mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-27 19:24:06 +00:00
1351 lines
45 KiB
C
1351 lines
45 KiB
C
/*****************************************************************************
|
|
* This file is part of uvg266 VVC encoder.
|
|
*
|
|
* Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this
|
|
* list of conditions and the following disclaimer in the documentation and/or
|
|
* other materials provided with the distribution.
|
|
*
|
|
* * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
****************************************************************************/
|
|
|
|
#include "transform.h"
|
|
|
|
#include "encode_coding_tree.h"
|
|
#include "image.h"
|
|
#include "uvg266.h"
|
|
#include "lfnst_tables.h"
|
|
#include "rdo.h"
|
|
#include "strategies/strategies-dct.h"
|
|
#include "strategies/strategies-quant.h"
|
|
#include "strategies/strategies-picture.h"
|
|
#include "tables.h"
|
|
#include "reshape.h"
|
|
#include "search.h"
|
|
|
|
/**
|
|
* \brief RDPCM direction.
|
|
*/
|
|
typedef enum rdpcm_dir {
|
|
RDPCM_VER = 0, // vertical
|
|
RDPCM_HOR = 1, // horizontal
|
|
} rdpcm_dir;
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// INITIALIZATIONS
|
|
//
|
|
|
|
|
|
const uint8_t uvg_g_chroma_scale[58]=
|
|
{
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,
|
|
17,18,19,20,21,22,23,24,25,26,27,28,29,29,30,31,32,
|
|
33,33,34,34,35,35,36,36,37,37,38,39,40,41,42,43,44,
|
|
45,46,47,48,49,50,51
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// FUNCTIONS
|
|
//
|
|
|
|
/**
|
|
* \brief Bypass transform and quantization.
|
|
*
|
|
* Copies the reference pixels directly to reconstruction and the residual
|
|
* directly to coefficients. Used when cu_transquant_bypass_flag is set.
|
|
* Parameters pred_in and rec_out may be aliased.
|
|
*
|
|
* \param width Transform width.
|
|
* \param in_stride Stride for ref_in and pred_in
|
|
* \param out_stride Stride for rec_out.
|
|
* \param ref_in Reference pixels.
|
|
* \param pred_in Predicted pixels.
|
|
* \param rec_out Returns the reconstructed pixels.
|
|
* \param coeff_out Returns the coefficients used for reconstruction of rec_out.
|
|
*
|
|
* \returns Whether coeff_out contains any non-zero coefficients.
|
|
*/
|
|
static bool bypass_transquant(const int width,
|
|
const int in_stride,
|
|
const int out_stride,
|
|
const uvg_pixel *const ref_in,
|
|
const uvg_pixel *const pred_in,
|
|
uvg_pixel *rec_out,
|
|
coeff_t *coeff_out)
|
|
{
|
|
bool nonzero_coeffs = false;
|
|
|
|
for (int y = 0; y < width; ++y) {
|
|
for (int x = 0; x < width; ++x) {
|
|
int32_t in_idx = x + y * in_stride;
|
|
int32_t out_idx = x + y * out_stride;
|
|
int32_t coeff_idx = x + y * width;
|
|
|
|
// The residual must be computed before writing to rec_out because
|
|
// pred_in and rec_out may point to the same array.
|
|
coeff_t coeff = (coeff_t)(ref_in[in_idx] - pred_in[in_idx]);
|
|
coeff_out[coeff_idx] = coeff;
|
|
rec_out[out_idx] = ref_in[in_idx];
|
|
|
|
nonzero_coeffs |= (coeff != 0);
|
|
}
|
|
}
|
|
|
|
return nonzero_coeffs;
|
|
}
|
|
|
|
/**
|
|
* Apply DPCM to residual.
|
|
*
|
|
* \param width width of the block
|
|
* \param dir RDPCM direction
|
|
* \param coeff coefficients (residual) to filter
|
|
*/
|
|
static void rdpcm(const int width,
|
|
const rdpcm_dir dir,
|
|
coeff_t *coeff)
|
|
{
|
|
const int offset = (dir == RDPCM_HOR) ? 1 : width;
|
|
const int min_x = (dir == RDPCM_HOR) ? 1 : 0;
|
|
const int min_y = (dir == RDPCM_HOR) ? 0 : 1;
|
|
|
|
for (int y = width - 1; y >= min_y; y--) {
|
|
for (int x = width - 1; x >= min_x; x--) {
|
|
const int index = x + y * width;
|
|
coeff[index] -= coeff[index - offset];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Get scaled QP used in quantization
|
|
*
|
|
*/
|
|
int32_t uvg_get_scaled_qp(color_t color, int8_t qp, int8_t qp_offset, int8_t const * const chroma_scale)
|
|
{
|
|
int32_t qp_scaled = 0;
|
|
if(color == 0) {
|
|
qp_scaled = qp + qp_offset;
|
|
} else {
|
|
qp_scaled = CLIP(-qp_offset, 57, qp);
|
|
if (chroma_scale) {
|
|
qp_scaled = chroma_scale[qp] + qp_offset;
|
|
}
|
|
else {
|
|
qp_scaled = qp_scaled + qp_offset;
|
|
}
|
|
}
|
|
return qp_scaled;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* \brief Derives lfnst constraints.
|
|
*
|
|
* \param pred_cu Current prediction coding unit.
|
|
* \param lcu Current lcu.
|
|
* \param depth Current transform depth.
|
|
* \param lcu_px Position of the top left pixel of current CU within current LCU.
|
|
*/
|
|
void uvg_derive_lfnst_constraints(
|
|
cu_info_t* const pred_cu,
|
|
const int depth,
|
|
bool* constraints,
|
|
const coeff_t* coeff,
|
|
const int width,
|
|
const int height)
|
|
{
|
|
coeff_scan_order_t scan_idx = uvg_get_scan_order(pred_cu->type, pred_cu->intra.mode, depth);
|
|
// ToDo: large block support in VVC?
|
|
|
|
const uint32_t log2_block_size = uvg_g_convert_to_bit[width] + 2;
|
|
const uint32_t* scan = uvg_g_sig_last_scan[scan_idx][log2_block_size - 1];
|
|
|
|
signed scan_pos_last = -1;
|
|
|
|
for (int i = 0; i < width * height; i++) {
|
|
if (coeff[scan[i]]) {
|
|
scan_pos_last = i;
|
|
}
|
|
}
|
|
|
|
if (scan_pos_last < 0) return;
|
|
|
|
if (pred_cu != NULL && pred_cu->tr_idx != MTS_SKIP && height >= 4 && width >= 4) {
|
|
const int max_lfnst_pos = ((height == 4 && width == 4) || (height == 8 && width == 8)) ? 7 : 15;
|
|
constraints[0] |= scan_pos_last > max_lfnst_pos;
|
|
constraints[1] |= scan_pos_last >= 1;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief NxN inverse transform (2D)
|
|
* \param coeff input data (transform coefficients)
|
|
* \param block output data (residual)
|
|
* \param block_size input data (width of transform)
|
|
*/
|
|
void uvg_transformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size)
|
|
{
|
|
int32_t j,k;
|
|
for (j = 0; j < block_size; j++) {
|
|
for(k = 0; k < block_size; k ++) {
|
|
// Casting back and forth to make UBSan not trigger due to left-shifting negatives
|
|
coeff[j * block_size + k] = (int16_t)((uint16_t)(block[j * block_size + k]));
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief inverse transform skip
|
|
* \param coeff input data (transform coefficients)
|
|
* \param block output data (residual)
|
|
* \param block_size width of transform
|
|
*/
|
|
void uvg_itransformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size)
|
|
{
|
|
int32_t j,k;
|
|
for ( j = 0; j < block_size; j++ ) {
|
|
for(k = 0; k < block_size; k ++) {
|
|
block[j * block_size + k] = coeff[j * block_size + k];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief forward transform (2D)
|
|
* \param block input residual
|
|
* \param coeff transform coefficients
|
|
* \param block_size width of transform
|
|
*/
|
|
void uvg_transform2d(const encoder_control_t * const encoder,
|
|
int16_t *block,
|
|
int16_t *coeff,
|
|
int8_t block_size,
|
|
color_t color,
|
|
const cu_info_t *tu)
|
|
{
|
|
if (encoder->cfg.mts || tu->lfnst_idx)
|
|
{
|
|
uvg_mts_dct(encoder->bitdepth, color, tu, block_size, block, coeff, encoder->cfg.mts);
|
|
}
|
|
else
|
|
{
|
|
dct_func *dct_func = uvg_get_dct_func(block_size, color, tu->type);
|
|
dct_func(encoder->bitdepth, block, coeff);
|
|
}
|
|
}
|
|
|
|
void uvg_itransform2d(const encoder_control_t * const encoder,
|
|
int16_t *block,
|
|
int16_t *coeff,
|
|
int8_t block_size,
|
|
color_t color,
|
|
const cu_info_t *tu)
|
|
{
|
|
if (encoder->cfg.mts)
|
|
{
|
|
uvg_mts_idct(encoder->bitdepth, color, tu, block_size, coeff, block, encoder->cfg.mts);
|
|
}
|
|
else
|
|
{
|
|
dct_func *idct_func = uvg_get_idct_func(block_size, color, tu->type);
|
|
idct_func(encoder->bitdepth, coeff, block);
|
|
}
|
|
}
|
|
|
|
static INLINE int64_t square(int x) {
|
|
return x * (int64_t)x;
|
|
}
|
|
|
|
static void generate_jccr_transforms(
|
|
encoder_state_t* const state,
|
|
const cu_info_t* const pred_cu,
|
|
int8_t width,
|
|
int8_t height,
|
|
int16_t u_resi[1024],
|
|
int16_t v_resi[1024],
|
|
coeff_t u_coeff[5120],
|
|
enum uvg_chroma_transforms transforms[5],
|
|
const int trans_offset,
|
|
int* num_transforms)
|
|
{
|
|
ALIGNED(64) int16_t temp_resi[LCU_WIDTH_C * LCU_WIDTH_C * 3];
|
|
int64_t costs[4];
|
|
costs[0] = INT64_MAX;
|
|
for (int jccr = pred_cu->type == CU_INTRA ? 0 : 3; jccr < 4; jccr++) {
|
|
int64_t d1 = 0;
|
|
int64_t d2 = 0;
|
|
const int cbf_mask = jccr * (state->frame->jccr_sign ? -1 : 1);
|
|
int16_t* current_resi = &temp_resi[MAX((jccr - 1) , 0) * trans_offset];
|
|
for (int y = 0; y < height; y++)
|
|
{
|
|
for (int x = 0; x < width; x++)
|
|
{
|
|
const int16_t cbx = u_resi[x + y * width], crx = v_resi[x + y * width];
|
|
if (cbf_mask == 2)
|
|
{
|
|
const int16_t resi = ((4 * cbx + 2 * crx) / 5);
|
|
current_resi[x + y * width] = resi;
|
|
d1 += square(cbx - resi) + square(crx - (resi >> 1));
|
|
}
|
|
else if (cbf_mask == -2)
|
|
{
|
|
const int16_t resi = ((4 * cbx - 2 * crx) / 5);
|
|
current_resi[x + y * width] = resi;
|
|
d1 += square(cbx - resi) + square(crx - (-resi >> 1));
|
|
}
|
|
else if (cbf_mask == 3)
|
|
{
|
|
const int16_t resi = ((cbx + crx) / 2);
|
|
current_resi[x + y * width] = resi;
|
|
d1 += square(cbx - resi) + square(crx - resi);
|
|
}
|
|
else if (cbf_mask == -3)
|
|
{
|
|
const int16_t resi = ((cbx - crx) / 2);
|
|
current_resi[x + y * width] = resi;
|
|
d1 += square(cbx - resi) + square(crx + resi);
|
|
}
|
|
else if (cbf_mask == 1)
|
|
{
|
|
const int16_t resi = ((4 * crx + 2 * cbx) / 5);
|
|
current_resi[x + y * width] = resi;
|
|
d1 += square(cbx - (resi >> 1)) + square(crx - resi);
|
|
}
|
|
else if (cbf_mask == -1)
|
|
{
|
|
const int16_t resi = ((4 * crx - 2 * cbx) / 5);
|
|
current_resi[x + y * width] = resi;
|
|
d1 += square(cbx - (-resi >> 1)) + square(crx - resi);
|
|
}
|
|
else
|
|
{
|
|
d1 += square(cbx);
|
|
d2 += square(crx);
|
|
}
|
|
}
|
|
}
|
|
costs[jccr] = d2 != 0 ? MIN(d1, d2) : d1;
|
|
}
|
|
int64_t min_dist1 = costs[0];
|
|
int64_t min_dist2 = INT64_MAX;
|
|
int cbf_mask1 = 0;
|
|
int cbf_mask2 = 0;
|
|
for (int cbfMask = 1; cbfMask < 4; cbfMask++)
|
|
{
|
|
if (costs[cbfMask] < min_dist1)
|
|
{
|
|
cbf_mask2 = cbf_mask1; min_dist2 = min_dist1;
|
|
cbf_mask1 = cbfMask; min_dist1 = costs[cbf_mask1];
|
|
}
|
|
else if (costs[cbfMask] < min_dist2)
|
|
{
|
|
cbf_mask2 = cbfMask; min_dist2 = costs[cbf_mask2];
|
|
}
|
|
}
|
|
if (cbf_mask1)
|
|
{
|
|
uvg_transform2d(
|
|
state->encoder_control,
|
|
&temp_resi[(cbf_mask1 - 1) * trans_offset],
|
|
&u_coeff[*num_transforms * trans_offset],
|
|
width,
|
|
COLOR_U,
|
|
pred_cu
|
|
);
|
|
transforms[(*num_transforms)] = cbf_mask1;
|
|
(*num_transforms)++;
|
|
}
|
|
if (cbf_mask2 && ((min_dist2 < (9 * min_dist1) / 8) || (!cbf_mask1 && min_dist2 < (3 * min_dist1) / 2)))
|
|
{
|
|
uvg_transform2d(
|
|
state->encoder_control,
|
|
&temp_resi[(cbf_mask2 - 1) * trans_offset],
|
|
&u_coeff[*num_transforms * trans_offset],
|
|
width,
|
|
COLOR_U,
|
|
pred_cu
|
|
);
|
|
transforms[(*num_transforms)] = cbf_mask2;
|
|
(*num_transforms)++;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#define IS_JCCR_MODE(t) ((t) != DCT7_CHROMA && (t) != CHROMA_TS)
|
|
|
|
|
|
static void quantize_chroma(
|
|
encoder_state_t* const state,
|
|
int depth,
|
|
int8_t width,
|
|
int8_t height,
|
|
coeff_t u_coeff[5120],
|
|
coeff_t v_coeff[2048],
|
|
enum uvg_chroma_transforms transforms[5],
|
|
const int trans_offset,
|
|
int i,
|
|
coeff_t u_quant_coeff[1024],
|
|
coeff_t v_quant_coeff[1024],
|
|
const coeff_scan_order_t scan_order,
|
|
bool* u_has_coeffs,
|
|
bool* v_has_coeffs,
|
|
uint8_t lfnst_idx)
|
|
{
|
|
if (state->encoder_control->cfg.rdoq_enable &&
|
|
(transforms[i] != CHROMA_TS || !state->encoder_control->cfg.rdoq_skip))
|
|
{
|
|
uvg_rdoq(state, &u_coeff[i * trans_offset], u_quant_coeff, width, height, transforms[i] != JCCR_1 ? COLOR_U : COLOR_V,
|
|
scan_order, CU_INTRA, depth, 0);
|
|
|
|
int j;
|
|
for (j = 0; j < width * height; ++j) {
|
|
if (u_quant_coeff[j]) {
|
|
*u_has_coeffs = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (transforms[i] == DCT7_CHROMA) {
|
|
uint16_t temp_cbf = 0;
|
|
if (*u_has_coeffs)cbf_set(&temp_cbf, depth, COLOR_U);
|
|
uvg_rdoq(state, &v_coeff[i * trans_offset], v_quant_coeff, width, height, COLOR_V,
|
|
scan_order, CU_INTRA, depth, temp_cbf);
|
|
|
|
}
|
|
}
|
|
else if (state->encoder_control->cfg.rdoq_enable && transforms[i] == CHROMA_TS) {
|
|
uvg_ts_rdoq(state, &u_coeff[i * trans_offset], u_quant_coeff, width, height, COLOR_U, scan_order);
|
|
uvg_ts_rdoq(state, &v_coeff[i * trans_offset], v_quant_coeff, width, height, COLOR_V, scan_order);
|
|
}
|
|
else {
|
|
uvg_quant(state, &u_coeff[i * trans_offset], u_quant_coeff, width, height, transforms[i] != JCCR_1 ? COLOR_U : COLOR_V,
|
|
scan_order, CU_INTRA, transforms[i] == CHROMA_TS, lfnst_idx);
|
|
|
|
if (!IS_JCCR_MODE(transforms[i])) {
|
|
uvg_quant(state, &v_coeff[i * trans_offset], v_quant_coeff, width, height, COLOR_V,
|
|
scan_order, CU_INTRA, transforms[i] == CHROMA_TS, lfnst_idx);
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < width * height; ++j) {
|
|
if (u_quant_coeff[j]) {
|
|
*u_has_coeffs = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!IS_JCCR_MODE(transforms[i])) {
|
|
for (int j = 0; j < width * height; ++j) {
|
|
if (v_quant_coeff[j]) {
|
|
*v_has_coeffs = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void uvg_chroma_transform_search(
|
|
encoder_state_t* const state,
|
|
int depth,
|
|
lcu_t* const lcu,
|
|
cabac_data_t* temp_cabac,
|
|
int8_t width,
|
|
int8_t height,
|
|
const int offset,
|
|
const uint8_t mode,
|
|
cu_info_t* pred_cu,
|
|
uvg_pixel u_pred[1024],
|
|
uvg_pixel v_pred[1024],
|
|
int16_t u_resi[1024],
|
|
int16_t v_resi[1024],
|
|
uvg_chorma_ts_out_t* chorma_ts_out)
|
|
{
|
|
ALIGNED(64) coeff_t u_coeff[LCU_WIDTH_C * LCU_WIDTH_C * 5];
|
|
ALIGNED(64) uint8_t u_recon[LCU_WIDTH_C * LCU_WIDTH_C * 5];
|
|
ALIGNED(64) coeff_t v_coeff[LCU_WIDTH_C * LCU_WIDTH_C * 2];
|
|
ALIGNED(64) uint8_t v_recon[LCU_WIDTH_C * LCU_WIDTH_C * 5];
|
|
uvg_transform2d(
|
|
state->encoder_control, u_resi, u_coeff, width, COLOR_U, pred_cu
|
|
);
|
|
uvg_transform2d(
|
|
state->encoder_control, v_resi, v_coeff, width, COLOR_V, pred_cu
|
|
);
|
|
enum uvg_chroma_transforms transforms[5];
|
|
transforms[0] = DCT7_CHROMA;
|
|
const int trans_offset = width * height;
|
|
int num_transforms = 1;
|
|
|
|
const int can_use_tr_skip = state->encoder_control->cfg.trskip_enable &&
|
|
(1 << state->encoder_control->cfg.trskip_max_size) >= width &&
|
|
state->encoder_control->cfg.chroma_trskip_enable &&
|
|
pred_cu->cr_lfnst_idx == 0 ;
|
|
|
|
if (can_use_tr_skip) {
|
|
uvg_transformskip(state->encoder_control, u_resi, u_coeff + num_transforms * trans_offset, width);
|
|
uvg_transformskip(state->encoder_control, v_resi, v_coeff + num_transforms * trans_offset, width);
|
|
transforms[num_transforms] = CHROMA_TS;
|
|
num_transforms++;
|
|
}
|
|
if (state->encoder_control->cfg.jccr) {
|
|
generate_jccr_transforms(
|
|
state,
|
|
pred_cu,
|
|
width,
|
|
height,
|
|
u_resi,
|
|
v_resi,
|
|
u_coeff,
|
|
transforms,
|
|
trans_offset,
|
|
&num_transforms);
|
|
}
|
|
chorma_ts_out->best_u_cost = MAX_INT64;
|
|
chorma_ts_out->best_v_cost = MAX_INT64;
|
|
chorma_ts_out->best_combined_cost = MAX_INT64;
|
|
chorma_ts_out->best_u_index = -1;
|
|
chorma_ts_out->best_v_index = -1;
|
|
chorma_ts_out->best_combined_index = -1;
|
|
for (int i = 0; i < num_transforms; i++) {
|
|
coeff_t u_quant_coeff[LCU_WIDTH_C * LCU_WIDTH_C];
|
|
coeff_t v_quant_coeff[LCU_WIDTH_C * LCU_WIDTH_C];
|
|
int16_t u_recon_resi[LCU_WIDTH_C * LCU_WIDTH_C];
|
|
int16_t v_recon_resi[LCU_WIDTH_C * LCU_WIDTH_C];
|
|
const coeff_scan_order_t scan_order =
|
|
uvg_get_scan_order(pred_cu->type, mode, depth);
|
|
bool u_has_coeffs = false;
|
|
bool v_has_coeffs = false;
|
|
if(pred_cu->cr_lfnst_idx) {
|
|
uvg_fwd_lfnst(pred_cu, width, height, COLOR_U, pred_cu->cr_lfnst_idx, &u_coeff[i * trans_offset]);
|
|
if (!IS_JCCR_MODE(transforms[i])) {
|
|
uvg_fwd_lfnst(pred_cu, width, height, COLOR_V, pred_cu->cr_lfnst_idx, &v_coeff[i * trans_offset]);
|
|
}
|
|
}
|
|
quantize_chroma(
|
|
state,
|
|
depth,
|
|
width,
|
|
height,
|
|
u_coeff,
|
|
v_coeff,
|
|
transforms,
|
|
trans_offset,
|
|
i,
|
|
u_quant_coeff,
|
|
v_quant_coeff,
|
|
scan_order,
|
|
&u_has_coeffs,
|
|
&v_has_coeffs,
|
|
pred_cu->cr_lfnst_idx);
|
|
|
|
if(pred_cu->type == CU_INTRA && transforms[i] != CHROMA_TS && depth == 4) {
|
|
bool constraints[2] = { false, false };
|
|
uvg_derive_lfnst_constraints(pred_cu, depth, constraints, u_quant_coeff, width, height);
|
|
if(!IS_JCCR_MODE(transforms[i])) {
|
|
uvg_derive_lfnst_constraints(pred_cu, depth, constraints, v_quant_coeff, width, height);
|
|
}
|
|
if (!constraints[1] && (u_has_coeffs || v_has_coeffs) && pred_cu->cr_lfnst_idx != 0) continue;
|
|
}
|
|
|
|
if (IS_JCCR_MODE(transforms[i]) && !u_has_coeffs) continue;
|
|
|
|
if (u_has_coeffs) {
|
|
|
|
uvg_dequant(state, u_quant_coeff, &u_coeff[i * trans_offset], width, width, transforms[i] != JCCR_1 ? COLOR_U : COLOR_V,
|
|
pred_cu->type, transforms[i] == CHROMA_TS);
|
|
if (transforms[i] != CHROMA_TS) {
|
|
if (pred_cu->cr_lfnst_idx) {
|
|
uvg_inv_lfnst(pred_cu, width, height, COLOR_U, pred_cu->cr_lfnst_idx, &u_coeff[i * trans_offset]);
|
|
}
|
|
uvg_itransform2d(state->encoder_control, u_recon_resi, &u_coeff[i * trans_offset], width,
|
|
transforms[i] != JCCR_1 ? COLOR_U : COLOR_V, pred_cu);
|
|
}
|
|
else {
|
|
uvg_itransformskip(state->encoder_control, u_recon_resi, &u_coeff[i * trans_offset], width);
|
|
}
|
|
if (transforms[i] != JCCR_1) {
|
|
for (int j = 0; j < width * height; j++) {
|
|
u_recon[trans_offset * i + j] = CLIP_TO_PIXEL((uvg_pixel)(u_pred[j] + u_recon_resi[j]));
|
|
}
|
|
}
|
|
else {
|
|
for (int j = 0; j < width * height; j++) {
|
|
u_recon[trans_offset * i + j] = CLIP_TO_PIXEL(u_pred[j] + ((state->frame->jccr_sign ? -u_recon_resi[j] : u_recon_resi[j]) >> 1));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
uvg_pixels_blit(u_pred, &u_recon[trans_offset * i], width, height, width, width);
|
|
}
|
|
if (v_has_coeffs && !(IS_JCCR_MODE(transforms[i]))) {
|
|
uvg_dequant(state, v_quant_coeff, &v_coeff[i * trans_offset], width, width, COLOR_V,
|
|
pred_cu->type, transforms[i] == CHROMA_TS);
|
|
if (transforms[i] != CHROMA_TS) {
|
|
if (pred_cu->cr_lfnst_idx) {
|
|
uvg_inv_lfnst(pred_cu, width, height, COLOR_V, pred_cu->cr_lfnst_idx, &v_coeff[i * trans_offset]);
|
|
}
|
|
uvg_itransform2d(state->encoder_control, v_recon_resi, &v_coeff[i * trans_offset], width,
|
|
transforms[i] != JCCR_1 ? COLOR_U : COLOR_V, pred_cu);
|
|
}
|
|
else {
|
|
uvg_itransformskip(state->encoder_control, v_recon_resi, &v_coeff[i * trans_offset], width);
|
|
}
|
|
for (int j = 0; j < width * height; j++) {
|
|
v_recon[trans_offset * i + j] = CLIP_TO_PIXEL(v_pred[j] + v_recon_resi[j]);
|
|
}
|
|
}
|
|
else if (u_has_coeffs && IS_JCCR_MODE(transforms[i])) {
|
|
if (transforms[i] == JCCR_1) {
|
|
for (int j = 0; j < width * height; j++) {
|
|
v_recon[trans_offset * i + j] = CLIP_TO_PIXEL(v_pred[j] + u_recon_resi[j]);
|
|
}
|
|
}
|
|
else if (transforms[i] == JCCR_3) {
|
|
for (int j = 0; j < width * height; j++) {
|
|
v_recon[trans_offset * i + j] = CLIP_TO_PIXEL(v_pred[j] + (state->frame->jccr_sign ? -u_recon_resi[j] : u_recon_resi[j]));
|
|
}
|
|
}
|
|
else {
|
|
for (int j = 0; j < width * height; j++) {
|
|
v_recon[trans_offset * i + j] = CLIP_TO_PIXEL(v_pred[j] + ((state->frame->jccr_sign ? -u_recon_resi[j] : u_recon_resi[j]) >> 1));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
uvg_pixels_blit(v_pred, &v_recon[trans_offset * i], width, height, width, width);
|
|
}
|
|
|
|
unsigned ssd_u = 0;
|
|
unsigned ssd_v = 0;
|
|
if (!state->encoder_control->cfg.lossless) {
|
|
ssd_u = uvg_pixels_calc_ssd(&lcu->ref.u[offset], &u_recon[trans_offset * i],
|
|
LCU_WIDTH_C, width,
|
|
width);
|
|
ssd_v = uvg_pixels_calc_ssd(&lcu->ref.v[offset], &v_recon[trans_offset * i],
|
|
LCU_WIDTH_C, width,
|
|
width);
|
|
}
|
|
|
|
double u_bits = 0;
|
|
double v_bits = 0;
|
|
state->search_cabac.update = 1;
|
|
|
|
int cbf_u = transforms[i] & 2 || (u_has_coeffs && !(transforms[i] & 1));
|
|
CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.qt_cbf_model_cb[0],
|
|
cbf_u, u_bits, "cbf_u"
|
|
);
|
|
int cbf_v = transforms[i] & 1 || (v_has_coeffs && !(transforms[i] & 2));
|
|
CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.qt_cbf_model_cr[cbf_u],
|
|
cbf_v, v_bits, "cbf_v"
|
|
);
|
|
|
|
if (state->encoder_control->cfg.jccr && (cbf_u || cbf_v)) {
|
|
CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.joint_cb_cr[cbf_u * 2 + cbf_v - 1],
|
|
transforms[i] != DCT7_CHROMA && transforms[i] != CHROMA_TS, v_bits, "jccr_flag"
|
|
);
|
|
}
|
|
|
|
if (cbf_u || (transforms[i] == JCCR_1 && u_has_coeffs)) {
|
|
if (can_use_tr_skip) {
|
|
CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.transform_skip_model_chroma,
|
|
transforms[i] == CHROMA_TS, u_bits, "tr_skip_u"
|
|
);
|
|
}
|
|
double coeff_cost = uvg_get_coeff_cost(
|
|
state,
|
|
u_quant_coeff,
|
|
pred_cu,
|
|
width,
|
|
COLOR_U,
|
|
scan_order,
|
|
transforms[i] == CHROMA_TS);
|
|
u_bits += coeff_cost;
|
|
}
|
|
if (cbf_v && !IS_JCCR_MODE(transforms[i])) {
|
|
if (can_use_tr_skip) {
|
|
CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.transform_skip_model_chroma,
|
|
transforms[i] == CHROMA_TS, v_bits, "tr_skip_v"
|
|
);
|
|
}
|
|
v_bits += uvg_get_coeff_cost(
|
|
state,
|
|
v_quant_coeff,
|
|
pred_cu,
|
|
width,
|
|
COLOR_V,
|
|
scan_order,
|
|
transforms[i] == CHROMA_TS);
|
|
}
|
|
if(depth == 4 && state->encoder_control->cfg.lfnst && 0) {
|
|
if(uvg_is_lfnst_allowed(state, pred_cu, width, height, 0, 0 , UVG_CHROMA_T)) {
|
|
const int lfnst_idx = pred_cu->cr_lfnst_idx;
|
|
CABAC_FBITS_UPDATE(
|
|
&state->search_cabac,
|
|
&state->search_cabac.ctx.lfnst_idx_model[1],
|
|
lfnst_idx != 0,
|
|
v_bits,
|
|
"lfnst_idx");
|
|
if (lfnst_idx > 0) {
|
|
CABAC_FBITS_UPDATE(
|
|
&state->search_cabac,
|
|
&state->search_cabac.ctx.lfnst_idx_model[2],
|
|
lfnst_idx == 2,
|
|
v_bits,
|
|
"lfnst_idx");
|
|
}
|
|
}
|
|
pred_cu->lfnst_last_scan_pos = false;
|
|
pred_cu->violates_lfnst_constrained_chroma = false;
|
|
}
|
|
if (!IS_JCCR_MODE(transforms[i])) {
|
|
double u_cost = UVG_CHROMA_MULT * ssd_u + u_bits * state->frame->lambda;
|
|
double v_cost = UVG_CHROMA_MULT * ssd_v + v_bits * state->frame->lambda;
|
|
if (u_cost < chorma_ts_out->best_u_cost) {
|
|
chorma_ts_out->best_u_cost = u_cost;
|
|
chorma_ts_out->best_u_index = u_has_coeffs ? transforms[i] : NO_RESIDUAL;
|
|
}
|
|
if (v_cost < chorma_ts_out->best_v_cost) {
|
|
chorma_ts_out->best_v_cost = v_cost;
|
|
chorma_ts_out->best_v_index = v_has_coeffs ? transforms[i] : NO_RESIDUAL;
|
|
}
|
|
}
|
|
else {
|
|
double cost = UVG_CHROMA_MULT * (ssd_u + ssd_v) + (u_bits + v_bits) * state->frame->lambda;
|
|
if (cost < chorma_ts_out->best_combined_cost) {
|
|
chorma_ts_out->best_combined_cost = cost;
|
|
chorma_ts_out->best_combined_index = transforms[i];
|
|
}
|
|
}
|
|
memcpy(&state->search_cabac, temp_cabac, sizeof(cabac_data_t));
|
|
}
|
|
}
|
|
|
|
|
|
void uvg_fwd_lfnst_NxN(coeff_t *src, coeff_t *dst, const int8_t mode, const int8_t index, const int8_t size, int zero_out_size)
|
|
{
|
|
const int8_t *tr_mat = (size > 4) ? uvg_lfnst_8x8[mode][index][0] : uvg_lfnst_4x4[mode][index][0];
|
|
const int tr_size = (size > 4) ? 48 : 16;
|
|
int coef;
|
|
coeff_t *out = dst;
|
|
assert(index < 3 && "LFNST index must be in [0, 2]");
|
|
|
|
for (int j = 0; j < zero_out_size; j++)
|
|
{
|
|
coeff_t *src_ptr = src;
|
|
const int8_t* tr_mat_tmp = tr_mat;
|
|
coef = 0;
|
|
for (int i = 0; i < tr_size; i++)
|
|
{
|
|
coef += *src_ptr++ * *tr_mat_tmp++;
|
|
}
|
|
*out++ = (coeff_t)((coef + 64) >> 7);
|
|
tr_mat += tr_size;
|
|
}
|
|
|
|
// Possible tr_size values 16, 48. Possible zero_out_size values 8, 16
|
|
switch (tr_size - zero_out_size) {
|
|
case 0:
|
|
break;
|
|
case 8:
|
|
FILL_ARRAY(out, 0, 8);
|
|
break;
|
|
case 32:
|
|
FILL_ARRAY(out, 0, 32);
|
|
break;
|
|
case 40:
|
|
FILL_ARRAY(out, 0, 40);
|
|
break;
|
|
default:
|
|
assert(false && "LFNST: This should never trip.");
|
|
}
|
|
}
|
|
|
|
static inline bool get_transpose_flag(const int8_t intra_mode)
|
|
{
|
|
return ((intra_mode >= NUM_LUMA_MODE) && (intra_mode >= (NUM_LUMA_MODE + (NUM_EXT_LUMA_MODE >> 1)))) ||
|
|
((intra_mode < NUM_LUMA_MODE) && (intra_mode > DIA_IDX));
|
|
}
|
|
|
|
void uvg_fwd_lfnst(const cu_info_t* const cur_cu,
|
|
const int width, const int height,
|
|
const uint8_t color,
|
|
const uint16_t lfnst_idx,
|
|
coeff_t *coeffs)
|
|
{
|
|
const uint16_t lfnst_index = lfnst_idx;
|
|
int8_t intra_mode = (color == COLOR_Y) ? cur_cu->intra.mode : cur_cu->intra.mode_chroma;
|
|
bool mts_skip = cur_cu->tr_idx == MTS_SKIP;
|
|
const int depth = cur_cu->depth;
|
|
bool is_separate_tree = depth == 4; // TODO: proper dual tree check when that structure is implemented
|
|
bool is_cclm_mode = (intra_mode >= 81 && intra_mode <= 83); // CCLM modes are in [81, 83]
|
|
|
|
bool is_mip = cur_cu->type == CU_INTRA ? cur_cu->intra.mip_flag : false;
|
|
bool is_wide_angle = false; // TODO: get wide angle mode when implemented
|
|
|
|
const int cu_type = cur_cu->type;
|
|
|
|
const int scan_order = uvg_get_scan_order(cu_type, intra_mode, depth);
|
|
|
|
if (lfnst_index && !mts_skip && (is_separate_tree || color == COLOR_Y))
|
|
{
|
|
const uint32_t log2_block_size = uvg_g_convert_to_bit[width] + 2;
|
|
assert(log2_block_size != -1 && "LFNST: invalid block width.");
|
|
const bool whge3 = width >= 8 && height >= 8;
|
|
const uint32_t* scan = whge3 ? uvg_coef_top_left_diag_scan_8x8[log2_block_size] : uvg_g_sig_last_scan[scan_order][log2_block_size - 1];
|
|
|
|
if (is_cclm_mode) {
|
|
intra_mode = cur_cu->intra.mode;
|
|
}
|
|
if (is_mip) {
|
|
intra_mode = 0; // Set to planar mode
|
|
}
|
|
assert(intra_mode < NUM_INTRA_MODE && "LFNST: Invalid intra mode.");
|
|
assert(lfnst_index < 3 && "LFNST: Invalid LFNST index. Must be in [0, 2]");
|
|
|
|
if (is_wide_angle) {
|
|
// Transform wide angle mode to intra mode
|
|
intra_mode = intra_mode; // TODO: wide angle modes not implemented yet. Do nothing.
|
|
}
|
|
|
|
bool transpose = get_transpose_flag(intra_mode);
|
|
const int sb_size = whge3 ? 8 : 4;
|
|
bool tu_4x4 = (width == 4 && height == 4);
|
|
bool tu_8x8 = (width == 8 && height == 8);
|
|
|
|
coeff_t tmp_in_matrix[48];
|
|
coeff_t tmp_out_matrix[48];
|
|
coeff_t *lfnst_tmp = tmp_in_matrix; // forward low frequency non-separable transform
|
|
|
|
coeff_t *coeff_tmp = coeffs;
|
|
|
|
int y;
|
|
if (transpose) {
|
|
if (sb_size == 4) {
|
|
for (y = 0; y < 4; y++) {
|
|
lfnst_tmp[0] = coeff_tmp[0];
|
|
lfnst_tmp[4] = coeff_tmp[1];
|
|
lfnst_tmp[8] = coeff_tmp[2];
|
|
lfnst_tmp[12] = coeff_tmp[3];
|
|
lfnst_tmp++;
|
|
coeff_tmp += width;
|
|
}
|
|
}
|
|
else { // ( sb_size == 8 )
|
|
for (y = 0; y < 8; y++) {
|
|
lfnst_tmp[0] = coeff_tmp[0];
|
|
lfnst_tmp[8] = coeff_tmp[1];
|
|
lfnst_tmp[16] = coeff_tmp[2];
|
|
lfnst_tmp[24] = coeff_tmp[3];
|
|
if (y < 4) {
|
|
lfnst_tmp[32] = coeff_tmp[4];
|
|
lfnst_tmp[36] = coeff_tmp[5];
|
|
lfnst_tmp[40] = coeff_tmp[6];
|
|
lfnst_tmp[44] = coeff_tmp[7];
|
|
}
|
|
lfnst_tmp++;
|
|
coeff_tmp += width;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (y = 0; y < sb_size; y++) {
|
|
uint32_t stride = (y < 4) ? sb_size : 4;
|
|
memcpy(lfnst_tmp, coeff_tmp, stride * sizeof(coeff_t));
|
|
lfnst_tmp += stride;
|
|
coeff_tmp += width;
|
|
}
|
|
}
|
|
|
|
uvg_fwd_lfnst_NxN(tmp_in_matrix, tmp_out_matrix, uvg_lfnst_lut[intra_mode], lfnst_index - 1, sb_size,
|
|
(tu_4x4 || tu_8x8) ? 8 : 16);
|
|
|
|
lfnst_tmp = tmp_out_matrix; // forward spectral rearrangement
|
|
coeff_tmp = coeffs;
|
|
int lfnst_coeff_num = (sb_size == 4) ? sb_size * sb_size : 48;
|
|
|
|
const uint32_t *scan_ptr = scan;
|
|
|
|
for (y = 0; y < lfnst_coeff_num; y++) {
|
|
coeff_tmp[*scan_ptr] = *lfnst_tmp++;
|
|
scan_ptr++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void uvg_inv_lfnst_NxN(coeff_t *src, coeff_t *dst, const uint32_t mode, const uint32_t index, const uint32_t size, int zero_out_size, const int max_log2_tr_dyn_range)
|
|
{
|
|
const coeff_t output_min = -(1 << max_log2_tr_dyn_range);
|
|
const coeff_t output_max = (1 << max_log2_tr_dyn_range) - 1;
|
|
const int8_t *tr_mat = (size > 4) ? uvg_lfnst_8x8[mode][index][0] : uvg_lfnst_4x4[mode][index][0];
|
|
const int tr_size = (size > 4) ? 48 : 16;
|
|
int resi;
|
|
coeff_t *out = dst;
|
|
assert(index < 3);
|
|
|
|
for (int j = 0; j < tr_size; j++)
|
|
{
|
|
resi = 0;
|
|
const int8_t* tr_mat_tmp = tr_mat;
|
|
coeff_t *src_ptr = src;
|
|
for (int i = 0; i < zero_out_size; i++)
|
|
{
|
|
resi += *src_ptr++ * *tr_mat_tmp;
|
|
tr_mat_tmp += tr_size;
|
|
}
|
|
*out++ = CLIP(output_min, output_max, (coeff_t)((resi + 64) >> 7));
|
|
tr_mat++;
|
|
}
|
|
}
|
|
|
|
void uvg_inv_lfnst(const cu_info_t *cur_cu,
|
|
const int width, const int height,
|
|
const uint8_t color,
|
|
const uint16_t lfnst_idx,
|
|
coeff_t *coeffs)
|
|
{
|
|
// In VTM, max log2 dynamic range is something in range [15, 20] depending on whether extended precision processing is enabled
|
|
// Such is not yet present in uvg266 so use 15 for now
|
|
const int max_log2_dyn_range = 15;
|
|
const uint32_t lfnst_index = lfnst_idx;
|
|
int8_t intra_mode = (color == COLOR_Y) ? cur_cu->intra.mode : cur_cu->intra.mode_chroma;
|
|
bool mts_skip = cur_cu->tr_idx == MTS_SKIP;
|
|
const int depth = cur_cu->depth;
|
|
bool is_separate_tree = depth == 4; // TODO: proper dual tree check when that structure is implemented
|
|
bool is_cclm_mode = (intra_mode >= 81 && intra_mode <= 83); // CCLM modes are in [81, 83]
|
|
|
|
bool is_mip = cur_cu->type == CU_INTRA ? cur_cu->intra.mip_flag : false;
|
|
bool is_wide_angle = false; // TODO: get wide angle mode when implemented
|
|
|
|
const int cu_type = cur_cu->type;
|
|
|
|
const int scan_order = uvg_get_scan_order(cu_type, intra_mode, depth);
|
|
|
|
if (lfnst_index && !mts_skip && (is_separate_tree || color == COLOR_Y)) {
|
|
const uint32_t log2_block_size = uvg_g_convert_to_bit[width] + 2;
|
|
const bool whge3 = width >= 8 && height >= 8;
|
|
const uint32_t* scan = whge3 ? uvg_coef_top_left_diag_scan_8x8[log2_block_size] : uvg_g_sig_last_scan[scan_order][log2_block_size - 1];
|
|
|
|
if (is_cclm_mode) {
|
|
intra_mode = cur_cu->intra.mode;
|
|
}
|
|
if (is_mip) {
|
|
intra_mode = 0; // Set to planar mode
|
|
}
|
|
assert(intra_mode < NUM_INTRA_MODE && "LFNST: Invalid intra mode.");
|
|
assert(lfnst_index < 3 && "LFNST: Invalid LFNST index. Must be in [0, 2]");
|
|
|
|
if (is_wide_angle) {
|
|
// Transform wide angle mode to intra mode
|
|
intra_mode = intra_mode; // TODO: wide angle modes not implemented yet. Do nothing.
|
|
}
|
|
|
|
bool transpose_flag = get_transpose_flag(intra_mode);
|
|
const int sb_size = whge3 ? 8 : 4;
|
|
bool tu_4x4_flag = (width == 4 && height == 4);
|
|
bool tu_8x8_flag = (width == 8 && height == 8);
|
|
coeff_t tmp_in_matrix[48];
|
|
coeff_t tmp_out_matrix[48];
|
|
coeff_t *lfnst_tmp;
|
|
coeff_t *coeff_tmp;
|
|
int y;
|
|
lfnst_tmp = tmp_in_matrix; // inverse spectral rearrangement
|
|
coeff_tmp = coeffs;
|
|
coeff_t *dst = lfnst_tmp;
|
|
|
|
const uint32_t *scan_ptr = scan;
|
|
for (y = 0; y < 16; y++) {
|
|
*dst++ = coeff_tmp[*scan_ptr];
|
|
scan_ptr++;
|
|
}
|
|
|
|
uvg_inv_lfnst_NxN(tmp_in_matrix, tmp_out_matrix, uvg_lfnst_lut[intra_mode], lfnst_index - 1, sb_size,
|
|
(tu_4x4_flag || tu_8x8_flag) ? 8 : 16, max_log2_dyn_range);
|
|
lfnst_tmp = tmp_out_matrix; // inverse low frequency non-separale transform
|
|
|
|
if (transpose_flag) {
|
|
if (sb_size == 4) {
|
|
for (y = 0; y < 4; y++) {
|
|
coeff_tmp[0] = lfnst_tmp[0];
|
|
coeff_tmp[1] = lfnst_tmp[4];
|
|
coeff_tmp[2] = lfnst_tmp[8];
|
|
coeff_tmp[3] = lfnst_tmp[12];
|
|
lfnst_tmp++;
|
|
coeff_tmp += width;
|
|
}
|
|
}
|
|
else { // ( sb_size == 8 )
|
|
for (y = 0; y < 8; y++) {
|
|
coeff_tmp[0] = lfnst_tmp[0];
|
|
coeff_tmp[1] = lfnst_tmp[8];
|
|
coeff_tmp[2] = lfnst_tmp[16];
|
|
coeff_tmp[3] = lfnst_tmp[24];
|
|
if (y < 4) {
|
|
coeff_tmp[4] = lfnst_tmp[32];
|
|
coeff_tmp[5] = lfnst_tmp[36];
|
|
coeff_tmp[6] = lfnst_tmp[40];
|
|
coeff_tmp[7] = lfnst_tmp[44];
|
|
}
|
|
lfnst_tmp++;
|
|
coeff_tmp += width;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (y = 0; y < sb_size; y++) {
|
|
uint32_t uiStride = (y < 4) ? sb_size : 4;
|
|
memcpy(coeff_tmp, lfnst_tmp, uiStride * sizeof(coeff_t));
|
|
lfnst_tmp += uiStride;
|
|
coeff_tmp += width;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Like uvg_quantize_residual except that this uses trskip if that is better.
|
|
*
|
|
* Using this function saves one step of quantization and inverse quantization
|
|
* compared to doing the decision separately from the actual operation.
|
|
*
|
|
* \param width Transform width.
|
|
* \param color Color.
|
|
* \param scan_order Coefficient scan order.
|
|
* \param trskip_out Whether transform skip is used.
|
|
* \param stride Stride for ref_in, pred_in and rec_out.
|
|
* \param ref_in Reference pixels.
|
|
* \param pred_in Predicted pixels.
|
|
* \param rec_out Reconstructed pixels.
|
|
* \param coeff_out Coefficients used for reconstruction of rec_out.
|
|
*
|
|
* \returns Whether coeff_out contains any non-zero coefficients.
|
|
*/
|
|
int uvg_quantize_residual_trskip(
|
|
encoder_state_t *const state,
|
|
const cu_info_t *const cur_cu, const int width, const color_t color,
|
|
const coeff_scan_order_t scan_order, int8_t *trskip_out,
|
|
const int in_stride, const int out_stride,
|
|
const uvg_pixel *const ref_in, const uvg_pixel *const pred_in,
|
|
uvg_pixel *rec_out, coeff_t *coeff_out, int lmcs_chroma_adj)
|
|
{
|
|
struct {
|
|
uvg_pixel rec[LCU_WIDTH * LCU_WIDTH];
|
|
coeff_t coeff[LCU_WIDTH * LCU_WIDTH];
|
|
double cost;
|
|
int has_coeffs;
|
|
} skip, *best;
|
|
|
|
//noskip.has_coeffs = uvg_quantize_residual(
|
|
// state, cur_cu, width, color, scan_order,
|
|
// 0, in_stride, 4,
|
|
// ref_in, pred_in, noskip.rec, noskip.coeff, false);
|
|
//noskip.cost = uvg_pixels_calc_ssd(ref_in, noskip.rec, in_stride, 4, 4);
|
|
//noskip.cost += uvg_get_coeff_cost(state, noskip.coeff, 4, 0, scan_order) * bit_cost;
|
|
|
|
skip.has_coeffs = uvg_quantize_residual(
|
|
state, cur_cu, width, color, scan_order,
|
|
1, in_stride, width,
|
|
ref_in, pred_in, skip.rec, skip.coeff, false, lmcs_chroma_adj);
|
|
|
|
/* if (noskip.cost <= skip.cost) {
|
|
*trskip_out = 0;
|
|
best = &noskip;
|
|
} else */{
|
|
*trskip_out = 1;
|
|
best = &skip;
|
|
}
|
|
|
|
if (best->has_coeffs || rec_out != pred_in) {
|
|
// If there is no residual and reconstruction is already in rec_out,
|
|
// we can skip this.
|
|
uvg_pixels_blit(best->rec, rec_out, width, width, width, out_stride);
|
|
}
|
|
copy_coeffs(best->coeff, coeff_out, width);
|
|
|
|
return best->has_coeffs;
|
|
}
|
|
|
|
/**
|
|
* Calculate the residual coefficients for a single TU.
|
|
*
|
|
* \param early_skip if this is used for early skip, bypass IT and IQ
|
|
*/
|
|
static void quantize_tr_residual(encoder_state_t * const state,
|
|
const color_t color,
|
|
const int32_t x,
|
|
const int32_t y,
|
|
const uint8_t depth,
|
|
cu_info_t *cur_pu,
|
|
lcu_t* lcu,
|
|
bool early_skip)
|
|
{
|
|
const uvg_config *cfg = &state->encoder_control->cfg;
|
|
const int32_t shift = color == COLOR_Y ? 0 : 1;
|
|
const vector2d_t lcu_px = { SUB_SCU(x) >> shift, SUB_SCU(y) >> shift};
|
|
|
|
// If luma is 4x4, do chroma for the 8x8 luma area when handling the top
|
|
// left PU because the coordinates are correct.
|
|
bool handled_elsewhere = color != COLOR_Y &&
|
|
depth == MAX_DEPTH &&
|
|
(x % 4 != 0 || y % 4 != 0);
|
|
if (handled_elsewhere) {
|
|
return;
|
|
}
|
|
|
|
// Clear coded block flag structures for depths lower than current depth.
|
|
// This should ensure that the CBF data doesn't get corrupted if this function
|
|
// is called more than once.
|
|
|
|
int32_t tr_width;
|
|
if (color == COLOR_Y) {
|
|
tr_width = LCU_WIDTH >> depth;
|
|
} else {
|
|
const int chroma_depth = (depth == MAX_PU_DEPTH ? depth - 1 : depth);
|
|
tr_width = LCU_WIDTH_C >> chroma_depth;
|
|
}
|
|
const int32_t lcu_width = LCU_WIDTH >> shift;
|
|
const int8_t mode =
|
|
(color == COLOR_Y) ? cur_pu->intra.mode : cur_pu->intra.mode_chroma;
|
|
const coeff_scan_order_t scan_idx =
|
|
uvg_get_scan_order(cur_pu->type, mode, depth);
|
|
const int offset = lcu_px.x + lcu_px.y * lcu_width;
|
|
const int z_index = xy_to_zorder(lcu_width, lcu_px.x, lcu_px.y);
|
|
|
|
// Pointers to current location in arrays with prediction. The
|
|
// reconstruction will be written to this array.
|
|
uvg_pixel *pred = NULL;
|
|
// Pointers to current location in arrays with reference.
|
|
const uvg_pixel *ref = NULL;
|
|
// Pointers to current location in arrays with quantized coefficients.
|
|
coeff_t *coeff = NULL;
|
|
|
|
switch (color) {
|
|
case COLOR_Y:
|
|
pred = &lcu->rec.y[offset];
|
|
ref = &lcu->ref.y[offset];
|
|
coeff = &lcu->coeff.y[z_index];
|
|
break;
|
|
case COLOR_U:
|
|
pred = &lcu->rec.u[offset];
|
|
ref = &lcu->ref.u[offset];
|
|
coeff = &lcu->coeff.u[z_index];
|
|
break;
|
|
case COLOR_V:
|
|
pred = &lcu->rec.v[offset];
|
|
ref = &lcu->ref.v[offset];
|
|
coeff = &lcu->coeff.v[z_index];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
const bool can_use_trskip = tr_width <= (1 << state->encoder_control->cfg.trskip_max_size) &&
|
|
cfg->trskip_enable &&
|
|
cur_pu->tr_skip & (1 << color);
|
|
|
|
uint8_t has_coeffs;
|
|
|
|
|
|
int lmcs_chroma_adj = 0;
|
|
if (state->tile->frame->lmcs_aps->m_sliceReshapeInfo.enableChromaAdj && color != COLOR_Y) {
|
|
lmcs_chroma_adj = uvg_calculate_lmcs_chroma_adj_vpdu_nei(state, state->tile->frame->lmcs_aps, x, y);
|
|
}
|
|
|
|
if (cfg->lossless) {
|
|
has_coeffs = bypass_transquant(tr_width,
|
|
lcu_width, // in stride
|
|
lcu_width, // out stride
|
|
ref,
|
|
pred,
|
|
pred,
|
|
coeff);
|
|
if (cfg->implicit_rdpcm && cur_pu->type == CU_INTRA) {
|
|
// implicit rdpcm for horizontal and vertical intra modes
|
|
if (mode == 18) {
|
|
rdpcm(tr_width, RDPCM_HOR, coeff);
|
|
} else if (mode == 50) {
|
|
rdpcm(tr_width, RDPCM_VER, coeff);
|
|
}
|
|
}
|
|
|
|
} else if (can_use_trskip) {
|
|
int8_t tr_skip = 0;
|
|
|
|
// Try quantization with trskip and use it if it's better.
|
|
has_coeffs = uvg_quantize_residual_trskip(state,
|
|
cur_pu,
|
|
tr_width,
|
|
color,
|
|
scan_idx,
|
|
&tr_skip,
|
|
lcu_width,
|
|
lcu_width,
|
|
ref,
|
|
pred,
|
|
pred,
|
|
coeff,
|
|
lmcs_chroma_adj);
|
|
} else {
|
|
if(color == COLOR_UV) {
|
|
has_coeffs = uvg_quant_cbcr_residual(
|
|
state,
|
|
cur_pu,
|
|
tr_width,
|
|
scan_idx,
|
|
lcu_width,
|
|
lcu_width,
|
|
&lcu->ref.u[offset], &lcu->ref.v[offset],
|
|
&lcu->rec.u[offset], &lcu->rec.v[offset],
|
|
&lcu->rec.u[offset], &lcu->rec.v[offset],
|
|
&lcu->coeff.joint_uv[z_index],
|
|
early_skip,
|
|
lmcs_chroma_adj
|
|
);
|
|
cur_pu->joint_cb_cr = has_coeffs;
|
|
return;
|
|
}
|
|
|
|
has_coeffs = uvg_quantize_residual(state,
|
|
cur_pu,
|
|
tr_width,
|
|
color,
|
|
scan_idx,
|
|
false, // tr skip
|
|
lcu_width,
|
|
lcu_width,
|
|
ref,
|
|
pred,
|
|
pred,
|
|
coeff,
|
|
early_skip,
|
|
lmcs_chroma_adj);
|
|
|
|
}
|
|
|
|
cbf_clear(&cur_pu->cbf, depth, color);
|
|
if (has_coeffs) {
|
|
cbf_set(&cur_pu->cbf, depth, color);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* This function calculates the residual coefficients for a region of the LCU
|
|
* (defined by x, y and depth) and updates the reconstruction with the
|
|
* kvantized residual. Processes the TU tree recursively.
|
|
*
|
|
* Inputs are:
|
|
* - lcu->rec pixels after prediction for the area
|
|
* - lcu->ref reference pixels for the area
|
|
* - lcu->cu for the area
|
|
* - early_skip if this is used for early skip, bypass IT and IQ
|
|
*
|
|
* Outputs are:
|
|
* - lcu->rec reconstruction after quantized residual
|
|
* - lcu->coeff quantized coefficients for the area
|
|
* - lcu->cbf coded block flags for the area
|
|
* - lcu->cu.intra.tr_skip tr skip flags for the area (in case of luma)
|
|
*/
|
|
void uvg_quantize_lcu_residual(
|
|
encoder_state_t * const state,
|
|
const bool luma,
|
|
const bool chroma,
|
|
const bool jccr,
|
|
const int32_t x,
|
|
const int32_t y,
|
|
const uint8_t depth,
|
|
cu_info_t *cur_pu,
|
|
lcu_t* lcu,
|
|
bool early_skip)
|
|
{
|
|
const int32_t width = LCU_WIDTH >> depth;
|
|
const vector2d_t lcu_px = { SUB_SCU(x), SUB_SCU(y) };
|
|
|
|
if (cur_pu == NULL) {
|
|
cur_pu = LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y);
|
|
}
|
|
|
|
// Tell clang-analyzer what is up. For some reason it can't figure out from
|
|
// asserting just depth.
|
|
assert(width == 4 ||
|
|
width == 8 ||
|
|
width == 16 ||
|
|
width == 32 ||
|
|
width == 64);
|
|
|
|
// Reset CBFs because CBFs might have been set
|
|
// for depth earlier
|
|
if (luma) {
|
|
cbf_clear(&cur_pu->cbf, depth, COLOR_Y);
|
|
}
|
|
if (chroma || jccr) {
|
|
cbf_clear(&cur_pu->cbf, depth, COLOR_U);
|
|
cbf_clear(&cur_pu->cbf, depth, COLOR_V);
|
|
}
|
|
|
|
if (depth == 0 || cur_pu->tr_depth > depth) {
|
|
|
|
// Split transform and increase depth
|
|
const int offset = width / 2;
|
|
const int32_t x2 = x + offset;
|
|
const int32_t y2 = y + offset;
|
|
|
|
// jccr is currently not supported if transform is split
|
|
uvg_quantize_lcu_residual(state, luma, chroma, 0, x, y, depth + 1, NULL, lcu, early_skip);
|
|
uvg_quantize_lcu_residual(state, luma, chroma, 0, x2, y, depth + 1, NULL, lcu, early_skip);
|
|
uvg_quantize_lcu_residual(state, luma, chroma, 0, x, y2, depth + 1, NULL, lcu, early_skip);
|
|
uvg_quantize_lcu_residual(state, luma, chroma, 0, x2, y2, depth + 1, NULL, lcu, early_skip);
|
|
|
|
// Propagate coded block flags from child CUs to parent CU.
|
|
uint16_t child_cbfs[3] = {
|
|
LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y )->cbf,
|
|
LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y + offset)->cbf,
|
|
LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y + offset)->cbf,
|
|
};
|
|
|
|
if (depth <= MAX_DEPTH) {
|
|
cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_Y);
|
|
cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_U);
|
|
cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_V);
|
|
}
|
|
|
|
} else {
|
|
// Process a leaf TU.
|
|
if (luma) {
|
|
quantize_tr_residual(state, COLOR_Y, x, y, depth, cur_pu, lcu, early_skip);
|
|
}
|
|
if (chroma) {
|
|
quantize_tr_residual(state, COLOR_U, x, y, depth, cur_pu, lcu, early_skip);
|
|
quantize_tr_residual(state, COLOR_V, x, y, depth, cur_pu, lcu, early_skip);
|
|
}
|
|
if (jccr && cur_pu->tr_depth == cur_pu->depth) {
|
|
quantize_tr_residual(state, COLOR_UV, x, y, depth, cur_pu, lcu, early_skip);
|
|
}
|
|
if(chroma && jccr && cur_pu->tr_depth == cur_pu->depth) {
|
|
assert( 0 && "Trying to quantize both jccr and regular at the same time.\n");
|
|
}
|
|
}
|
|
}
|