uvg266/src/search.c

528 lines
18 KiB
C

/**
* \file
*
* \author Marko Viitanen ( fador@iki.fi ),
* Tampere University of Technology,
* Department of Pervasive Computing.
* \author Ari Koivula ( ari@koivu.la ),
* Tampere University of Technology,
* Department of Pervasive Computing.
*/
#include "search.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "bitstream.h"
#include "picture.h"
#include "intra.h"
#include "inter.h"
#include "filter.h"
#include "debug.h"
// Temporarily for debugging.
#define USE_INTRA_IN_P 0
#define RENDER_CU 0
#define USE_FULL_SEARCH 0
#define USE_CHROMA_IN_MV_SEARCH 0
#define IN_FRAME(x, y, width, height, block) ((x) >= 0 && (y) >= 0 && (x) + (block) <= (width) && (y) + (block) <= (height))
/**
* \brief Get Sum of Absolute Differences (SAD) between two blocks in two
* different frames.
* \param pic First frame.
* \param ref Second frame.
* \param pic_x X coordinate of the first block.
* \param pic_y Y coordinate of the first block.
* \param ref_x X coordinate of the second block.
* \param ref_y Y coordinate of the second block.
* \param block_width Width of the blocks.
* \param block_height Height of the blocks.
*/
unsigned get_block_sad(picture *pic, picture *ref,
int pic_x, int pic_y, int ref_x, int ref_y,
int block_width, int block_height)
{
uint8_t *pic_data, *ref_data;
int width = pic->width;
int height = pic->height;
int block = pic->width;
unsigned result = 1; // Start from 1 so result is never 0.
// 0 means invalid, for now.
if (!IN_FRAME(ref_x, ref_y, width, height, block)) return 0;
pic_data = &pic->y_data[pic_y * width + pic_x];
ref_data = &ref->y_data[ref_y * width + ref_x];
result += sad(pic_data, ref_data, block, block, width);
#if USE_CHROMA_IN_MV_SEARCH
// Halve everything because chroma is half the resolution.
width >>= 2;
pic_x >>= 2;
pic_y >>= 2;
ref_x >>= 2;
ref_y >>= 2;
block >>= 2;
pic_data = &pic->u_data[pic_y * width + pic_x];
ref_data = &ref->u_data[ref_y * width + ref_x];
result += sad(pic_data, ref_data, block, block, width);
pic_data = &pic->v_data[pic_y * width + pic_x];
ref_data = &ref->v_data[ref_y * width + ref_x];
result += sad(pic_data, ref_data, block, block, width);
#endif
return result;
}
void search_mv(picture *pic, picture *ref,
cu_info *cur_cu, int orig_x, int orig_y, int x, int y,
unsigned depth)
{
int block_width = CU_WIDTH_FROM_DEPTH(depth);
// Get cost for the predicted motion vector.
unsigned cost = get_block_sad(pic, ref, orig_x, orig_y, orig_x + x, orig_y + y,
block_width, block_width);
unsigned best_cost = -1;
unsigned step = 8;
if (cost > 0) {
best_cost = cost;
cur_cu->inter.mv[0] = x;
cur_cu->inter.mv[1] = y;
}
// If initial vector is long, also try the (0, 0) vector just in case.
if (x != 0 || y != 0) {
cost = get_block_sad(pic, ref, orig_x, orig_y, orig_x, orig_y,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
cur_cu->inter.mv[0] = 0;
cur_cu->inter.mv[1] = 0;
}
}
while (step > 0) {
// Stop if current best vector is already really good.
// This is an experimental condition.
// The constant 1.8 is there because there is some SAD cost when comparing
// against the reference even if the frame doesn't change. This is probably
// due to quantization. It's value is just a guess based on the first
// blocks of the BQMall sequence, which don't move.
// TODO: Quantization factor probably affects what the constant should be.
/*
if (best_cost <= block_width * block_width * 1.8) {
break;
}
*/
// Change center of search to the current best point.
x = cur_cu->inter.mv[0];
y = cur_cu->inter.mv[1];
// above
cost = get_block_sad(pic, ref, orig_x, orig_y,
orig_x + x, orig_y + y - step,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
cur_cu->inter.mv[0] = x;
cur_cu->inter.mv[1] = y - step;
}
// left
cost = get_block_sad(pic, ref, orig_x, orig_y,
orig_x + x - step, orig_y + y,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
cur_cu->inter.mv[0] = x - step;
cur_cu->inter.mv[1] = y;
}
// right
cost = get_block_sad(pic, ref, orig_x, orig_y,
orig_x + x + step, orig_y + y,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
cur_cu->inter.mv[0] = x + step;
cur_cu->inter.mv[1] = y;
}
// below
cost = get_block_sad(pic, ref, orig_x, orig_y,
orig_x + x, orig_y + y + step,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
cur_cu->inter.mv[0] = x;
cur_cu->inter.mv[1] = y + step;
}
// Reduce search area by half.
step /= 2;
}
cur_cu->inter.cost = best_cost + 1; // +1 so that cost is > 0.
cur_cu->inter.mv[0] <<= 2;
cur_cu->inter.mv[1] <<= 2;
}
/**
* \brief Search motions vectors for a block and all it's sub-blocks.
*
* \param pic
* \param pic_data picture color data starting from the block MV is being searched for.
* \param ref_data picture color data starting from the beginning of reference pic.
* \param cur_cu
*/
void search_mv_full(picture *pic, uint8_t *pic_data, uint8_t *ref_data,
cu_info *cur_cu, unsigned step,
int orig_x, int orig_y, int x, int y, unsigned depth)
{
// TODO: Inter: Handle non-square blocks.
int block_width = CU_WIDTH_FROM_DEPTH(depth);
int block_height = block_width;
unsigned cost;
// TODO: Inter: Calculating error outside picture borders.
// This prevents choosing vectors that need interpolating of borders to work.
if (orig_x + x < 0 || orig_y + y < 0 || orig_x + x > pic->width - block_width
|| orig_y + y > pic->height - block_height) return;
cost = sad(pic_data, &ref_data[(orig_y + y) * pic->width + (orig_x + x)],
block_width, block_height, pic->width) + 1;
if (cost < cur_cu->inter.cost) {
cur_cu->inter.cost = cost;
cur_cu->inter.mv[0] = x << 2;
cur_cu->inter.mv[1] = y << 2;
}
step /= 2;
if (step > 0) {
search_mv_full(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y,
x, y - step, depth);
search_mv_full(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y,
x - step, y, depth);
search_mv_full(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y,
x + step, y, depth);
search_mv_full(pic, pic_data, ref_data, cur_cu, step, orig_x, orig_y,
x, y + step, depth);
}
}
/**
* \brief
*/
void search_buildReferenceBorder(picture *pic, int32_t x_ctb, int32_t y_ctb,
int16_t outwidth, int16_t *dst,
int32_t dststride, int8_t chroma)
{
int32_t left_col; // left column iterator
int16_t val; // variable to store extrapolated value
int32_t i; // index iterator
int16_t dc_val = 1 << (g_bitdepth - 1); // default predictor value
int32_t top_row; // top row iterator
int32_t src_width = (pic->width >> (chroma ? 1 : 0)); // source picture width
int32_t src_height = (pic->height >> (chroma ? 1 : 0)); // source picture height
uint8_t *src_pic = (!chroma) ? pic->y_data : ((chroma == 1) ? pic->u_data : pic->v_data); // input picture pointer
int16_t scu_width = LCU_WIDTH >> (MAX_DEPTH + (chroma ? 1 : 0)); // Smallest Coding Unit width
uint8_t *src_shifted = &src_pic[x_ctb * scu_width + (y_ctb * scu_width) * src_width]; // input picture pointer shifted to start from the left-top corner of the current block
int32_t width_in_scu = pic->width_in_lcu << MAX_DEPTH; // picture width in SCU
// Fill left column
if (x_ctb) {
// Loop SCU's
for (left_col = 1; left_col < outwidth / scu_width; left_col++) {
// If over the picture height or block not yet searched, stop
if ((y_ctb + left_col) * scu_width >= src_height
|| pic->cu_array[MAX_DEPTH][x_ctb - 1 + (y_ctb + left_col) * width_in_scu].type == CU_NOTSET) {
break;
}
}
// Copy the pixels to output
for (i = 0; i < left_col * scu_width - 1; i++) {
dst[(i + 1) * dststride] = src_shifted[i * src_width - 1];
}
// if the loop was not completed, extrapolate the last pixel pushed to output
if (left_col != outwidth / scu_width) {
val = src_shifted[(left_col * scu_width - 1) * src_width - 1];
for (i = (left_col * scu_width); i < outwidth; i++) {
dst[i * dststride] = val;
}
}
} else { // If left column not available, copy from toprow or use the default predictor
val = y_ctb ? src_shifted[-src_width] : dc_val;
for (i = 0; i < outwidth; i++) {
dst[i * dststride] = val;
}
}
if (y_ctb) {
// Loop top SCU's
for (top_row = 1; top_row < outwidth / scu_width; top_row++) {
if ((x_ctb + top_row) * scu_width >= src_width
|| pic->cu_array[MAX_DEPTH][x_ctb + top_row + (y_ctb - 1) * width_in_scu].type
== CU_NOTSET) {
break;
}
}
for (i = 0; i < top_row * scu_width - 1; i++) {
dst[i + 1] = src_shifted[i - src_width];
}
if (top_row != outwidth / scu_width) {
val = src_shifted[(top_row * scu_width) - src_width - 1];
for (i = (top_row * scu_width); i < outwidth; i++) {
dst[i] = val;
}
}
} else {
val = x_ctb ? src_shifted[-1] : dc_val;
for (i = 1; i < outwidth; i++) {
dst[i] = val;
}
}
// Topleft corner
dst[0] = (x_ctb && y_ctb) ? src_shifted[-src_width - 1] : dst[dststride];
}
/**
* \brief
*/
void search_tree(encoder_control *encoder,
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
{
uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border = border_x | border_y; // are we in any border CU
cu_info *cur_cu = &encoder->in.cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
cur_cu->intra.cost = 0xffffffff;
cur_cu->inter.cost = 0xffffffff;
// Force split on border
if (depth != MAX_DEPTH) {
if (border) {
// Split blocks and remember to change x and y block positions
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
SET_SPLITDATA(cur_cu, 1);
search_tree(encoder, x_ctb, y_ctb, depth + 1);
if (!border_x || border_split_x) {
search_tree(encoder, x_ctb + change, y_ctb, depth + 1);
}
if (!border_y || border_split_y) {
search_tree(encoder, x_ctb, y_ctb + change, depth + 1);
}
if (!border || (border_split_x && border_split_y)) {
search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1);
}
// We don't need to do anything else here
return;
}
}
// INTER SEARCH
if (depth >= MIN_INTER_SEARCH_DEPTH && depth <= MAX_INTER_SEARCH_DEPTH
&& encoder->in.cur_pic->slicetype != SLICE_I) {
// Motion estimation on P-frame
if (encoder->in.cur_pic->slicetype != SLICE_B) {
}
{
picture *cur_pic = encoder->in.cur_pic;
picture *ref_pic = encoder->ref->pics[0];
unsigned width_in_scu = NO_SCU_IN_LCU(ref_pic->width_in_lcu);
cu_info *ref_cu = &ref_pic->cu_array[MAX_DEPTH][y_ctb * width_in_scu + x_ctb];
int x = x_ctb * CU_MIN_SIZE_PIXELS;
int y = y_ctb * CU_MIN_SIZE_PIXELS;
uint8_t *cur_data = &cur_pic->y_data[(y * cur_pic->width) + x];
int start_x = 0;
int start_y = 0;
// Convert from sub-pixel accuracy.
if (ref_cu->type == CU_INTER) {
start_x = ref_cu->inter.mv[0] >> 2;
start_y = ref_cu->inter.mv[1] >> 2;
}
if (USE_FULL_SEARCH) {
search_mv_full(cur_pic, cur_data, ref_pic->y_data,
cur_cu, 8, x, y,
start_x, start_y, depth);
} else {
search_mv(cur_pic, ref_pic,
cur_cu, x, y,
start_x, start_y, depth);
}
}
cur_cu->type = CU_INTER;
cur_cu->inter.mv_dir = 1;
}
// INTRA SEARCH
if (depth >= MIN_INTRA_SEARCH_DEPTH && depth <= MAX_INTRA_SEARCH_DEPTH
&& (encoder->in.cur_pic->slicetype == SLICE_I || USE_INTRA_IN_P)) {
int x = 0, y = 0;
uint8_t *base = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
uint32_t width = LCU_WIDTH >> depth;
// INTRAPREDICTION
int16_t pred[LCU_WIDTH * LCU_WIDTH + 1];
int16_t rec[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8)];
int16_t *recShift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1];
//int16_t *pred = (int16_t*)malloc(LCU_WIDTH*LCU_WIDTH*sizeof(int16_t));
//int16_t *rec = (int16_t*)malloc((LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)*sizeof(int16_t));
// Build reconstructed block to use in prediction with extrapolated borders
search_buildReferenceBorder(encoder->in.cur_pic, x_ctb, y_ctb,
(LCU_WIDTH >> (depth)) * 2 + 8, rec, (LCU_WIDTH >> (depth)) * 2 + 8, 0);
cur_cu->intra.mode = (uint8_t) intra_prediction(encoder->in.cur_pic->y_data,
encoder->in.width, recShift, (LCU_WIDTH >> (depth)) * 2 + 8,
x_ctb * (LCU_WIDTH >> (MAX_DEPTH)), y_ctb * (LCU_WIDTH >> (MAX_DEPTH)),
width, pred, width, &cur_cu->intra.cost);
//free(pred);
//free(rec);
}
// Split and search to max_depth
if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) {
// Split blocks and remember to change x and y block positions
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
search_tree(encoder, x_ctb, y_ctb, depth + 1);
search_tree(encoder, x_ctb + change, y_ctb, depth + 1);
search_tree(encoder, x_ctb, y_ctb + change, depth + 1);
search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1);
}
}
/**
* \brief
*/
uint32_t search_best_mode(encoder_control *encoder,
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
{
cu_info *cur_cu = &encoder->in.cur_pic->cu_array[depth][x_ctb
+ y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
uint32_t best_intra_cost = cur_cu->intra.cost;
uint32_t best_inter_cost = cur_cu->inter.cost;
uint32_t best_cost = 0;
uint32_t cost = 0;
uint32_t lambdaCost = (4 * g_lambda_cost[encoder->QP]) << 4; //<<5; //TODO: Correct cost calculation
// Split and search to max_depth
if (depth != MAX_INTRA_SEARCH_DEPTH) {
// Split blocks and remember to change x and y block positions
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
cost = search_best_mode(encoder, x_ctb, y_ctb, depth + 1);
cost += search_best_mode(encoder, x_ctb + change, y_ctb, depth + 1);
cost += search_best_mode(encoder, x_ctb, y_ctb + change, depth + 1);
cost += search_best_mode(encoder, x_ctb + change, y_ctb + change, depth + 1);
// We split if the cost is better (0 cost -> not checked)
if (cost != 0
&& (best_intra_cost != 0 && cost + lambdaCost < best_intra_cost)
&& (best_inter_cost != 0
&& cost + lambdaCost < best_inter_cost
&& encoder->in.cur_pic->slicetype != SLICE_I))
{
// Set split to 1
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 1);
best_cost = cost + lambdaCost;
} else if (best_inter_cost != 0 // Else, check if inter cost is smaller or the same as intra
&& (best_inter_cost <= best_intra_cost || best_intra_cost == 0)
&& encoder->in.cur_pic->slicetype != SLICE_I)
{
// Set split to 0 and mode to inter.mode
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 0);
inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu);
best_cost = best_inter_cost;
} else { // Else, dont split and recursively set block mode
// Set split to 0 and mode to intra.mode
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 0);
intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth,
cur_cu->intra.mode);
best_cost = best_intra_cost;
}
} else if (best_inter_cost != 0
&& (best_inter_cost <= best_intra_cost || best_intra_cost == 0)
&& encoder->in.cur_pic->slicetype != SLICE_I)
{
// Set split to 0 and mode to inter.mode
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 0);
inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu);
best_cost = best_inter_cost;
} else {
// Set split to 0 and mode to intra.mode
picture_set_block_split(encoder->in.cur_pic, x_ctb, y_ctb, depth, 0);
intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth,
cur_cu->intra.mode);
best_cost = best_intra_cost;
}
return best_cost;
}
/**
* \brief
*/
void search_slice_data(encoder_control *encoder)
{
int16_t x_lcu, y_lcu;
FILE *fp = 0, *fp2 = 0;
if (RENDER_CU && encoder->frame == 1) {
fp = open_cu_file("cu_search.html");
fp2 = open_cu_file("cu_best.html");
}
// Loop through every LCU in the slice
for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) {
for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) {
uint8_t depth = 0;
// Recursive function for looping through all the sub-blocks
search_tree(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
if (RENDER_CU && encoder->frame == 1) {
render_cu_file(encoder, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp);
}
// Decide actual coding modes
search_best_mode(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
if (RENDER_CU && encoder->frame == 1) {
render_cu_file(encoder, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp2);
}
}
}
if (RENDER_CU && fp) {
close_cu_file(fp);
fp = 0;
}
if (RENDER_CU && fp2) {
close_cu_file(fp2);
fp2 = 0;
}
}