx2N;
|
||
|
||
kvz_lcu_fill_trdepth(lcu, x, y, depth, cur_cu->tr_depth);
|
||
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
|
||
|
||
const bool has_chroma = state->encoder_control->chroma_format != KVZ_CSP_400;
|
||
const int8_t mode_chroma = has_chroma ? cur_cu->intra.mode_chroma : -1;
|
||
kvz_intra_recon_cu(state,
|
||
x, y,
|
||
depth,
|
||
cur_cu->intra.mode, mode_chroma,
|
||
NULL, lcu);
|
||
|
||
double mode_bits = calc_mode_bits(state, lcu, cur_cu, x, y) + bits;
|
||
cost += mode_bits * state->lambda;
|
||
|
||
cost += cu_rd_cost_tr_split_accurate(state, x_local, y_local, depth, cur_cu, lcu);
|
||
|
||
memcpy(&post_seach_cabac, &state->search_cabac, sizeof(post_seach_cabac));
|
||
memcpy(&state->search_cabac, &temp_cabac, sizeof(temp_cabac));
|
||
}
|
||
}
|
||
|
||
if (split_cost < cost) {
|
||
// Copy split modes to this depth.
|
||
cost = split_cost;
|
||
work_tree_copy_up(x_local, y_local, depth, work_tree);
|
||
#if KVZ_DEBUG
|
||
debug_split = 1;
|
||
#endif
|
||
} else if (depth > 0) {
|
||
// Copy this CU's mode all the way down for use in adjacent CUs mode
|
||
// search.
|
||
memcpy(&state->search_cabac, &post_seach_cabac, sizeof(post_seach_cabac));
|
||
work_tree_copy_down(x_local, y_local, depth, work_tree);
|
||
}
|
||
} else if (depth >= 0 && depth < MAX_PU_DEPTH) {
|
||
// Need to copy modes down since the lower level of the work tree is used
|
||
// when searching SMP and AMP blocks.
|
||
work_tree_copy_down(x_local, y_local, depth, work_tree);
|
||
}
|
||
|
||
assert(cur_cu->type != CU_NOTSET);
|
||
|
||
return cost;
|
||
}
|
||
|
||
|
||
/**
|
||
* Initialize lcu_t for search.
|
||
* - Copy reference CUs.
|
||
* - Copy reference pixels from neighbouring LCUs.
|
||
* - Copy reference pixels from this LCU.
|
||
*/
|
||
static void init_lcu_t(const encoder_state_t * const state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf)
|
||
{
|
||
const videoframe_t * const frame = state->tile->frame;
|
||
|
||
FILL(*lcu, 0);
|
||
|
||
lcu->rec.chroma_format = state->encoder_control->chroma_format;
|
||
lcu->ref.chroma_format = state->encoder_control->chroma_format;
|
||
|
||
// Copy reference cu_info structs from neighbouring LCUs.
|
||
|
||
// Copy top CU row.
|
||
if (y > 0) {
|
||
for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) {
|
||
const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x + i, y - 1);
|
||
cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, i, -1);
|
||
memcpy(to_cu, from_cu, sizeof(*to_cu));
|
||
}
|
||
}
|
||
// Copy left CU column.
|
||
if (x > 0) {
|
||
for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) {
|
||
const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y + i);
|
||
cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, i);
|
||
memcpy(to_cu, from_cu, sizeof(*to_cu));
|
||
}
|
||
}
|
||
// Copy top-left CU.
|
||
if (x > 0 && y > 0) {
|
||
const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x - 1, y - 1);
|
||
cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, -1);
|
||
memcpy(to_cu, from_cu, sizeof(*to_cu));
|
||
}
|
||
|
||
// Copy top-right CU.
|
||
if (y > 0 && x + LCU_WIDTH < frame->width) {
|
||
const cu_info_t *from_cu = kvz_cu_array_at_const(frame->cu_array, x + LCU_WIDTH, y - 1);
|
||
cu_info_t *to_cu = LCU_GET_TOP_RIGHT_CU(lcu);
|
||
memcpy(to_cu, from_cu, sizeof(*to_cu));
|
||
}
|
||
|
||
// Copy reference pixels.
|
||
{
|
||
const int pic_width = frame->width;
|
||
// Copy top reference pixels.
|
||
if (y > 0) {
|
||
// hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH
|
||
// number of allocated pixels left.
|
||
int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x);
|
||
int x_min_in_lcu = (x>0) ? 0 : 1;
|
||
int luma_offset = OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu - 1);
|
||
int chroma_offset = OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu - 1);
|
||
int luma_bytes = (x_max + (1 - x_min_in_lcu))*sizeof(kvz_pixel);
|
||
int chroma_bytes = (x_max / 2 + (1 - x_min_in_lcu))*sizeof(kvz_pixel);
|
||
|
||
memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[luma_offset], luma_bytes);
|
||
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
|
||
memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[chroma_offset], chroma_bytes);
|
||
memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[chroma_offset], chroma_bytes);
|
||
}
|
||
}
|
||
// Copy left reference pixels.
|
||
if (x > 0) {
|
||
int y_min_in_lcu = (y>0) ? 0 : 1;
|
||
int luma_offset = OFFSET_VER_BUF(x, y, frame, y_min_in_lcu - 1);
|
||
int chroma_offset = OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu - 1);
|
||
int luma_bytes = (LCU_WIDTH + (1 - y_min_in_lcu)) * sizeof(kvz_pixel);
|
||
int chroma_bytes = (LCU_WIDTH / 2 + (1 - y_min_in_lcu)) * sizeof(kvz_pixel);
|
||
|
||
memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[luma_offset], luma_bytes);
|
||
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
|
||
memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[chroma_offset], chroma_bytes);
|
||
memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[chroma_offset], chroma_bytes);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Copy LCU pixels.
|
||
{
|
||
const videoframe_t * const frame = state->tile->frame;
|
||
int x_max = MIN(x + LCU_WIDTH, frame->width) - x;
|
||
int y_max = MIN(y + LCU_WIDTH, frame->height) - y;
|
||
|
||
int x_c = x / 2;
|
||
int y_c = y / 2;
|
||
int x_max_c = x_max / 2;
|
||
int y_max_c = y_max / 2;
|
||
|
||
kvz_pixels_blit(&frame->source->y[x + y * frame->source->stride], lcu->ref.y,
|
||
x_max, y_max, frame->source->stride, LCU_WIDTH);
|
||
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
|
||
kvz_pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride / 2], lcu->ref.u,
|
||
x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2);
|
||
kvz_pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride / 2], lcu->ref.v,
|
||
x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
* Copy CU and pixel data to it's place in picture datastructure.
|
||
*/
|
||
static void copy_lcu_to_cu_data(const encoder_state_t * const state, int x_px, int y_px, const lcu_t *lcu)
|
||
{
|
||
// Copy non-reference CUs to picture.
|
||
kvz_cu_array_copy_from_lcu(state->tile->frame->cu_array, x_px, y_px, lcu);
|
||
|
||
// Copy pixels to picture.
|
||
{
|
||
videoframe_t * const pic = state->tile->frame;
|
||
const int pic_width = pic->width;
|
||
const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px;
|
||
const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px;
|
||
|
||
kvz_pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride],
|
||
x_max, y_max, LCU_WIDTH, pic->rec->stride);
|
||
|
||
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
|
||
kvz_pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
|
||
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
|
||
kvz_pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
|
||
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
* Search LCU for modes.
|
||
* - Best mode gets copied to current picture.
|
||
*/
|
||
void kvz_search_lcu(encoder_state_t * const state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf)
|
||
{
|
||
memcpy(&state->search_cabac, &state->cabac, sizeof(cabac_data_t));
|
||
state->search_cabac.only_count = 1;
|
||
assert(x % LCU_WIDTH == 0);
|
||
assert(y % LCU_WIDTH == 0);
|
||
|
||
// Initialize the same starting state to every depth. The search process
|
||
// will use these as temporary storage for predictions before making
|
||
// a decision on which to use, and they get updated during the search
|
||
// process.
|
||
lcu_t work_tree[MAX_PU_DEPTH + 1];
|
||
init_lcu_t(state, x, y, &work_tree[0], hor_buf, ver_buf);
|
||
for (int depth = 1; depth <= MAX_PU_DEPTH; ++depth) {
|
||
work_tree[depth] = work_tree[0];
|
||
}
|
||
|
||
// If the ML depth prediction is enabled,
|
||
// generate the depth prediction interval
|
||
// for the current lcu
|
||
constraint_t* constr = state->constraint;
|
||
if (constr->ml_intra_depth_ctu) {
|
||
kvz_lcu_luma_depth_pred(constr->ml_intra_depth_ctu, work_tree[0].ref.y, state->qp);
|
||
}
|
||
|
||
// Start search from depth 0.
|
||
double cost = search_cu(state, x, y, 0, work_tree);
|
||
|
||
// Save squared cost for rate control.
|
||
if(state->encoder_control->cfg.rc_algorithm == KVZ_LAMBDA) {
|
||
kvz_get_lcu_stats(state, x / LCU_WIDTH, y / LCU_WIDTH)->weight = cost * cost;
|
||
}
|
||
|
||
// The best decisions through out the LCU got propagated back to depth 0,
|
||
// so copy those back to the frame.
|
||
copy_lcu_to_cu_data(state, x, y, &work_tree[0]);
|
||
|
||
// Copy coeffs to encoder state.
|
||
copy_coeffs(work_tree[0].coeff.y, state->coeff->y, LCU_WIDTH);
|
||
copy_coeffs(work_tree[0].coeff.u, state->coeff->u, LCU_WIDTH_C);
|
||
copy_coeffs(work_tree[0].coeff.v, state->coeff->v, LCU_WIDTH_C);
|
||
}
|