uvg266/src/cu.h

620 lines
22 KiB
C

#ifndef CU_H_
#define CU_H_
/*****************************************************************************
* This file is part of uvg266 VVC encoder.
*
* Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
****************************************************************************/
/**
* \ingroup DataStructures
* \file
* Coding Unit data structure and related functions.
*/
#include "global.h" // IWYU pragma: keep
#include "image.h"
#include "uvg266.h"
//Cu stuff
//////////////////////////////////////////////////////////////////////////
// CONSTANTS
typedef enum {
CU_NOTSET = 0,
CU_INTRA = 1,
CU_INTER = 2,
CU_PCM = 3,
} cu_type_t;
typedef enum {
SIZE_2Nx2N = 0,
SIZE_2NxN = 1,
SIZE_Nx2N = 2,
SIZE_NxN = 3,
SIZE_2NxnU = 4,
SIZE_2NxnD = 5,
SIZE_nLx2N = 6,
SIZE_nRx2N = 7,
} part_mode_t;
//MTS transform combinations
typedef enum {
MTS_DCT2_DCT2 = 0,
MTS_SKIP = 1,
MTS_DST7_DST7 = 2,
MTS_DCT8_DST7 = 3,
MTS_DST7_DCT8 = 4,
MTS_DCT8_DCT8 = 5,
MTS_TR_NUM = 6,
} mts_idx;
//////////////////////////////////////////////////////////////////////////
// TYPES
typedef struct {
int x;
int y;
} vector2d_t;
enum uvg_tree_type {
UVG_BOTH_T = 0,
UVG_LUMA_T = 1,
UVG_CHROMA_T = 2
};
enum split_type {
NO_SPLIT = 0,
QT_SPLIT = 1,
BT_HOR_SPLIT = 2,
BT_VER_SPLIT = 3,
TT_HOR_SPLIT = 4,
TT_VER_SPLIT = 5,
};
typedef struct {
uint32_t split_tree;
uint8_t current_depth;
uint8_t mtt_depth;
uint8_t implicit_mtt_depth;
uint8_t part_index;
} split_tree_t;
// Split for each depth takes three bits like xxy where if either x bit is set
// it is a MTT split, and if there are any MTT split QT split is not allowed
#define CAN_QT_SPLIT(x) (((x) & 6DB6DB6) == 0)
/**
* \brief Struct for CU info
*/
typedef struct
{
uint8_t type : 2; //!< \brief block type, one of cu_type_t values
uint8_t skipped : 1; //!< \brief flag to indicate this block is skipped
uint8_t merged : 1; //!< \brief flag to indicate this block is merged
uint8_t merge_idx : 3; //!< \brief merge index
uint8_t tr_skip : 3; //!< \brief transform skip flag
uint8_t tr_idx : 3; //!< \brief transform index
uint8_t joint_cb_cr : 2; //!< \brief joint chroma residual coding
uint8_t log2_width : 3;
uint8_t log2_height : 3;
uint8_t log2_chroma_width : 3;
uint8_t log2_chroma_height : 3;
uint16_t cbf;
uint8_t root_cbf;
uint32_t split_tree : 3 * 9;
/**
* \brief QP used for the CU.
*
* This is required for deblocking when per-LCU QPs are enabled.
*/
uint8_t qp;
uint8_t bdpcmMode : 1;
uint8_t violates_mts_coeff_constraint : 1;
uint8_t mts_last_scan_pos : 1;
uint8_t violates_lfnst_constrained_luma : 1;
uint8_t violates_lfnst_constrained_chroma : 1;
uint8_t lfnst_last_scan_pos : 1;
uint8_t lfnst_idx : 2;
uint8_t cr_lfnst_idx : 2;
uint8_t luma_deblocking : 2;
uint8_t chroma_deblocking : 2;
union {
struct {
int8_t mode;
int8_t mode_chroma;
uint8_t multi_ref_idx;
int8_t mip_flag;
int8_t mip_is_transposed;
int8_t isp_mode;
} intra;
struct {
mv_t mv[2][2]; // \brief Motion vectors for L0 and L1
uint8_t mv_ref[2]; // \brief Index of the L0 and L1 array.
uint8_t mv_cand0 : 1; // \brief selected MV candidate
uint8_t mv_cand1 : 1; // \brief selected MV candidate
uint8_t mv_dir : 2; // \brief Probably describes if mv_ref is L0, L1 or both (bi-pred)
uint8_t imv : 2; // \brief Adaptive motion vector resolution for this block
} inter;
};
} cu_info_t;
typedef struct {
int16_t x;
int16_t y;
uint8_t local_x;
uint8_t local_y;
int8_t width;
int8_t height;
int8_t chroma_width;
int8_t chroma_height;
} cu_loc_t;
void uvg_cu_loc_ctor(cu_loc_t *loc, int x, int y, int width, int height);
typedef struct encoder_state_t encoder_state_t;
int uvg_get_split_locs(
const cu_loc_t* const origin,
enum split_type split,
cu_loc_t out[4],
uint8_t* separate_chroma);
int uvg_get_possible_splits(const encoder_state_t* const state,
const cu_loc_t* const cu_loc, split_tree_t split_tree, enum uvg_tree_type tree_type, bool splits[6]);
#define CU_GET_MV_CAND(cu_info_ptr, reflist) \
(((reflist) == 0) ? (cu_info_ptr)->inter.mv_cand0 : (cu_info_ptr)->inter.mv_cand1)
#define CU_SET_MV_CAND(cu_info_ptr, reflist, value) \
do { \
if ((reflist) == 0) { \
(cu_info_ptr)->inter.mv_cand0 = (value); \
} else { \
(cu_info_ptr)->inter.mv_cand1 = (value); \
} \
} while (0)
#define CHECKPOINT_CU(prefix_str, cu) CHECKPOINT(prefix_str " type=%d part_size=%d coded=%d " \
"skipped=%d merged=%d merge_idx=%d cbf.y=%d cbf.u=%d cbf.v=%d " \
"intra[0].cost=%u intra[0].bitcost=%u intra[0].mode=%d intra[0].mode_chroma=%d intra[0].tr_skip=%d " \
"intra[1].cost=%u intra[1].bitcost=%u intra[1].mode=%d intra[1].mode_chroma=%d intra[1].tr_skip=%d " \
"intra[2].cost=%u intra[2].bitcost=%u intra[2].mode=%d intra[2].mode_chroma=%d intra[2].tr_skip=%d " \
"intra[3].cost=%u intra[3].bitcost=%u intra[3].mode=%d intra[3].mode_chroma=%d intra[3].tr_skip=%d " \
"inter.cost=%u inter.bitcost=%u inter.mv[0]=%d inter.mv[1]=%d inter.mvd[0]=%d inter.mvd[1]=%d " \
"inter.mv_cand=%d inter.mv_ref=%d inter.mv_dir=%d inter.mode=%d" \
, (cu).type, (cu).part_size, (cu).coded, \
(cu).skipped, (cu).merged, (cu).merge_idx, (cu).cbf.y, (cu).cbf.u, (cu).cbf.v, \
(cu).intra[0].cost, (cu).intra[0].bitcost, (cu).intra[0].mode, (cu).intra[0].mode_chroma, (cu).intra[0].tr_skip, \
(cu).intra[1].cost, (cu).intra[1].bitcost, (cu).intra[1].mode, (cu).intra[1].mode_chroma, (cu).intra[1].tr_skip, \
(cu).intra[2].cost, (cu).intra[2].bitcost, (cu).intra[2].mode, (cu).intra[2].mode_chroma, (cu).intra[2].tr_skip, \
(cu).intra[3].cost, (cu).intra[3].bitcost, (cu).intra[3].mode, (cu).intra[3].mode_chroma, (cu).intra[3].tr_skip, \
(cu).inter.cost, (cu).inter.bitcost, (cu).inter.mv[0], (cu).inter.mv[1], (cu).inter.mvd[0], (cu).inter.mvd[1], \
(cu).inter.mv_cand, (cu).inter.mv_ref, (cu).inter.mv_dir, (cu).inter.mode)
typedef struct cu_array_t {
struct cu_array_t *base; //!< \brief base cu array or NULL
cu_info_t *data; //!< \brief cu array
uint32_t width; //!< \brief width of the array in pixels
uint32_t height; //!< \brief height of the array in pixels
uint32_t stride; //!< \brief stride of the array in pixels
uint32_t refcount; //!< \brief number of references to this cu_array
} cu_array_t;
cu_info_t* uvg_cu_array_at(cu_array_t *cua, unsigned x_px, unsigned y_px);
void uvg_get_isp_cu_arr_coords(int* x, int* y);
const cu_info_t* uvg_cu_array_at_const(const cu_array_t *cua, unsigned x_px, unsigned y_px);
cu_array_t * uvg_cu_array_alloc(const int width, const int height);
cu_array_t* uvg_cu_array_chroma_alloc(const int width, const int height, enum uvg_chroma_format chroma);
cu_array_t * uvg_cu_subarray(cu_array_t *base,
const unsigned x_offset,
const unsigned y_offset,
const unsigned width,
const unsigned height);
void uvg_cu_array_free(cu_array_t **cua_ptr);
cu_array_t * uvg_cu_array_copy_ref(cu_array_t* cua);
/**
* \brief Return the 7 lowest-order bits of the pixel coordinate.
*
* The 7 lower-order bits correspond to the distance from the left or top edge
* of the containing LCU.
*/
#define SUB_SCU(xy) ((xy) & (LCU_WIDTH - 1))
#define SUB_SCU_TREE(xy, t) ((xy) & (((t) != KVZ_CHROMA_T ? LCU_WIDTH : LCU_WIDTH_C) - 1))
#define LCU_CU_WIDTH 16
#define LCU_T_CU_WIDTH (LCU_CU_WIDTH + 1)
#define LCU_CU_OFFSET (LCU_T_CU_WIDTH + 1)
#define SCU_WIDTH (LCU_WIDTH / LCU_CU_WIDTH)
// Width from top left of the LCU, so +1 for ref buffer size.
#define LCU_REF_PX_WIDTH (LCU_WIDTH + LCU_WIDTH / 2)
/**
* Top and left intra reference pixels for LCU.
* - Intra needs maximum of 32 to the right and down from LCU border.
* - First pixel is the top-left pixel.
*/
typedef struct {
uvg_pixel y[LCU_REF_PX_WIDTH + 1];
uvg_pixel u[LCU_REF_PX_WIDTH / 2 + 1];
uvg_pixel v[LCU_REF_PX_WIDTH / 2 + 1];
} lcu_ref_px_t;
/**
* \brief Coefficients of an LCU
*
* Coefficients inside a single TU are stored in row-major order. TUs
* themselves are stored in a zig-zag order, so that the coefficients of
* a TU are contiguous in memory.
*
* Example storage order for a 32x32 pixel TU tree
*
\verbatim
+------+------+------+------+---------------------------+
| 0 | 16 | 64 | 80 | |
| - | - | - | - | |
| 15 | 31 | 79 | 95 | |
+------+------+------+------+ |
| 32 | 48 | 96 | 112 | |
| - | - | - | - | |
| 47 | 63 | 111 | 127 | |
+------+------+------+------+ 256 - 511 |
| 128 | 144 | 192 | 208 | |
| - | - | - | - | |
| 143 | 159 | 207 | 223 | |
+------+------+------+------+ |
| 160 | 176 | 224 | 240 | |
| - | - | - | - | |
| 175 | 191 | 239 | 255 | |
+------+------+------+------+-------------+------+------+
| 512 | 528 | | | 832 | 848 |
| - | - | | | - | - |
| 527 | 543 | | | 847 | 863 |
+------+------+ 576 - 639 | 768 - 831 +------+------+
| 544 | 560 | | | 864 | 880 |
| - | - | | | - | - |
| 559 | 575 | | | 879 | 895 |
+------+------+-------------+-------------+------+------+
| | | | |
| | | | |
| | | | |
| 640 - 703 | 704 - 767 | 896 - 959 | 960 - 1023 |
| | | | |
| | | | |
| | | | |
+-------------+-------------+-------------+-------------+
\endverbatim
*/
typedef ALIGNED(8) struct {
coeff_t y[LCU_LUMA_SIZE];
coeff_t u[LCU_CHROMA_SIZE];
coeff_t v[LCU_CHROMA_SIZE];
coeff_t joint_uv[LCU_CHROMA_SIZE];
} lcu_coeff_t;
typedef struct {
lcu_ref_px_t top_ref; //!< Reference pixels from adjacent LCUs.
lcu_ref_px_t left_ref; //!< Reference pixels from adjacent LCUs.
lcu_yuv_t ref; //!< LCU reference pixels
lcu_yuv_t rec; //!< LCU reconstructed pixels
/**
* We get the coefficients as a byproduct of doing reconstruction during the
* search. It might be more efficient to recalculate the final coefficients
* once we know the final modes rather than copying them.
*/
lcu_coeff_t coeff; //!< LCU coefficients
/**
* A 17x17 CU array, plus the top right reference CU.
* - Top reference CUs at indices [0,16] (row 0).
* - Left reference CUs at indices 17*n where n is in [0,16] (column 0).
* - All CUs of this LCU at indices 17*y + x where x,y are in [1,16].
* - Top right reference CU at the last index.
*
* The figure below shows how the indices map to CU locations.
*
\verbatim
.-- left reference CUs
v
0 | 1 2 . . . 16 | 289 <-- top reference CUs
-----+--------------------+----
17 | 18 19 . . . 33 |
34 | 35 36 . . . 50 <-- this LCU
. | . . . . |
. | . . . . |
. | . . . . |
272 | 273 274 . . . 288 |
-----+--------------------+----
\endverbatim
*/
cu_info_t cu[LCU_T_CU_WIDTH * LCU_T_CU_WIDTH + 1];
} lcu_t;
void uvg_cu_array_copy_from_lcu(cu_array_t* dst, int dst_x, int dst_y, const lcu_t *src, enum uvg_tree_type
tree_type);
int uvg_count_available_edge_cus(const cu_loc_t* const cu_loc, const lcu_t* const lcu, bool left);
int uvg_count_chroma_tree_available_edge_cus(int x, int y, int width, int height, const lcu_t* const lcu, bool left);
/**
* \brief Return pointer to the top right reference CU.
*/
#define LCU_GET_TOP_RIGHT_CU(lcu) \
(&(lcu)->cu[LCU_T_CU_WIDTH * LCU_T_CU_WIDTH])
/**
* \brief Return pointer to the CU containing a given pixel.
*
* \param lcu pointer to the containing LCU
* \param x_px x-coordinate relative to the upper left corner of the LCU
* \param y_px y-coordinate relative to the upper left corner of the LCU
* \return pointer to the CU at coordinates (x_px, y_px)
*/
#define LCU_GET_CU_AT_PX(lcu, x_px, y_px) \
(&(lcu)->cu[LCU_CU_OFFSET + ((x_px) >> 2) + ((y_px) >> 2) * LCU_T_CU_WIDTH])
/**
* \brief Copy a part of a coeff_t array to another.
*
* \param width Size of the block to be copied in pixels.
* \param src Pointer to the source array.
* \param dest Pointer to the destination array.
*/
static INLINE void copy_coeffs(const coeff_t *__restrict src,
coeff_t *__restrict dest,
size_t width, size_t height, const int lcu_width)
{
for (int j = 0; j < height; ++j) {
memcpy(dest + j * lcu_width, src + j * lcu_width, width * sizeof(coeff_t));
}
}
/**
* \brief Convert (x, y) coordinates to z-order index.
*
* Only works for widths and coordinates divisible by four. Width must be
* a power of two in range [4..64].
*
* \param width size of the containing block
* \param x x-coordinate
* \param y y-coordinate
* \return index in z-order
*/
static INLINE unsigned xy_to_zorder(unsigned width, unsigned x, unsigned y)
{
assert(width % 4 == 0 && width >= 4 && width <= 64);
assert(x % 4 == 0 && x < width);
assert(y % 4 == 0 && y < width);
unsigned result = 0;
switch (width) {
case 64:
result += x / 32 * (32*32);
result += y / 32 * (64*32);
x %= 32;
y %= 32;
// fallthrough
case 32:
result += x / 16 * (16*16);
result += y / 16 * (32*16);
x %= 16;
y %= 16;
// fallthrough
case 16:
result += x / 8 * ( 8*8);
result += y / 8 * (16*8);
x %= 8;
y %= 8;
// fallthrough
case 8:
result += x / 4 * (4*4);
result += y / 4 * (8*4);
// fallthrough
case 4:
break;
}
return result;
}
#define CHECKPOINT_LCU(prefix_str, lcu) do { \
CHECKPOINT_CU(prefix_str " cu[0]", (lcu).cu[0]); \
CHECKPOINT_CU(prefix_str " cu[1]", (lcu).cu[1]); \
CHECKPOINT_CU(prefix_str " cu[2]", (lcu).cu[2]); \
CHECKPOINT_CU(prefix_str " cu[3]", (lcu).cu[3]); \
CHECKPOINT_CU(prefix_str " cu[4]", (lcu).cu[4]); \
CHECKPOINT_CU(prefix_str " cu[5]", (lcu).cu[5]); \
CHECKPOINT_CU(prefix_str " cu[6]", (lcu).cu[6]); \
CHECKPOINT_CU(prefix_str " cu[7]", (lcu).cu[7]); \
CHECKPOINT_CU(prefix_str " cu[8]", (lcu).cu[8]); \
CHECKPOINT_CU(prefix_str " cu[9]", (lcu).cu[9]); \
CHECKPOINT_CU(prefix_str " cu[10]", (lcu).cu[10]); \
CHECKPOINT_CU(prefix_str " cu[11]", (lcu).cu[11]); \
CHECKPOINT_CU(prefix_str " cu[12]", (lcu).cu[12]); \
CHECKPOINT_CU(prefix_str " cu[13]", (lcu).cu[13]); \
CHECKPOINT_CU(prefix_str " cu[14]", (lcu).cu[14]); \
CHECKPOINT_CU(prefix_str " cu[15]", (lcu).cu[15]); \
CHECKPOINT_CU(prefix_str " cu[16]", (lcu).cu[16]); \
CHECKPOINT_CU(prefix_str " cu[17]", (lcu).cu[17]); \
CHECKPOINT_CU(prefix_str " cu[18]", (lcu).cu[18]); \
CHECKPOINT_CU(prefix_str " cu[19]", (lcu).cu[19]); \
CHECKPOINT_CU(prefix_str " cu[20]", (lcu).cu[20]); \
CHECKPOINT_CU(prefix_str " cu[21]", (lcu).cu[21]); \
CHECKPOINT_CU(prefix_str " cu[22]", (lcu).cu[22]); \
CHECKPOINT_CU(prefix_str " cu[23]", (lcu).cu[23]); \
CHECKPOINT_CU(prefix_str " cu[24]", (lcu).cu[24]); \
CHECKPOINT_CU(prefix_str " cu[25]", (lcu).cu[25]); \
CHECKPOINT_CU(prefix_str " cu[26]", (lcu).cu[26]); \
CHECKPOINT_CU(prefix_str " cu[27]", (lcu).cu[27]); \
CHECKPOINT_CU(prefix_str " cu[28]", (lcu).cu[28]); \
CHECKPOINT_CU(prefix_str " cu[29]", (lcu).cu[29]); \
CHECKPOINT_CU(prefix_str " cu[30]", (lcu).cu[30]); \
CHECKPOINT_CU(prefix_str " cu[31]", (lcu).cu[31]); \
CHECKPOINT_CU(prefix_str " cu[32]", (lcu).cu[32]); \
CHECKPOINT_CU(prefix_str " cu[33]", (lcu).cu[33]); \
CHECKPOINT_CU(prefix_str " cu[34]", (lcu).cu[34]); \
CHECKPOINT_CU(prefix_str " cu[35]", (lcu).cu[35]); \
CHECKPOINT_CU(prefix_str " cu[36]", (lcu).cu[36]); \
CHECKPOINT_CU(prefix_str " cu[37]", (lcu).cu[37]); \
CHECKPOINT_CU(prefix_str " cu[38]", (lcu).cu[38]); \
CHECKPOINT_CU(prefix_str " cu[39]", (lcu).cu[39]); \
CHECKPOINT_CU(prefix_str " cu[40]", (lcu).cu[40]); \
CHECKPOINT_CU(prefix_str " cu[41]", (lcu).cu[41]); \
CHECKPOINT_CU(prefix_str " cu[42]", (lcu).cu[42]); \
CHECKPOINT_CU(prefix_str " cu[43]", (lcu).cu[43]); \
CHECKPOINT_CU(prefix_str " cu[44]", (lcu).cu[44]); \
CHECKPOINT_CU(prefix_str " cu[45]", (lcu).cu[45]); \
CHECKPOINT_CU(prefix_str " cu[46]", (lcu).cu[46]); \
CHECKPOINT_CU(prefix_str " cu[47]", (lcu).cu[47]); \
CHECKPOINT_CU(prefix_str " cu[48]", (lcu).cu[48]); \
CHECKPOINT_CU(prefix_str " cu[49]", (lcu).cu[49]); \
CHECKPOINT_CU(prefix_str " cu[50]", (lcu).cu[50]); \
CHECKPOINT_CU(prefix_str " cu[51]", (lcu).cu[51]); \
CHECKPOINT_CU(prefix_str " cu[52]", (lcu).cu[52]); \
CHECKPOINT_CU(prefix_str " cu[53]", (lcu).cu[53]); \
CHECKPOINT_CU(prefix_str " cu[54]", (lcu).cu[54]); \
CHECKPOINT_CU(prefix_str " cu[55]", (lcu).cu[55]); \
CHECKPOINT_CU(prefix_str " cu[56]", (lcu).cu[56]); \
CHECKPOINT_CU(prefix_str " cu[57]", (lcu).cu[57]); \
CHECKPOINT_CU(prefix_str " cu[58]", (lcu).cu[58]); \
CHECKPOINT_CU(prefix_str " cu[59]", (lcu).cu[59]); \
CHECKPOINT_CU(prefix_str " cu[60]", (lcu).cu[60]); \
CHECKPOINT_CU(prefix_str " cu[61]", (lcu).cu[61]); \
CHECKPOINT_CU(prefix_str " cu[62]", (lcu).cu[62]); \
CHECKPOINT_CU(prefix_str " cu[63]", (lcu).cu[63]); \
CHECKPOINT_CU(prefix_str " cu[64]", (lcu).cu[64]); \
CHECKPOINT_CU(prefix_str " cu[65]", (lcu).cu[65]); \
CHECKPOINT_CU(prefix_str " cu[66]", (lcu).cu[66]); \
CHECKPOINT_CU(prefix_str " cu[67]", (lcu).cu[67]); \
CHECKPOINT_CU(prefix_str " cu[68]", (lcu).cu[68]); \
CHECKPOINT_CU(prefix_str " cu[69]", (lcu).cu[69]); \
CHECKPOINT_CU(prefix_str " cu[70]", (lcu).cu[70]); \
CHECKPOINT_CU(prefix_str " cu[71]", (lcu).cu[71]); \
CHECKPOINT_CU(prefix_str " cu[72]", (lcu).cu[72]); \
CHECKPOINT_CU(prefix_str " cu[73]", (lcu).cu[73]); \
CHECKPOINT_CU(prefix_str " cu[74]", (lcu).cu[74]); \
CHECKPOINT_CU(prefix_str " cu[75]", (lcu).cu[75]); \
CHECKPOINT_CU(prefix_str " cu[76]", (lcu).cu[76]); \
CHECKPOINT_CU(prefix_str " cu[77]", (lcu).cu[77]); \
CHECKPOINT_CU(prefix_str " cu[78]", (lcu).cu[78]); \
CHECKPOINT_CU(prefix_str " cu[79]", (lcu).cu[79]); \
CHECKPOINT_CU(prefix_str " cu[80]", (lcu).cu[80]); \
CHECKPOINT_CU(prefix_str " cu[81]", (lcu).cu[81]); \
} while(0)
/**
* Check if CBF in a given level >= depth is true.
*/
static INLINE int cbf_is_set(uint16_t cbf, color_t plane)
{
return (cbf & (1 << (plane))) != 0;
}
/**
* Check if CBF in a given level >= depth is true.
*/
static INLINE int cbf_is_set_any(uint16_t cbf)
{
return cbf_is_set(cbf, COLOR_Y) ||
cbf_is_set(cbf, COLOR_U) ||
cbf_is_set(cbf, COLOR_V);
}
/**
* Set CBF in a level to true.
*/
static INLINE void cbf_set(uint16_t *cbf, color_t plane)
{
// Return value of the bit corresponding to the level.
*cbf |= (1) << (plane);
}
/**
* Set CBF in a level to true if it is set at a lower level in any of
* the child_cbfs.
*/
static INLINE void cbf_set_conditionally(uint16_t *cbf, uint16_t child_cbfs[3], color_t plane)
{
bool child_cbf_set = cbf_is_set(child_cbfs[0], plane) ||
cbf_is_set(child_cbfs[1], plane) ||
cbf_is_set(child_cbfs[2], plane);
if (child_cbf_set) {
cbf_set(cbf, plane);
}
}
/**
*/
static INLINE void cbf_clear(uint16_t *cbf, color_t plane)
{
*cbf &= ~(1 << (plane));
}
/**
* Copy cbf flags.
*/
static INLINE void cbf_copy(uint16_t *cbf, uint16_t src, color_t plane)
{
cbf_clear(cbf, plane);
*cbf |= src & (1 << plane);
}
#define GET_SPLITDATA(CU,curDepth) (((CU)->split_tree >> ((curDepth) * 3)) & 7)
#define PU_IS_TU(cu) ((cu)->log2_width <= TR_MAX_LOG2_SIZE && (cu)->log2_height <= TR_MAX_LOG2_SIZE)
#endif