mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-24 18:34:06 +00:00
4a0121ac42
Adds region of interest coding capability. Works by reading a file of delta QP values which will then be applied to each frame at LCU level.
779 lines
26 KiB
C
779 lines
26 KiB
C
/*****************************************************************************
|
|
* This file is part of Kvazaar HEVC encoder.
|
|
*
|
|
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
|
|
* COPYING file).
|
|
*
|
|
* Kvazaar is free software: you can redistribute it and/or modify it under
|
|
* the terms of the GNU Lesser General Public License as published by the
|
|
* Free Software Foundation; either version 2.1 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
|
|
****************************************************************************/
|
|
|
|
#include "filter.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "cu.h"
|
|
#include "encoder.h"
|
|
#include "kvazaar.h"
|
|
#include "transform.h"
|
|
#include "videoframe.h"
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// INITIALIZATIONS
|
|
const uint8_t kvz_g_tc_table_8x8[54] =
|
|
{
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
|
|
2, 3, 3, 3, 3, 4, 4, 4, 5, 5,
|
|
6, 6, 7, 8, 9, 10, 11, 13, 14, 16,
|
|
18, 20, 22, 24
|
|
};
|
|
|
|
const uint8_t kvz_g_beta_table_8x8[52] =
|
|
{
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 6, 7, 8, 9,
|
|
10, 11, 12, 13, 14, 15, 16, 17, 18, 20,
|
|
22, 24, 26, 28, 30, 32, 34, 36, 38, 40,
|
|
42, 44, 46, 48, 50, 52, 54, 56, 58, 60,
|
|
62, 64
|
|
};
|
|
|
|
const int8_t kvz_g_luma_filter[4][8] =
|
|
{
|
|
{ 0, 0, 0, 64, 0, 0, 0, 0 },
|
|
{ -1, 4, -10, 58, 17, -5, 1, 0 },
|
|
{ -1, 4, -11, 40, 40, -11, 4, -1 },
|
|
{ 0, 1, -5, 17, 58, -10, 4, -1 }
|
|
};
|
|
|
|
const int8_t kvz_g_chroma_filter[8][4] =
|
|
{
|
|
{ 0, 64, 0, 0 },
|
|
{ -2, 58, 10, -2 },
|
|
{ -4, 54, 16, -2 },
|
|
{ -6, 46, 28, -4 },
|
|
{ -4, 36, 36, -4 },
|
|
{ -4, 28, 46, -6 },
|
|
{ -2, 16, 54, -4 },
|
|
{ -2, 10, 58, -2 }
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// FUNCTIONS
|
|
|
|
/**
|
|
* \brief Perform in strong luma filtering in place.
|
|
* \param line line of 8 pixels, with center at index 4
|
|
* \param tc tc treshold
|
|
* \return Reach of the filter starting from center.
|
|
*/
|
|
static INLINE int kvz_filter_deblock_luma_strong(
|
|
kvz_pixel *line,
|
|
int32_t tc)
|
|
{
|
|
const kvz_pixel m0 = line[0];
|
|
const kvz_pixel m1 = line[1];
|
|
const kvz_pixel m2 = line[2];
|
|
const kvz_pixel m3 = line[3];
|
|
const kvz_pixel m4 = line[4];
|
|
const kvz_pixel m5 = line[5];
|
|
const kvz_pixel m6 = line[6];
|
|
const kvz_pixel m7 = line[7];
|
|
|
|
line[1] = CLIP(m1 - 2*tc, m1 + 2*tc, (2*m0 + 3*m1 + m2 + m3 + m4 + 4) >> 3);
|
|
line[2] = CLIP(m2 - 2*tc, m2 + 2*tc, ( m1 + m2 + m3 + m4 + 2) >> 2);
|
|
line[3] = CLIP(m3 - 2*tc, m3 + 2*tc, ( m1 + 2*m2 + 2*m3 + 2*m4 + m5 + 4) >> 3);
|
|
line[4] = CLIP(m4 - 2*tc, m4 + 2*tc, ( m2 + 2*m3 + 2*m4 + 2*m5 + m6 + 4) >> 3);
|
|
line[5] = CLIP(m5 - 2*tc, m5 + 2*tc, ( m3 + m4 + m5 + m6 + 2) >> 2);
|
|
line[6] = CLIP(m6 - 2*tc, m6 + 2*tc, ( m3 + m4 + m5 + 3*m6 + 2*m7 + 4) >> 3);
|
|
|
|
return 3;
|
|
}
|
|
|
|
/**
|
|
* \brief Perform in weak luma filtering in place.
|
|
* \param encoder Encoder
|
|
* \param line Line of 8 pixels, with center at index 4
|
|
* \param tc The tc treshold
|
|
* \param p_2nd Whether to filter the 2nd line of P
|
|
* \param q_2nd Whether to filter the 2nd line of Q
|
|
*/
|
|
static INLINE int kvz_filter_deblock_luma_weak(
|
|
const encoder_control_t * const encoder,
|
|
kvz_pixel *line,
|
|
int32_t tc,
|
|
bool p_2nd,
|
|
bool q_2nd)
|
|
{
|
|
const kvz_pixel m1 = line[1];
|
|
const kvz_pixel m2 = line[2];
|
|
const kvz_pixel m3 = line[3];
|
|
const kvz_pixel m4 = line[4];
|
|
const kvz_pixel m5 = line[5];
|
|
const kvz_pixel m6 = line[6];
|
|
|
|
int32_t delta = (9 * (m4 - m3) - 3 * (m5 - m2) + 8) >> 4;
|
|
|
|
if (abs(delta) >= tc * 10) {
|
|
return 0;
|
|
} else {
|
|
int32_t tc2 = tc >> 1;
|
|
delta = CLIP(-tc, tc, delta);
|
|
line[3] = CLIP(0, (1 << encoder->bitdepth) - 1, (m3 + delta));
|
|
line[4] = CLIP(0, (1 << encoder->bitdepth) - 1, (m4 - delta));
|
|
|
|
if (p_2nd) {
|
|
int32_t delta1 = CLIP(-tc2, tc2, (((m1 + m3 + 1) >> 1) - m2 + delta) >> 1);
|
|
line[2] = CLIP(0, (1 << encoder->bitdepth) - 1, m2 + delta1);
|
|
}
|
|
if (q_2nd) {
|
|
int32_t delta2 = CLIP(-tc2, tc2, (((m6 + m4 + 1) >> 1) - m5 - delta) >> 1);
|
|
line[5] = CLIP(0, (1 << encoder->bitdepth) - 1, m5 + delta2);
|
|
}
|
|
|
|
if (p_2nd || q_2nd) {
|
|
return 2;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief
|
|
*/
|
|
static INLINE void kvz_filter_deblock_chroma(const encoder_control_t * const encoder,
|
|
kvz_pixel *src,
|
|
int32_t offset,
|
|
int32_t tc,
|
|
int8_t part_P_nofilter,
|
|
int8_t part_Q_nofilter)
|
|
{
|
|
int32_t delta;
|
|
int16_t m2 = src[-offset * 2];
|
|
int16_t m3 = src[-offset];
|
|
int16_t m4 = src[0];
|
|
int16_t m5 = src[offset];
|
|
|
|
delta = CLIP(-tc,tc, (((m4 - m3) << 2) + m2 - m5 + 4 ) >> 3);
|
|
if(!part_P_nofilter) {
|
|
src[-offset] = CLIP(0, (1 << encoder->bitdepth) - 1, m3 + delta);
|
|
}
|
|
if(!part_Q_nofilter) {
|
|
src[0] = CLIP(0, (1 << encoder->bitdepth) - 1, m4 - delta);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Check whether an edge is a TU boundary.
|
|
*
|
|
* \param state encoder state
|
|
* \param x x-coordinate of the scu in pixels
|
|
* \param y y-coordinate of the scu in pixels
|
|
* \param dir direction of the edge to check
|
|
* \return true, if the edge is a TU boundary, otherwise false
|
|
*/
|
|
static bool is_tu_boundary(const encoder_state_t *const state,
|
|
int32_t x,
|
|
int32_t y,
|
|
edge_dir dir)
|
|
{
|
|
const cu_info_t *const scu =
|
|
kvz_cu_array_at_const(state->tile->frame->cu_array, x, y);
|
|
const int tu_width = LCU_WIDTH >> scu->tr_depth;
|
|
|
|
if (dir == EDGE_HOR) {
|
|
return (y & (tu_width - 1)) == 0;
|
|
} else {
|
|
return (x & (tu_width - 1)) == 0;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Check whether an edge is a PU boundary.
|
|
*
|
|
* \param state encoder state
|
|
* \param x x-coordinate of the scu in pixels
|
|
* \param y y-coordinate of the scu in pixels
|
|
* \param dir direction of the edge to check
|
|
* \return true, if the edge is a TU boundary, otherwise false
|
|
*/
|
|
static bool is_pu_boundary(const encoder_state_t *const state,
|
|
int32_t x,
|
|
int32_t y,
|
|
edge_dir dir)
|
|
{
|
|
const cu_info_t *const scu =
|
|
kvz_cu_array_at_const(state->tile->frame->cu_array, x, y);
|
|
// Get the containing CU.
|
|
const int32_t cu_width = LCU_WIDTH >> scu->depth;
|
|
const int32_t x_cu = x & ~(cu_width - 1);
|
|
const int32_t y_cu = y & ~(cu_width - 1);
|
|
const cu_info_t *const cu =
|
|
kvz_cu_array_at_const(state->tile->frame->cu_array, x_cu, y_cu);
|
|
|
|
const int num_pu = kvz_part_mode_num_parts[cu->part_size];
|
|
for (int i = 0; i < num_pu; i++) {
|
|
if (dir == EDGE_HOR) {
|
|
int y_pu = PU_GET_Y(cu->part_size, cu_width, y_cu, i);
|
|
if (y_pu == y) return true;
|
|
|
|
} else {
|
|
int x_pu = PU_GET_X(cu->part_size, cu_width, x_cu, i);
|
|
if (x_pu == x) return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Check whether an edge is aligned on a 8x8 grid.
|
|
*
|
|
* \param x x-coordinate of the edge
|
|
* \param y y-coordinate of the edge
|
|
* \param dir direction of the edge
|
|
* \return true, if the edge is aligned on a 8x8 grid, otherwise false
|
|
*/
|
|
static bool is_on_8x8_grid(int x, int y, edge_dir dir)
|
|
{
|
|
if (dir == EDGE_HOR) {
|
|
return (y & 7) == 0;
|
|
} else {
|
|
return (x & 7) == 0;
|
|
}
|
|
}
|
|
|
|
static int8_t get_qp_y_pred(const encoder_state_t* state, int x, int y, edge_dir dir)
|
|
{
|
|
if (state->encoder_control->cfg->target_bitrate <= 0
|
|
&& state->encoder_control->cfg->roi.dqps == NULL)
|
|
{
|
|
return state->qp;
|
|
}
|
|
|
|
int32_t qp_p;
|
|
if (dir == EDGE_HOR && y > 0) {
|
|
qp_p = kvz_cu_array_at_const(state->tile->frame->cu_array, x, y - 1)->qp;
|
|
} else if (dir == EDGE_VER && x > 0) {
|
|
qp_p = kvz_cu_array_at_const(state->tile->frame->cu_array, x - 1, y)->qp;
|
|
} else {
|
|
qp_p = state->frame->QP;
|
|
}
|
|
|
|
const int32_t qp_q =
|
|
kvz_cu_array_at_const(state->tile->frame->cu_array, x, y)->qp;
|
|
|
|
return (qp_p + qp_q + 1) >> 1;
|
|
}
|
|
|
|
/**
|
|
* \brief Gather pixels needed for deblocking
|
|
*/
|
|
static INLINE void gather_deblock_pixels(
|
|
const kvz_pixel *src,
|
|
int step,
|
|
int stride,
|
|
int reach,
|
|
kvz_pixel *dst)
|
|
{
|
|
for (int i = -reach; i < +reach; ++i) {
|
|
dst[i + 4] = src[i * step + stride];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Scatter pixels
|
|
*/
|
|
static INLINE void scatter_deblock_pixels(
|
|
const kvz_pixel *src,
|
|
int step,
|
|
int stride,
|
|
int reach,
|
|
kvz_pixel *dst)
|
|
{
|
|
for (int i = -reach; i < +reach; ++i) {
|
|
dst[i * step + stride] = src[i + 4];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Apply the deblocking filter to luma pixels on a single edge.
|
|
*
|
|
* The caller should check that the edge is a TU boundary or a PU boundary.
|
|
*
|
|
\verbatim
|
|
|
|
.-- filter this edge if dir == EDGE_HOR
|
|
v
|
|
+--------+
|
|
|o <-- pixel at (x, y)
|
|
| |
|
|
|<-- filter this edge if dir == EDGE_VER
|
|
| |
|
|
+--------+
|
|
|
|
\endverbatim
|
|
*
|
|
* \param state encoder state
|
|
* \param x x-coordinate in pixels (see above)
|
|
* \param y y-coordinate in pixels (see above)
|
|
* \param length length of the edge in pixels
|
|
* \param dir direction of the edge to filter
|
|
* \param tu_boundary whether the edge is a TU boundary
|
|
*/
|
|
static void filter_deblock_edge_luma(encoder_state_t * const state,
|
|
int32_t x,
|
|
int32_t y,
|
|
int32_t length,
|
|
edge_dir dir,
|
|
bool tu_boundary)
|
|
{
|
|
videoframe_t * const frame = state->tile->frame;
|
|
const encoder_control_t * const encoder = state->encoder_control;
|
|
|
|
{
|
|
int32_t stride = frame->rec->stride;
|
|
int32_t beta_offset_div2 = encoder->beta_offset_div2;
|
|
int32_t tc_offset_div2 = encoder->tc_offset_div2;
|
|
// TODO: support 10+bits
|
|
kvz_pixel *orig_src = &frame->rec->y[x + y*stride];
|
|
kvz_pixel *src = orig_src;
|
|
|
|
const int32_t qp = get_qp_y_pred(state, x, y, dir);
|
|
|
|
int8_t strength = 0;
|
|
int32_t bitdepth_scale = 1 << (encoder->bitdepth - 8);
|
|
int32_t b_index = CLIP(0, 51, qp + (beta_offset_div2 << 1));
|
|
int32_t beta = kvz_g_beta_table_8x8[b_index] * bitdepth_scale;
|
|
int32_t side_threshold = (beta + (beta >>1 )) >> 3;
|
|
int32_t tc_index;
|
|
int32_t tc;
|
|
|
|
uint32_t num_4px_parts = length / 4;
|
|
|
|
// Transpose the image by swapping x and y strides when doing horizontal
|
|
// edges.
|
|
const int32_t x_stride = (dir == EDGE_VER) ? 1 : stride;
|
|
const int32_t y_stride = (dir == EDGE_VER) ? stride : 1;
|
|
|
|
// TODO: add CU based QP calculation
|
|
|
|
// For each 4-pixel part in the edge
|
|
for (uint32_t block_idx = 0; block_idx < num_4px_parts; ++block_idx) {
|
|
{
|
|
// CUs on both sides of the edge
|
|
cu_info_t *cu_p;
|
|
cu_info_t *cu_q;
|
|
if (dir == EDGE_VER) {
|
|
int32_t y_coord = y + 4 * block_idx;
|
|
cu_p = kvz_cu_array_at(frame->cu_array, x - 1, y_coord);
|
|
cu_q = kvz_cu_array_at(frame->cu_array, x, y_coord);
|
|
|
|
} else {
|
|
int32_t x_coord = x + 4 * block_idx;
|
|
cu_p = kvz_cu_array_at(frame->cu_array, x_coord, y - 1);
|
|
cu_q = kvz_cu_array_at(frame->cu_array, x_coord, y );
|
|
}
|
|
|
|
bool nonzero_coeffs = cbf_is_set(cu_q->cbf, cu_q->tr_depth, COLOR_Y)
|
|
|| cbf_is_set(cu_p->cbf, cu_p->tr_depth, COLOR_Y);
|
|
|
|
// Filter strength
|
|
strength = 0;
|
|
if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) {
|
|
strength = 2;
|
|
} else if (tu_boundary && nonzero_coeffs) {
|
|
// Non-zero residual/coeffs and transform boundary
|
|
// Neither CU is intra so tr_depth <= MAX_DEPTH.
|
|
strength = 1;
|
|
} else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 && ((abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][0] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][0]) >= 4) || (abs(cu_q->inter.mv[cu_q->inter.mv_dir - 1][1] - cu_p->inter.mv[cu_p->inter.mv_dir - 1][1]) >= 4))) {
|
|
// Absolute motion vector diff between blocks >= 1 (Integer pixel)
|
|
strength = 1;
|
|
} else if (cu_p->inter.mv_dir != 3 && cu_q->inter.mv_dir != 3 && cu_q->inter.mv_ref[cu_q->inter.mv_dir - 1] != cu_p->inter.mv_ref[cu_p->inter.mv_dir - 1]) {
|
|
strength = 1;
|
|
}
|
|
|
|
// B-slice related checks
|
|
if(!strength && state->frame->slicetype == KVZ_SLICE_B) {
|
|
|
|
// Zero all undefined motion vectors for easier usage
|
|
if(!(cu_q->inter.mv_dir & 1)) {
|
|
cu_q->inter.mv[0][0] = 0;
|
|
cu_q->inter.mv[0][1] = 0;
|
|
}
|
|
if(!(cu_q->inter.mv_dir & 2)) {
|
|
cu_q->inter.mv[1][0] = 0;
|
|
cu_q->inter.mv[1][1] = 0;
|
|
}
|
|
|
|
if(!(cu_p->inter.mv_dir & 1)) {
|
|
cu_p->inter.mv[0][0] = 0;
|
|
cu_p->inter.mv[0][1] = 0;
|
|
}
|
|
if(!(cu_p->inter.mv_dir & 2)) {
|
|
cu_p->inter.mv[1][0] = 0;
|
|
cu_p->inter.mv[1][1] = 0;
|
|
}
|
|
const int refP0 = (cu_p->inter.mv_dir & 1) ? cu_p->inter.mv_ref[0] : -1;
|
|
const int refP1 = (cu_p->inter.mv_dir & 2) ? cu_p->inter.mv_ref[1] : -1;
|
|
const int refQ0 = (cu_q->inter.mv_dir & 1) ? cu_q->inter.mv_ref[0] : -1;
|
|
const int refQ1 = (cu_q->inter.mv_dir & 2) ? cu_q->inter.mv_ref[1] : -1;
|
|
const int16_t* mvQ0 = cu_q->inter.mv[0];
|
|
const int16_t* mvQ1 = cu_q->inter.mv[1];
|
|
|
|
const int16_t* mvP0 = cu_p->inter.mv[0];
|
|
const int16_t* mvP1 = cu_p->inter.mv[1];
|
|
|
|
if(( refP0 == refQ0 && refP1 == refQ1 ) || ( refP0 == refQ1 && refP1==refQ0 ))
|
|
{
|
|
// Different L0 & L1
|
|
if ( refP0 != refP1 ) {
|
|
if ( refP0 == refQ0 ) {
|
|
strength = ((abs(mvQ0[0] - mvP0[0]) >= 4) ||
|
|
(abs(mvQ0[1] - mvP0[1]) >= 4) ||
|
|
(abs(mvQ1[0] - mvP1[0]) >= 4) ||
|
|
(abs(mvQ1[1] - mvP1[1]) >= 4)) ? 1 : 0;
|
|
} else {
|
|
strength = ((abs(mvQ1[0] - mvP0[0]) >= 4) ||
|
|
(abs(mvQ1[1] - mvP0[1]) >= 4) ||
|
|
(abs(mvQ0[0] - mvP1[0]) >= 4) ||
|
|
(abs(mvQ0[1] - mvP1[1]) >= 4)) ? 1 : 0;
|
|
}
|
|
// Same L0 & L1
|
|
} else {
|
|
strength = ((abs(mvQ0[0] - mvP0[0]) >= 4) ||
|
|
(abs(mvQ0[1] - mvP0[1]) >= 4) ||
|
|
(abs(mvQ1[0] - mvP1[0]) >= 4) ||
|
|
(abs(mvQ1[1] - mvP1[1]) >= 4)) &&
|
|
((abs(mvQ1[0] - mvP0[0]) >= 4) ||
|
|
(abs(mvQ1[1] - mvP0[1]) >= 4) ||
|
|
(abs(mvQ0[0] - mvP1[0]) >= 4) ||
|
|
(abs(mvQ0[1] - mvP1[1]) >= 4)) ? 1 : 0;
|
|
}
|
|
} else {
|
|
strength = 1;
|
|
}
|
|
}
|
|
|
|
tc_index = CLIP(0, 51 + 2, (int32_t)(qp + 2*(strength - 1) + (tc_offset_div2 << 1)));
|
|
tc = kvz_g_tc_table_8x8[tc_index] * bitdepth_scale;
|
|
}
|
|
|
|
if (strength == 0) continue;
|
|
|
|
// +-- edge_src
|
|
// v
|
|
// line0 p3 p2 p1 p0 q0 q1 q2 q3
|
|
kvz_pixel *edge_src = &src[block_idx * 4 * y_stride];
|
|
|
|
// Gather the lines of pixels required for the filter on/off decision.
|
|
kvz_pixel b[4][8];
|
|
gather_deblock_pixels(edge_src, x_stride, 0 * y_stride, 4, &b[0][0]);
|
|
gather_deblock_pixels(edge_src, x_stride, 3 * y_stride, 4, &b[3][0]);
|
|
|
|
int_fast32_t dp0 = abs(b[0][1] - 2 * b[0][2] + b[0][3]);
|
|
int_fast32_t dq0 = abs(b[0][4] - 2 * b[0][5] + b[0][6]);
|
|
int_fast32_t dp3 = abs(b[3][1] - 2 * b[3][2] + b[3][3]);
|
|
int_fast32_t dq3 = abs(b[3][4] - 2 * b[3][5] + b[3][6]);
|
|
int_fast32_t dp = dp0 + dp3;
|
|
int_fast32_t dq = dq0 + dq3;
|
|
|
|
if (dp + dq < beta) {
|
|
// Strong filtering flag checking
|
|
int8_t sw = 2 * (dp0 + dq0) < beta >> 2 &&
|
|
2 * (dp3 + dq3) < beta >> 2 &&
|
|
abs(b[0][3] - b[0][4]) < (5 * tc + 1) >> 1 &&
|
|
abs(b[3][3] - b[3][4]) < (5 * tc + 1) >> 1 &&
|
|
abs(b[0][0] - b[0][3]) + abs(b[0][4] - b[0][7]) < beta >> 3 &&
|
|
abs(b[3][0] - b[3][3]) + abs(b[3][4] - b[3][7]) < beta >> 3;
|
|
|
|
// Read lines 1 and 2. Weak filtering doesn't use the outermost pixels
|
|
// but let's give them anyway to simplify control flow.
|
|
gather_deblock_pixels(edge_src, x_stride, 1 * y_stride, 4, &b[1][0]);
|
|
gather_deblock_pixels(edge_src, x_stride, 2 * y_stride, 4, &b[2][0]);
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
int filter_reach;
|
|
if (sw) {
|
|
filter_reach = kvz_filter_deblock_luma_strong(&b[i][0], tc);
|
|
} else {
|
|
bool p_2nd = dp < side_threshold;
|
|
bool q_2nd = dq < side_threshold;
|
|
filter_reach = kvz_filter_deblock_luma_weak(encoder, &b[i][0], tc, p_2nd, q_2nd);
|
|
}
|
|
scatter_deblock_pixels(&b[i][0], x_stride, i * y_stride, filter_reach, edge_src);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Apply the deblocking filter to chroma pixels on a single edge.
|
|
*
|
|
* The caller should check that the edge is a TU boundary or a PU boundary.
|
|
*
|
|
\verbatim
|
|
|
|
.-- filter this edge if dir == EDGE_HOR
|
|
v
|
|
+--------+
|
|
|o <-- pixel at (x, y)
|
|
| |
|
|
|<-- filter this edge if dir == EDGE_VER
|
|
| |
|
|
+--------+
|
|
|
|
\endverbatim
|
|
*
|
|
* \param state encoder state
|
|
* \param x x-coordinate in chroma pixels (see above)
|
|
* \param y y-coordinate in chroma pixels (see above)
|
|
* \param length length of the edge in chroma pixels
|
|
* \param dir direction of the edge to filter
|
|
* \param tu_boundary whether the edge is a TU boundary
|
|
*/
|
|
static void filter_deblock_edge_chroma(encoder_state_t * const state,
|
|
int32_t x,
|
|
int32_t y,
|
|
int32_t length,
|
|
edge_dir dir,
|
|
bool tu_boundary)
|
|
{
|
|
const encoder_control_t * const encoder = state->encoder_control;
|
|
const videoframe_t * const frame = state->tile->frame;
|
|
|
|
// For each subpart
|
|
{
|
|
int32_t stride = frame->rec->stride >> 1;
|
|
int32_t tc_offset_div2 = encoder->tc_offset_div2;
|
|
// TODO: support 10+bits
|
|
kvz_pixel *src[] = {
|
|
&frame->rec->u[x + y*stride],
|
|
&frame->rec->v[x + y*stride],
|
|
};
|
|
int8_t strength = 2;
|
|
|
|
const int32_t luma_qp = get_qp_y_pred(state, x << 1, y << 1, dir);
|
|
int32_t QP = kvz_g_chroma_scale[luma_qp];
|
|
int32_t bitdepth_scale = 1 << (encoder->bitdepth-8);
|
|
int32_t TC_index = CLIP(0, 51+2, (int32_t)(QP + 2*(strength-1) + (tc_offset_div2 << 1)));
|
|
int32_t Tc = kvz_g_tc_table_8x8[TC_index]*bitdepth_scale;
|
|
|
|
const uint32_t num_4px_parts = length / 4;
|
|
|
|
const int32_t offset = (dir == EDGE_HOR) ? stride : 1;
|
|
const int32_t step = (dir == EDGE_HOR) ? 1 : stride;
|
|
|
|
for (uint32_t blk_idx = 0; blk_idx < num_4px_parts; ++blk_idx)
|
|
{
|
|
// CUs on both sides of the edge
|
|
cu_info_t *cu_p;
|
|
cu_info_t *cu_q;
|
|
if (dir == EDGE_VER) {
|
|
int32_t y_coord = (y + 4 * blk_idx) << 1;
|
|
cu_p = kvz_cu_array_at(frame->cu_array, (x - 1) << 1, y_coord);
|
|
cu_q = kvz_cu_array_at(frame->cu_array, x << 1, y_coord);
|
|
|
|
} else {
|
|
int32_t x_coord = (x + 4 * blk_idx) << 1;
|
|
cu_p = kvz_cu_array_at(frame->cu_array, x_coord, (y - 1) << 1);
|
|
cu_q = kvz_cu_array_at(frame->cu_array, x_coord, (y ) << 1);
|
|
}
|
|
|
|
// Only filter when strenght == 2 (one of the blocks is intra coded)
|
|
if (cu_q->type == CU_INTRA || cu_p->type == CU_INTRA) {
|
|
for (int component = 0; component < 2; component++) {
|
|
for (int i = 0; i < 4; i++) {
|
|
kvz_filter_deblock_chroma(encoder, src[component] + step * (4*blk_idx + i), offset, Tc, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Filter edge of a single PU or TU
|
|
*
|
|
* \param state encoder state
|
|
* \param x block x-position in pixels
|
|
* \param y block y-position in pixels
|
|
* \param width block width in pixels
|
|
* \param height block height in pixels
|
|
* \param dir direction of the edges to filter
|
|
* \param tu_boundary whether the edge is a TU boundary
|
|
*/
|
|
static void filter_deblock_unit(encoder_state_t * const state,
|
|
int x,
|
|
int y,
|
|
int width,
|
|
int height,
|
|
edge_dir dir,
|
|
bool tu_boundary)
|
|
{
|
|
// no filtering on borders (where filter would use pixels outside the picture)
|
|
if (x == 0 && dir == EDGE_VER) return;
|
|
if (y == 0 && dir == EDGE_HOR) return;
|
|
|
|
// Length of luma and chroma edges.
|
|
int32_t length;
|
|
int32_t length_c;
|
|
|
|
if (dir == EDGE_HOR) {
|
|
const videoframe_t * const frame = state->tile->frame;
|
|
const int32_t x_right = x + width;
|
|
const bool rightmost_4px_of_lcu = x_right % LCU_WIDTH == 0;
|
|
const bool rightmost_4px_of_frame = x_right == frame->width;
|
|
|
|
if (rightmost_4px_of_lcu && !rightmost_4px_of_frame) {
|
|
// The last 4 pixels will be deblocked when processing the next LCU.
|
|
length = width - 4;
|
|
length_c = (width >> 1) - 4;
|
|
|
|
} else {
|
|
length = width;
|
|
length_c = width >> 1;
|
|
}
|
|
} else {
|
|
length = height;
|
|
length_c = height >> 1;
|
|
}
|
|
|
|
filter_deblock_edge_luma(state, x, y, length, dir, tu_boundary);
|
|
|
|
// Chroma pixel coordinates.
|
|
const int32_t x_c = x >> 1;
|
|
const int32_t y_c = y >> 1;
|
|
if (state->encoder_control->chroma_format != KVZ_CSP_400 && is_on_8x8_grid(x_c, y_c, dir)) {
|
|
filter_deblock_edge_chroma(state, x_c, y_c, length_c, dir, tu_boundary);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Deblock PU and TU boundaries inside an LCU.
|
|
*
|
|
* \param state encoder state
|
|
* \param x_px block x-position in pixels
|
|
* \param y_px block y-position in pixels
|
|
* \param dir direction of the edges to filter
|
|
*
|
|
* Recursively traverse the CU/TU quadtree. At the lowest level, apply the
|
|
* deblocking filter to the left edge (when dir == EDGE_VER) or the top edge
|
|
* (when dir == EDGE_HOR) as needed. Both luma and chroma are filtered.
|
|
*/
|
|
static void filter_deblock_lcu_inside(encoder_state_t * const state,
|
|
int32_t x,
|
|
int32_t y,
|
|
edge_dir dir)
|
|
{
|
|
const int end_x = MIN(x + LCU_WIDTH, state->tile->frame->width);
|
|
const int end_y = MIN(y + LCU_WIDTH, state->tile->frame->height);
|
|
|
|
for (int edge_y = y; edge_y < end_y; edge_y += 8) {
|
|
for (int edge_x = x; edge_x < end_x; edge_x += 8) {
|
|
bool tu_boundary = is_tu_boundary(state, edge_x, edge_y, dir);
|
|
if (tu_boundary || is_pu_boundary(state, edge_x, edge_y, dir)) {
|
|
filter_deblock_unit(state, edge_x, edge_y, 8, 8, dir, tu_boundary);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Filter rightmost 4 pixels of the horizontal egdes of an LCU.
|
|
*
|
|
* \param state encoder state
|
|
* \param x_px x-coordinate of the *right* edge of the LCU in pixels
|
|
* \param y_px y-coordinate of the top edge of the LCU in pixels
|
|
*/
|
|
static void filter_deblock_lcu_rightmost(encoder_state_t * const state,
|
|
int32_t x_px,
|
|
int32_t y_px)
|
|
{
|
|
// Luma
|
|
const int x = x_px - 4;
|
|
const int end = MIN(y_px + LCU_WIDTH, state->tile->frame->height);
|
|
for (int y = y_px; y < end; y += 8) {
|
|
// The top edge of the whole frame is not filtered.
|
|
bool tu_boundary = is_tu_boundary(state, x, y, EDGE_HOR);
|
|
bool pu_boundary = is_pu_boundary(state, x, y, EDGE_HOR);
|
|
if (y > 0 && (tu_boundary || pu_boundary)) {
|
|
filter_deblock_edge_luma(state, x, y, 4, EDGE_HOR, tu_boundary);
|
|
}
|
|
}
|
|
|
|
// Chroma
|
|
if (state->encoder_control->chroma_format != KVZ_CSP_400) {
|
|
const int x_px_c = x_px >> 1;
|
|
const int y_px_c = y_px >> 1;
|
|
const int x_c = x_px_c - 4;
|
|
const int end_c = MIN(y_px_c + LCU_WIDTH_C, state->tile->frame->height >> 1);
|
|
for (int y_c = y_px_c; y_c < end_c; y_c += 8) {
|
|
// The top edge of the whole frame is not filtered.
|
|
bool tu_boundary = is_tu_boundary(state, x_c << 1, y_c << 1, EDGE_HOR);
|
|
bool pu_boundary = is_pu_boundary(state, x_c << 1, y_c << 1, EDGE_HOR);
|
|
if (y_c > 0 && (tu_boundary || pu_boundary)) {
|
|
filter_deblock_edge_chroma(state, x_c, y_c, 4, EDGE_HOR, tu_boundary);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Deblock a single LCU without using data from right or down.
|
|
*
|
|
* Filter the following vertical edges (horizontal filtering):
|
|
* 1. The left edge of the LCU.
|
|
* 2. All vertical edges within the LCU.
|
|
*
|
|
* Filter the following horizontal edges (vertical filtering):
|
|
* 1. The rightmost 4 pixels of the top edge of the LCU to the left.
|
|
* 2. The rightmost 4 pixels of all horizontal edges within the LCU to the
|
|
* left.
|
|
* 3. The top edge and all horizontal edges within the LCU, excluding the
|
|
* rightmost 4 pixels. If the LCU is the rightmost LCU of the frame, the
|
|
* last 4 pixels are also filtered.
|
|
*
|
|
* What is not filtered:
|
|
* - The rightmost 4 pixels of the top edge and all horizontal edges within
|
|
* the LCU, unless the LCU is the rightmost LCU of the frame.
|
|
* - The bottom edge of the LCU.
|
|
* - The right edge of the LCU.
|
|
*
|
|
* \param state encoder state
|
|
* \param x_px x-coordinate of the left edge of the LCU in pixels
|
|
* \param y_px y-coordinate of the top edge of the LCU in pixels
|
|
*/
|
|
void kvz_filter_deblock_lcu(encoder_state_t * const state, int x_px, int y_px)
|
|
{
|
|
assert(!state->encoder_control->cfg->lossless);
|
|
|
|
filter_deblock_lcu_inside(state, x_px, y_px, EDGE_VER);
|
|
if (x_px > 0) {
|
|
filter_deblock_lcu_rightmost(state, x_px, y_px);
|
|
}
|
|
filter_deblock_lcu_inside(state, x_px, y_px, EDGE_HOR);
|
|
}
|