mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-12-04 21:54:05 +00:00
55529decd5
Visual Studio headers apparently lack these guys
371 lines
16 KiB
C
371 lines
16 KiB
C
/*****************************************************************************
|
|
* This file is part of Kvazaar HEVC encoder.
|
|
*
|
|
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
|
|
* COPYING file).
|
|
*
|
|
* Kvazaar is free software: you can redistribute it and/or modify it under
|
|
* the terms of the GNU Lesser General Public License as published by the
|
|
* Free Software Foundation; either version 2.1 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
|
|
****************************************************************************/
|
|
|
|
#include "strategies/avx2/sao-avx2.h"
|
|
|
|
#if COMPILE_INTEL_AVX2
|
|
#include <immintrin.h>
|
|
|
|
// Use a couple generic functions from here as a worst-case fallback
|
|
#include "strategies/generic/sao_shared_generics.h"
|
|
#include "strategies/missing-intel-intrinsics.h"
|
|
#include "cu.h"
|
|
#include "encoder.h"
|
|
#include "encoderstate.h"
|
|
#include "kvazaar.h"
|
|
#include "sao.h"
|
|
#include "strategyselector.h"
|
|
|
|
|
|
// These optimizations are based heavily on sao-generic.c.
|
|
// Might be useful to check that if (when) this file
|
|
// is difficult to understand.
|
|
|
|
|
|
static INLINE __m128i load_6_pixels(const kvz_pixel* data)
|
|
{
|
|
return _mm_insert_epi16(_mm_cvtsi32_si128(*(int32_t*)&(data[0])), *(int16_t*)&(data[4]), 2);
|
|
}
|
|
|
|
static INLINE __m256i load_5_offsets(const int* offsets)
|
|
{
|
|
return _mm256_inserti128_si256(_mm256_castsi128_si256(_mm_loadu_si128((__m128i*) offsets)), _mm_insert_epi32(_mm_setzero_si128(), offsets[4], 0), 1);
|
|
}
|
|
|
|
|
|
static __m128i sao_calc_eo_cat_avx2(__m128i* a, __m128i* b, __m128i* c)
|
|
{
|
|
__m128i v_eo_idx = _mm_set1_epi16(2);
|
|
__m128i v_a = _mm_cvtepu8_epi16(*a);
|
|
__m128i v_c = _mm_cvtepu8_epi16(*c);
|
|
__m128i v_b = _mm_cvtepu8_epi16(*b);
|
|
|
|
__m128i temp_a = _mm_sign_epi16(_mm_set1_epi16(1), _mm_sub_epi16(v_c, v_a));
|
|
__m128i temp_b = _mm_sign_epi16(_mm_set1_epi16(1), _mm_sub_epi16(v_c, v_b));
|
|
v_eo_idx = _mm_add_epi16(v_eo_idx, temp_a);
|
|
v_eo_idx = _mm_add_epi16(v_eo_idx, temp_b);
|
|
|
|
v_eo_idx = _mm_packus_epi16(v_eo_idx, v_eo_idx);
|
|
__m128i v_cat_lookup = _mm_setr_epi8(1,2,0,3,4,0,0,0,0,0,0,0,0,0,0,0);
|
|
__m128i v_cat = _mm_shuffle_epi8(v_cat_lookup, v_eo_idx);
|
|
|
|
|
|
return v_cat;
|
|
}
|
|
|
|
|
|
static int sao_edge_ddistortion_avx2(const kvz_pixel *orig_data,
|
|
const kvz_pixel *rec_data,
|
|
int block_width,
|
|
int block_height,
|
|
int eo_class,
|
|
int offsets[NUM_SAO_EDGE_CATEGORIES])
|
|
{
|
|
int y, x;
|
|
int sum = 0;
|
|
vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0];
|
|
vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1];
|
|
|
|
__m256i v_accum = { 0 };
|
|
|
|
for (y = 1; y < block_height - 1; ++y) {
|
|
|
|
for (x = 1; x < block_width - 8; x+=8) {
|
|
const kvz_pixel *c_data = &rec_data[y * block_width + x];
|
|
|
|
__m128i v_c_data = _mm_loadl_epi64((__m128i*)c_data);
|
|
__m128i v_a = _mm_loadl_epi64((__m128i*)(&c_data[a_ofs.y * block_width + a_ofs.x]));
|
|
__m128i v_c = v_c_data;
|
|
__m128i v_b = _mm_loadl_epi64((__m128i*)(&c_data[b_ofs.y * block_width + b_ofs.x]));
|
|
|
|
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
|
|
|
|
__m256i v_offset = load_5_offsets(offsets);
|
|
v_offset = _mm256_permutevar8x32_epi32(v_offset, v_cat);
|
|
|
|
__m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(orig_data[y * block_width + x])));
|
|
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
|
|
__m256i v_diff_minus_offset = _mm256_sub_epi32(v_diff, v_offset);
|
|
__m256i v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff));
|
|
v_accum = _mm256_add_epi32(v_accum, v_temp_sum);
|
|
}
|
|
|
|
//Handle last 6 pixels separately to prevent reading over boundary
|
|
const kvz_pixel *c_data = &rec_data[y * block_width + x];
|
|
__m128i v_c_data = load_6_pixels(c_data);
|
|
const kvz_pixel* a_ptr = &c_data[a_ofs.y * block_width + a_ofs.x];
|
|
const kvz_pixel* b_ptr = &c_data[b_ofs.y * block_width + b_ofs.x];
|
|
__m128i v_a = load_6_pixels(a_ptr);
|
|
__m128i v_c = v_c_data;
|
|
__m128i v_b = load_6_pixels(b_ptr);
|
|
|
|
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
|
|
|
|
__m256i v_offset = load_5_offsets(offsets);
|
|
v_offset = _mm256_permutevar8x32_epi32(v_offset, v_cat);
|
|
|
|
const kvz_pixel* orig_ptr = &(orig_data[y * block_width + x]);
|
|
__m256i v_diff = _mm256_cvtepu8_epi32(load_6_pixels(orig_ptr));
|
|
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
|
|
|
|
__m256i v_diff_minus_offset = _mm256_sub_epi32(v_diff, v_offset);
|
|
__m256i v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff));
|
|
v_accum = _mm256_add_epi32(v_accum, v_temp_sum);
|
|
}
|
|
|
|
//Full horizontal sum
|
|
v_accum = _mm256_add_epi32(v_accum, _mm256_castsi128_si256(_mm256_extracti128_si256(v_accum, 1)));
|
|
v_accum = _mm256_add_epi32(v_accum, _mm256_shuffle_epi32(v_accum, _MM_SHUFFLE(1, 0, 3, 2)));
|
|
v_accum = _mm256_add_epi32(v_accum, _mm256_shuffle_epi32(v_accum, _MM_SHUFFLE(0, 1, 0, 1)));
|
|
sum += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_accum));
|
|
|
|
return sum;
|
|
}
|
|
|
|
|
|
static INLINE void accum_count_eo_cat_avx2(__m256i* __restrict v_diff_accum,
|
|
__m256i* __restrict v_count,
|
|
__m256i* __restrict v_cat,
|
|
__m256i* __restrict v_diff,
|
|
int eo_cat)
|
|
{
|
|
__m256i v_mask = _mm256_cmpeq_epi32(*v_cat, _mm256_set1_epi32(eo_cat));
|
|
*v_diff_accum = _mm256_add_epi32(*v_diff_accum, _mm256_and_si256(*v_diff, v_mask));
|
|
*v_count = _mm256_sub_epi32(*v_count, v_mask);
|
|
}
|
|
|
|
|
|
#define ACCUM_COUNT_EO_CAT_AVX2(EO_CAT, V_CAT) \
|
|
\
|
|
accum_count_eo_cat_avx2(&(v_diff_accum[ EO_CAT ]), &(v_count[ EO_CAT ]), &V_CAT , &v_diff, EO_CAT);
|
|
|
|
|
|
static void calc_sao_edge_dir_avx2(const kvz_pixel *orig_data,
|
|
const kvz_pixel *rec_data,
|
|
int eo_class,
|
|
int block_width,
|
|
int block_height,
|
|
int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES])
|
|
{
|
|
int y, x;
|
|
vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0];
|
|
vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1];
|
|
|
|
// Don't sample the edge pixels because this function doesn't have access to
|
|
// their neighbours.
|
|
|
|
__m256i v_diff_accum[NUM_SAO_EDGE_CATEGORIES] = { { 0 } };
|
|
__m256i v_count[NUM_SAO_EDGE_CATEGORIES] = { { 0 } };
|
|
|
|
for (y = 1; y < block_height - 1; ++y) {
|
|
|
|
//Calculation for 8 pixels per round
|
|
for (x = 1; x < block_width - 8; x += 8) {
|
|
const kvz_pixel *c_data = &rec_data[y * block_width + x];
|
|
|
|
__m128i v_c_data = _mm_loadl_epi64((__m128i* __restrict)c_data);
|
|
__m128i v_a = _mm_loadl_epi64((__m128i* __restrict)(&c_data[a_ofs.y * block_width + a_ofs.x]));
|
|
__m128i v_c = v_c_data;
|
|
__m128i v_b = _mm_loadl_epi64((__m128i* __restrict)(&c_data[b_ofs.y * block_width + b_ofs.x]));
|
|
|
|
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
|
|
|
|
__m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i* __restrict)&(orig_data[y * block_width + x])));
|
|
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
|
|
|
|
//Accumulate differences and occurrences for each category
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat);
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat);
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat);
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat);
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat);
|
|
}
|
|
|
|
//Handle last 6 pixels separately to prevent reading over boundary
|
|
const kvz_pixel *c_data = &rec_data[y * block_width + x];
|
|
__m128i v_c_data = load_6_pixels(c_data);
|
|
const kvz_pixel* a_ptr = &c_data[a_ofs.y * block_width + a_ofs.x];
|
|
const kvz_pixel* b_ptr = &c_data[b_ofs.y * block_width + b_ofs.x];
|
|
__m128i v_a = load_6_pixels(a_ptr);
|
|
__m128i v_c = v_c_data;
|
|
__m128i v_b = load_6_pixels(b_ptr);
|
|
|
|
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c));
|
|
|
|
//Set the last two elements to a non-existing category to cause
|
|
//the accumulate-count macro to discard those values.
|
|
__m256i v_mask = _mm256_setr_epi32(0, 0, 0, 0, 0, 0, -1, -1);
|
|
v_cat = _mm256_or_si256(v_cat, v_mask);
|
|
|
|
const kvz_pixel* orig_ptr = &(orig_data[y * block_width + x]);
|
|
__m256i v_diff = _mm256_cvtepu8_epi32(load_6_pixels(orig_ptr));
|
|
v_diff = _mm256_sub_epi32(v_diff, _mm256_cvtepu8_epi32(v_c));
|
|
|
|
//Accumulate differences and occurrences for each category
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT0, v_cat);
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT1, v_cat);
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT2, v_cat);
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT3, v_cat);
|
|
ACCUM_COUNT_EO_CAT_AVX2(SAO_EO_CAT4, v_cat);
|
|
}
|
|
|
|
for (int eo_cat = 0; eo_cat < NUM_SAO_EDGE_CATEGORIES; ++eo_cat) {
|
|
int accum = 0;
|
|
int count = 0;
|
|
|
|
//Full horizontal sum of accumulated values
|
|
v_diff_accum[eo_cat] = _mm256_add_epi32(v_diff_accum[eo_cat], _mm256_castsi128_si256(_mm256_extracti128_si256(v_diff_accum[eo_cat], 1)));
|
|
v_diff_accum[eo_cat] = _mm256_add_epi32(v_diff_accum[eo_cat], _mm256_shuffle_epi32(v_diff_accum[eo_cat], _MM_SHUFFLE(1, 0, 3, 2)));
|
|
v_diff_accum[eo_cat] = _mm256_add_epi32(v_diff_accum[eo_cat], _mm256_shuffle_epi32(v_diff_accum[eo_cat], _MM_SHUFFLE(0, 1, 0, 1)));
|
|
accum += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_diff_accum[eo_cat]));
|
|
|
|
//Full horizontal sum of accumulated values
|
|
v_count[eo_cat] = _mm256_add_epi32(v_count[eo_cat], _mm256_castsi128_si256(_mm256_extracti128_si256(v_count[eo_cat], 1)));
|
|
v_count[eo_cat] = _mm256_add_epi32(v_count[eo_cat], _mm256_shuffle_epi32(v_count[eo_cat], _MM_SHUFFLE(1, 0, 3, 2)));
|
|
v_count[eo_cat] = _mm256_add_epi32(v_count[eo_cat], _mm256_shuffle_epi32(v_count[eo_cat], _MM_SHUFFLE(0, 1, 0, 1)));
|
|
count += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_count[eo_cat]));
|
|
|
|
cat_sum_cnt[0][eo_cat] += accum;
|
|
cat_sum_cnt[1][eo_cat] += count;
|
|
|
|
}
|
|
}
|
|
|
|
|
|
static void sao_reconstruct_color_avx2(const encoder_control_t * const encoder,
|
|
const kvz_pixel *rec_data, kvz_pixel *new_rec_data,
|
|
const sao_info_t *sao,
|
|
int stride, int new_stride,
|
|
int block_width, int block_height,
|
|
color_t color_i)
|
|
{
|
|
// Arrays orig_data and rec_data are quarter size for chroma.
|
|
int offset_v = color_i == COLOR_V ? 5 : 0;
|
|
|
|
if (sao->type == SAO_TYPE_BAND) {
|
|
int offsets[1 << KVZ_BIT_DEPTH];
|
|
kvz_calc_sao_offset_array(encoder, sao, offsets, color_i);
|
|
for (int y = 0; y < block_height; ++y) {
|
|
for (int x = 0; x < block_width; ++x) {
|
|
new_rec_data[y * new_stride + x] = offsets[rec_data[y * stride + x]];
|
|
}
|
|
}
|
|
} else {
|
|
// Don't sample the edge pixels because this function doesn't have access to
|
|
// their neighbours.
|
|
for (int y = 0; y < block_height; ++y) {
|
|
for (int x = 0; x < block_width; x+=8) {
|
|
vector2d_t a_ofs = g_sao_edge_offsets[sao->eo_class][0];
|
|
vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1];
|
|
const kvz_pixel *c_data = &rec_data[y * stride + x];
|
|
kvz_pixel *new_data = &new_rec_data[y * new_stride + x];
|
|
const kvz_pixel* a_ptr = &c_data[a_ofs.y * stride + a_ofs.x];
|
|
const kvz_pixel* c_ptr = &c_data[0];
|
|
const kvz_pixel* b_ptr = &c_data[b_ofs.y * stride + b_ofs.x];
|
|
|
|
__m128i v_a = _mm_loadl_epi64((__m128i*)a_ptr);
|
|
__m128i v_b = _mm_loadl_epi64((__m128i*)b_ptr);
|
|
__m128i v_c = _mm_loadl_epi64((__m128i*)c_ptr);
|
|
|
|
__m256i v_cat = _mm256_cvtepu8_epi32(sao_calc_eo_cat_avx2(&v_a, &v_b, &v_c) );
|
|
|
|
__m256i v_offset_v = load_5_offsets(sao->offsets + offset_v);
|
|
__m256i v_new_data = _mm256_permutevar8x32_epi32(v_offset_v, v_cat);
|
|
v_new_data = _mm256_add_epi32(v_new_data, _mm256_cvtepu8_epi32(v_c));
|
|
__m128i v_new_data_128 = _mm_packus_epi32(_mm256_castsi256_si128(v_new_data), _mm256_extracti128_si256(v_new_data, 1));
|
|
v_new_data_128 = _mm_packus_epi16(v_new_data_128, v_new_data_128);
|
|
|
|
if ((block_width - x) >= 8) {
|
|
_mm_storel_epi64((__m128i*)new_data, v_new_data_128);
|
|
} else {
|
|
|
|
kvz_pixel arr[8];
|
|
_mm_storel_epi64((__m128i*)arr, v_new_data_128);
|
|
for (int i = 0; i < block_width - x; ++i) new_data[i] = arr[i];
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int sao_band_ddistortion_avx2(const encoder_state_t * const state,
|
|
const kvz_pixel *orig_data,
|
|
const kvz_pixel *rec_data,
|
|
int block_width,
|
|
int block_height,
|
|
int band_pos,
|
|
int sao_bands[4])
|
|
{
|
|
int y, x;
|
|
int shift = state->encoder_control->bitdepth-5;
|
|
int sum = 0;
|
|
|
|
__m256i v_accum = { 0 };
|
|
|
|
for (y = 0; y < block_height; ++y) {
|
|
for (x = 0; x < block_width; x+=8) {
|
|
|
|
__m256i v_band = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(rec_data[y * block_width + x])));
|
|
v_band = _mm256_srli_epi32(v_band, shift);
|
|
v_band = _mm256_sub_epi32(v_band, _mm256_set1_epi32(band_pos));
|
|
|
|
__m256i v_offset = { 0 };
|
|
__m256i v_mask = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_set1_epi32(~3), v_band), _mm256_setzero_si256());
|
|
v_offset = _mm256_permutevar8x32_epi32(_mm256_castsi128_si256(_mm_loadu_si128((__m128i*)sao_bands)), v_band);
|
|
|
|
v_offset = _mm256_and_si256(v_offset, v_mask);
|
|
|
|
|
|
__m256i v_diff = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(orig_data[y * block_width + x])));
|
|
__m256i v_rec = _mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*)&(rec_data[y * block_width + x])));
|
|
v_diff = _mm256_sub_epi32(v_diff, v_rec);
|
|
__m256i v_diff_minus_offset = _mm256_sub_epi32(v_diff, v_offset);
|
|
__m256i v_temp_sum = _mm256_sub_epi32(_mm256_mullo_epi32(v_diff_minus_offset, v_diff_minus_offset), _mm256_mullo_epi32(v_diff, v_diff));
|
|
v_accum = _mm256_add_epi32(v_accum, v_temp_sum);
|
|
}
|
|
}
|
|
|
|
//Full horizontal sum
|
|
v_accum = _mm256_add_epi32(v_accum, _mm256_castsi128_si256(_mm256_extracti128_si256(v_accum, 1)));
|
|
v_accum = _mm256_add_epi32(v_accum, _mm256_shuffle_epi32(v_accum, _MM_SHUFFLE(1, 0, 3, 2)));
|
|
v_accum = _mm256_add_epi32(v_accum, _mm256_shuffle_epi32(v_accum, _MM_SHUFFLE(0, 1, 0, 1)));
|
|
sum += _mm_cvtsi128_si32(_mm256_castsi256_si128(v_accum));
|
|
|
|
return sum;
|
|
}
|
|
|
|
#endif //COMPILE_INTEL_AVX2
|
|
|
|
int kvz_strategy_register_sao_avx2(void* opaque, uint8_t bitdepth)
|
|
{
|
|
bool success = true;
|
|
#if COMPILE_INTEL_AVX2
|
|
if (bitdepth == 8) {
|
|
success &= kvz_strategyselector_register(opaque, "sao_edge_ddistortion", "avx2", 40, &sao_edge_ddistortion_avx2);
|
|
success &= kvz_strategyselector_register(opaque, "calc_sao_edge_dir", "avx2", 40, &calc_sao_edge_dir_avx2);
|
|
success &= kvz_strategyselector_register(opaque, "sao_reconstruct_color", "avx2", 40, &sao_reconstruct_color_avx2);
|
|
success &= kvz_strategyselector_register(opaque, "sao_band_ddistortion", "avx2", 40, &sao_band_ddistortion_avx2);
|
|
}
|
|
#endif //COMPILE_INTEL_AVX2
|
|
return success;
|
|
}
|