uvg266/src/encoder.c
2020-02-18 13:20:26 +02:00

841 lines
28 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "encoder.h"
// This define is required for M_PI on Windows.
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "cfg.h"
#include "gop.h"
#include "strategyselector.h"
#include "kvz_math.h"
/**
* \brief Strength of QP adjustments when using adaptive QP for 360 video.
*
* Determined empirically.
*/
static const double ERP_AQP_STRENGTH = 3.0;
static int encoder_control_init_gop_layer_weights(encoder_control_t * const);
static unsigned cfg_num_threads(void)
{
if (kvz_g_hardware_flags.logical_cpu_count == 0) {
// Default to 4 if we don't know the number of CPUs.
return 4;
}
return kvz_g_hardware_flags.logical_cpu_count;
}
static int get_max_parallelism(const encoder_control_t *const encoder)
{
const int width_lcu = CEILDIV(encoder->cfg.width, LCU_WIDTH);
const int height_lcu = CEILDIV(encoder->cfg.height, LCU_WIDTH);
const int wpp_limit = MIN(height_lcu, CEILDIV(width_lcu, 2));
const int par_frames = encoder->cfg.owf + 1;
int parallelism = 0;
if (encoder->cfg.intra_period == 1) {
int threads_per_frame;
if (encoder->cfg.wpp) {
// Usually limited by width because starting to code a CTU requires
// that the next two CTUs in the row above have been completed.
threads_per_frame = wpp_limit;
} else {
// One thread for each tile.
threads_per_frame = encoder->cfg.tiles_width_count *
encoder->cfg.tiles_height_count;
}
// Divide by two since all frames cannot achieve the maximum
// parallelism all the time.
parallelism = par_frames * threads_per_frame / 2;
} else {
if (encoder->cfg.wpp) {
const int last_diagonal = (width_lcu - 1) + (height_lcu - 1) * 2;
// Index of a diagonal. The diagonal contains CTUs whose coordinates
// satisfy x + 2*y == diagonal. We start the sum from the longest
// diagonal.
int diagonal = CEILDIV(last_diagonal, 2);
// Difference between diagonal indices in consecutive frames.
const int frame_delay = 1 + encoder->max_inter_ref_lcu.right +
2 * encoder->max_inter_ref_lcu.down;
int step = frame_delay;
int direction = -1;
// Compute number of threads for each parallel frame.
for (int num_frames = 0; num_frames < par_frames; num_frames++) {
if (diagonal < 0 || diagonal > last_diagonal) {
// No room for more threads.
break;
}
// Count number of CTUs on the diagonal.
if (diagonal < MIN(2 * height_lcu, width_lcu)) {
parallelism += 1 + diagonal / 2;
} else {
parallelism += MIN(
wpp_limit,
height_lcu + CEILDIV(width_lcu, 2) - 1 - CEILDIV(diagonal, 2)
);
}
diagonal += direction * step;
step += frame_delay;
direction = -direction;
}
} else {
parallelism = encoder->cfg.tiles_width_count *
encoder->cfg.tiles_height_count;
}
}
return parallelism;
}
/**
* \brief Return weight for 360 degree ERP video
*
* Returns the scaling factor of area from equirectangular projection to
* spherical surface.
*
* \param y y-coordinate of the pixel
* \param h height of the picture
*/
static double ws_weight(int y, int h)
{
return cos((y - 0.5 * h + 0.5) * (M_PI / h));
}
/**
* \brief Update ROI QPs for 360 video with equirectangular projection.
*
* Writes updated ROI parameters to encoder->cfg.roi.
*
* \param encoder encoder control
* \param orig_roi original delta QPs or NULL
* \param orig_width width of orig_roi
* \param orig_height height of orig_roi
*/
static void init_erp_aqp_roi(encoder_control_t* encoder,
int8_t *orig_roi,
int32_t orig_width,
int32_t orig_height)
{
// Update ROI with WS-PSNR delta QPs.
int height = encoder->in.height_in_lcu;
int width = orig_roi ? orig_width : 1;
int frame_height = encoder->in.real_height;
encoder->cfg.roi.width = width;
encoder->cfg.roi.height = height;
encoder->cfg.roi.dqps = calloc(width * height, sizeof(orig_roi[0]));
double total_weight = 0.0;
for (int y = 0; y < frame_height; y++) {
total_weight += ws_weight(y, frame_height);
}
for (int y_lcu = 0; y_lcu < height; y_lcu++) {
int y_orig = LCU_WIDTH * y_lcu;
int lcu_height = MIN(LCU_WIDTH, frame_height - y_orig);
double lcu_weight = 0.0;
for (int y = y_orig; y < y_orig + lcu_height; y++) {
lcu_weight += ws_weight(y, frame_height);
}
// Normalize.
lcu_weight = (lcu_weight * frame_height) / (total_weight * lcu_height);
int8_t qp_delta = round(-ERP_AQP_STRENGTH * log2(lcu_weight));
if (orig_roi) {
// If a ROI array already exists, we copy the existing values to the
// new array while adding qp_delta to each.
int y_roi = y_lcu * orig_height / height;
for (int x = 0; x < width; x++) {
encoder->cfg.roi.dqps[x + y_lcu * width] =
CLIP(-51, 51, orig_roi[x + y_roi * width] + qp_delta);
}
} else {
// Otherwise, simply write qp_delta to the ROI array.
encoder->cfg.roi.dqps[y_lcu] = qp_delta;
}
}
}
/**
* \brief Allocate and initialize an encoder control structure.
*
* \param cfg encoder configuration
* \return initialized encoder control or NULL on failure
*/
encoder_control_t* kvz_encoder_control_init(const kvz_config *const cfg)
{
encoder_control_t *encoder = NULL;
if (!cfg) {
fprintf(stderr, "Config object must not be null!\n");
goto init_failed;
}
// Make sure that the parameters make sense.
if (!kvz_config_validate(cfg)) {
goto init_failed;
}
encoder = calloc(1, sizeof(encoder_control_t));
if (!encoder) {
fprintf(stderr, "Failed to allocate encoder control.\n");
goto init_failed;
}
// Take a copy of the config.
memcpy(&encoder->cfg, cfg, sizeof(encoder->cfg));
// Set fields that are not copied to NULL.
encoder->cfg.cqmfile = NULL;
encoder->cfg.tiles_width_split = NULL;
encoder->cfg.tiles_height_split = NULL;
encoder->cfg.slice_addresses_in_ts = NULL;
if (encoder->cfg.gop_len > 0) {
if (encoder->cfg.gop_lowdelay) {
if (encoder->cfg.gop_len == 4 && encoder->cfg.ref_frames == 4) {
memcpy(encoder->cfg.gop, kvz_gop_lowdelay4, sizeof(kvz_gop_lowdelay4));
} else {
kvz_config_process_lp_gop(&encoder->cfg);
}
}
}
// Disable GOP and QP offset for all-intra coding
if (encoder->cfg.intra_period == 1) {
encoder->cfg.gop_len = 0;
encoder->cfg.intra_qp_offset = 0;
}
encoder->poc_lsb_bits = MAX(4, kvz_math_ceil_log2(encoder->cfg.gop_len * 2 + 1));
encoder->max_inter_ref_lcu.right = 1;
encoder->max_inter_ref_lcu.down = 1;
int max_threads = encoder->cfg.threads;
if (max_threads < 0) {
max_threads = cfg_num_threads();
}
max_threads = MAX(1, max_threads);
// Need to set owf before initializing threadqueue.
if (encoder->cfg.owf < 0) {
int best_parallelism = 0;
for (encoder->cfg.owf = 0; true; encoder->cfg.owf++) {
int parallelism = get_max_parallelism(encoder);
if (parallelism <= best_parallelism) {
// No improvement over previous OWF.
encoder->cfg.owf--;
break;
}
best_parallelism = parallelism;
if (parallelism >= max_threads) {
// Cannot have more parallelism than there are threads.
break;
}
}
// Add two frames so that we have frames ready to be coded when one is
// completed.
encoder->cfg.owf += 2;
fprintf(stderr, "--owf=auto value set to %d.\n", encoder->cfg.owf);
}
if (encoder->cfg.threads < 0) {
encoder->cfg.threads = MIN(max_threads, get_max_parallelism(encoder));
fprintf(stderr, "--threads=auto value set to %d.\n", encoder->cfg.threads);
}
if (encoder->cfg.source_scan_type != KVZ_INTERLACING_NONE) {
// If using interlaced coding with OWF, the OWF has to be an even number
// to ensure that the pair of fields will be output for the same picture.
if (encoder->cfg.owf % 2 == 1) {
encoder->cfg.owf += 1;
}
}
encoder->threadqueue = kvz_threadqueue_init(encoder->cfg.threads);
if (!encoder->threadqueue) {
fprintf(stderr, "Could not initialize threadqueue.\n");
goto init_failed;
}
encoder->bitdepth = KVZ_BIT_DEPTH;
encoder->chroma_format = KVZ_FORMAT2CSP(encoder->cfg.input_format);
// Interlacing
encoder->in.source_scan_type = (int8_t)encoder->cfg.source_scan_type;
encoder->vui.field_seq_flag = encoder->cfg.source_scan_type != 0;
encoder->vui.frame_field_info_present_flag = encoder->cfg.source_scan_type != 0;
// Initialize the scaling list
kvz_scalinglist_init(&encoder->scaling_list);
// CQM
if (cfg->scaling_list == KVZ_SCALING_LIST_CUSTOM && cfg->cqmfile) {
FILE* cqmfile = fopen(cfg->cqmfile, "rb");
if (cqmfile) {
kvz_scalinglist_parse(&encoder->scaling_list, cqmfile);
fclose(cqmfile);
} else {
fprintf(stderr, "Could not open CQM file.\n");
goto init_failed;
}
} else if (cfg->scaling_list == KVZ_SCALING_LIST_DEFAULT) {
// Enable scaling lists if default lists are used
encoder->scaling_list.enable = 1;
encoder->scaling_list.use_default_list = 1;
}
kvz_scalinglist_process(&encoder->scaling_list, encoder->bitdepth);
kvz_encoder_control_input_init(encoder, encoder->cfg.width, encoder->cfg.height);
if (encoder->cfg.framerate_num != 0) {
double framerate = encoder->cfg.framerate_num / (double)encoder->cfg.framerate_denom;
encoder->target_avg_bppic = encoder->cfg.target_bitrate / framerate;
} else {
encoder->target_avg_bppic = encoder->cfg.target_bitrate / encoder->cfg.framerate;
}
encoder->target_avg_bpp = encoder->target_avg_bppic / encoder->in.pixels_per_pic;
if (encoder->cfg.target_bitrate > 0 &&
!encoder_control_init_gop_layer_weights(encoder))
{
goto init_failed;
}
if (cfg->erp_aqp) {
init_erp_aqp_roi(encoder,
cfg->roi.dqps,
cfg->roi.width,
cfg->roi.height);
} else if (cfg->roi.dqps) {
// Copy delta QP array for ROI coding.
const size_t roi_size = encoder->cfg.roi.width * encoder->cfg.roi.height;
encoder->cfg.roi.dqps = calloc(roi_size, sizeof(cfg->roi.dqps[0]));
memcpy(encoder->cfg.roi.dqps,
cfg->roi.dqps,
roi_size * sizeof(*cfg->roi.dqps));
}
// NOTE: When tr_depth_inter is equal to 0, the transform is still split
// for SMP and AMP partition units.
encoder->tr_depth_inter = 0;
if (encoder->cfg.target_bitrate > 0 || encoder->cfg.roi.dqps || encoder->cfg.set_qp_in_cu || encoder->cfg.vaq) {
encoder->max_qp_delta_depth = 0;
} else {
encoder->max_qp_delta_depth = -1;
}
//Tiles
encoder->tiles_enable = encoder->cfg.tiles_width_count > 1 ||
encoder->cfg.tiles_height_count > 1;
{
const int num_ctbs = encoder->in.width_in_lcu * encoder->in.height_in_lcu;
//Temporary pointers to allow encoder fields to be const
int32_t *tiles_col_width, *tiles_row_height, *tiles_ctb_addr_rs_to_ts, *tiles_ctb_addr_ts_to_rs, *tiles_tile_id, *tiles_col_bd, *tiles_row_bd;
if (encoder->cfg.tiles_width_count > encoder->in.width_in_lcu) {
fprintf(stderr, "Too many tiles (width)!\n");
goto init_failed;
} else if (encoder->cfg.tiles_height_count > encoder->in.height_in_lcu) {
fprintf(stderr, "Too many tiles (height)!\n");
goto init_failed;
}
//Will be (perhaps) changed later
encoder->tiles_uniform_spacing_flag = 1;
encoder->tiles_col_width = tiles_col_width =
MALLOC(int32_t, encoder->cfg.tiles_width_count);
encoder->tiles_row_height = tiles_row_height =
MALLOC(int32_t, encoder->cfg.tiles_height_count);
encoder->tiles_col_bd = tiles_col_bd =
MALLOC(int32_t, encoder->cfg.tiles_width_count + 1);
encoder->tiles_row_bd = tiles_row_bd =
MALLOC(int32_t, encoder->cfg.tiles_height_count + 1);
encoder->tiles_ctb_addr_rs_to_ts = tiles_ctb_addr_rs_to_ts =
MALLOC(int32_t, num_ctbs);
encoder->tiles_ctb_addr_ts_to_rs = tiles_ctb_addr_ts_to_rs =
MALLOC(int32_t, num_ctbs);
encoder->tiles_tile_id = tiles_tile_id =
MALLOC(int32_t, num_ctbs);
if (!tiles_col_width ||
!tiles_row_height ||
!tiles_row_bd ||
!tiles_col_bd ||
!tiles_ctb_addr_rs_to_ts ||
!tiles_ctb_addr_ts_to_rs ||
!tiles_tile_id) {
goto init_failed;
}
//(6-3) and (6-4) in ITU-T Rec. H.265 (04/2013)
if (!cfg->tiles_width_split) {
for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) {
tiles_col_width[i] =
(i+1) * encoder->in.width_in_lcu / encoder->cfg.tiles_width_count -
i * encoder->in.width_in_lcu / encoder->cfg.tiles_width_count;
}
} else {
int32_t last_pos_in_px = 0;
tiles_col_width[encoder->cfg.tiles_width_count - 1] = encoder->in.width_in_lcu;
for (int i = 0; i < encoder->cfg.tiles_width_count - 1; ++i) {
int32_t column_width_in_lcu = (cfg->tiles_width_split[i] - last_pos_in_px) / LCU_WIDTH;
last_pos_in_px = cfg->tiles_width_split[i];
tiles_col_width[i] = column_width_in_lcu;
tiles_col_width[encoder->cfg.tiles_width_count - 1] -= column_width_in_lcu;
}
encoder->tiles_uniform_spacing_flag = 0;
}
if (!cfg->tiles_height_split) {
for (int i = 0; i < encoder->cfg.tiles_height_count; ++i) {
tiles_row_height[i] = ((i+1) * encoder->in.height_in_lcu) / encoder->cfg.tiles_height_count -
i * encoder->in.height_in_lcu / encoder->cfg.tiles_height_count;
}
} else {
int32_t last_pos_in_px = 0;
tiles_row_height[encoder->cfg.tiles_height_count - 1] = encoder->in.height_in_lcu;
for (int i = 0; i < encoder->cfg.tiles_height_count - 1; ++i) {
int32_t row_height_in_lcu = (cfg->tiles_height_split[i] - last_pos_in_px) / LCU_WIDTH;
last_pos_in_px = cfg->tiles_height_split[i];
tiles_row_height[i] = row_height_in_lcu;
tiles_row_height[encoder->cfg.tiles_height_count - 1] -= row_height_in_lcu;
}
encoder->tiles_uniform_spacing_flag = 0;
}
//(6-5) in ITU-T Rec. H.265 (04/2013)
tiles_col_bd[0] = 0;
for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) {
tiles_col_bd[i+1] = tiles_col_bd[i] + tiles_col_width[i];
}
//(6-6) in ITU-T Rec. H.265 (04/2013)
tiles_row_bd[0] = 0;
for (int i = 0; i < encoder->cfg.tiles_height_count; ++i) {
tiles_row_bd[i+1] = tiles_row_bd[i] + tiles_row_height[i];
}
//(6-7) in ITU-T Rec. H.265 (04/2013)
//j == ctbAddrRs
for (int j = 0; j < num_ctbs; ++j) {
int tileX = 0, tileY = 0;
int tbX = j % encoder->in.width_in_lcu;
int tbY = j / encoder->in.width_in_lcu;
for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) {
if (tbX >= tiles_col_bd[i]) tileX = i;
}
for (int i = 0; i < encoder->cfg.tiles_height_count; ++i) {
if (tbY >= tiles_row_bd[i]) tileY = i;
}
tiles_ctb_addr_rs_to_ts[j] = 0;
for (int i = 0; i < tileX; ++i) {
tiles_ctb_addr_rs_to_ts[j] += tiles_row_height[tileY] * tiles_col_width[i];
}
for (int i = 0; i < tileY; ++i) {
tiles_ctb_addr_rs_to_ts[j] += encoder->in.width_in_lcu * tiles_row_height[i];
}
tiles_ctb_addr_rs_to_ts[j] += (tbY - tiles_row_bd[tileY]) * tiles_col_width[tileX] +
tbX - tiles_col_bd[tileX];
}
//(6-8) in ITU-T Rec. H.265 (04/2013)
//Make reverse map from tile scan to raster scan
for (int j = 0; j < num_ctbs; ++j) {
tiles_ctb_addr_ts_to_rs[tiles_ctb_addr_rs_to_ts[j]] = j;
}
//(6-9) in ITU-T Rec. H.265 (04/2013)
int tileIdx = 0;
for (int j = 0; j < encoder->cfg.tiles_height_count; ++j) {
for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) {
for (int y = tiles_row_bd[j]; y < tiles_row_bd[j+1]; ++y) {
for (int x = tiles_col_bd[i]; x < tiles_col_bd[i+1]; ++x) {
tiles_tile_id[tiles_ctb_addr_rs_to_ts[y * encoder->in.width_in_lcu + x]] = tileIdx;
}
}
++tileIdx;
}
}
if (encoder->cfg.slices & KVZ_SLICES_WPP) {
// Each WPP row will be put into a dependent slice.
encoder->pps.dependent_slice_segments_enabled_flag = 1;
}
//Slices
if (encoder->cfg.slices & KVZ_SLICES_TILES) {
// Configure a single independent slice per tile.
int *slice_addresses_in_ts;
encoder->slice_count = encoder->cfg.tiles_width_count * encoder->cfg.tiles_height_count;
encoder->slice_addresses_in_ts = slice_addresses_in_ts = MALLOC(int, encoder->slice_count);
int slice_id = 0;
for (int tile_row = 0; tile_row < encoder->cfg.tiles_height_count; ++tile_row) {
for (int tile_col = 0; tile_col < encoder->cfg.tiles_width_count; ++tile_col) {
int x = tiles_col_bd[tile_col];
int y = tiles_row_bd[tile_row];
int rs = y * encoder->in.width_in_lcu + x;
int ts = tiles_ctb_addr_rs_to_ts[rs];
slice_addresses_in_ts[slice_id] = ts;
slice_id += 1;
}
}
} else {
int *slice_addresses_in_ts;
encoder->slice_count = encoder->cfg.slice_count;
if (encoder->slice_count == 0) {
encoder->slice_count = 1;
encoder->slice_addresses_in_ts = slice_addresses_in_ts =
MALLOC(int, encoder->slice_count);
if (!slice_addresses_in_ts) goto init_failed;
slice_addresses_in_ts[0] = 0;
} else {
encoder->slice_addresses_in_ts = slice_addresses_in_ts =
MALLOC(int, encoder->slice_count);
if (!slice_addresses_in_ts) goto init_failed;
if (!cfg->slice_addresses_in_ts) {
slice_addresses_in_ts[0] = 0;
for (int i = 1; i < encoder->slice_count; ++i) {
slice_addresses_in_ts[i] = encoder->in.width_in_lcu * encoder->in.height_in_lcu * i / encoder->slice_count;
}
} else {
for (int i = 0; i < encoder->slice_count; ++i) {
slice_addresses_in_ts[i] = cfg->slice_addresses_in_ts[i];
}
}
}
}
#ifdef _DEBUG_PRINT_THREADING_INFO
printf("Tiles columns width:");
for (int i = 0; i < encoder->cfg.tiles_width_count; ++i) {
printf(" %d", encoder->tiles_col_width[i]);
}
printf("\n");
printf("Tiles row height:");
for (int i = 0; i < encoder->cfg.tiles_height_count; ++i) {
printf(" %d", encoder->tiles_row_height[i]);
}
printf("\n");
//Print tile index map
for (int y = 0; y < encoder->in.height_in_lcu; ++y) {
for (int x = 0; x < encoder->in.width_in_lcu; ++x) {
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs];
const char slice_start = kvz_lcu_at_slice_start(encoder, lcu_id_ts) ? '|' : ' ';
const char slice_end = kvz_lcu_at_slice_end(encoder, lcu_id_ts) ? '|' : ' ';
printf("%c%03d%c", slice_start, encoder->tiles_tile_id[lcu_id_ts], slice_end);
}
printf("\n");
}
printf("\n");
if (encoder->cfg.wpp) {
printf("Wavefront Parallel Processing: enabled\n");
} else {
printf("Wavefront Parallel Processing: disabled\n");
}
printf("\n");
#endif //KVZ_DEBUG
}
assert(WITHIN(encoder->cfg.pu_depth_inter.min, PU_DEPTH_INTER_MIN, PU_DEPTH_INTER_MAX));
assert(WITHIN(encoder->cfg.pu_depth_inter.max, PU_DEPTH_INTER_MIN, PU_DEPTH_INTER_MAX));
assert(WITHIN(encoder->cfg.pu_depth_intra.min, PU_DEPTH_INTRA_MIN, PU_DEPTH_INTRA_MAX));
assert(WITHIN(encoder->cfg.pu_depth_intra.max, PU_DEPTH_INTRA_MIN, PU_DEPTH_INTRA_MAX));
// Disable in-loop filters, sign hiding and transform skip when using
// lossless coding.
if (encoder->cfg.lossless) {
encoder->cfg.deblock_enable = false;
encoder->cfg.sao_type = false;
encoder->cfg.signhide_enable = false;
encoder->cfg.trskip_enable = false;
}
// If fractional framerate is set, use that instead of the floating point framerate.
if (encoder->cfg.framerate_num != 0) {
encoder->vui.timing_info_present_flag = 1;
encoder->vui.num_units_in_tick = encoder->cfg.framerate_denom;
encoder->vui.time_scale = encoder->cfg.framerate_num;
if (encoder->cfg.source_scan_type != KVZ_INTERLACING_NONE) {
// when field_seq_flag=1, the time_scale and num_units_in_tick refer to
// field rate rather than frame rate.
encoder->vui.time_scale *= 2;
}
}
if (encoder->cfg.vps_period >= 0) {
encoder->cfg.vps_period = encoder->cfg.vps_period * encoder->cfg.intra_period;
} else {
encoder->cfg.vps_period = -1;
}
if(encoder->cfg.optional_key){
encoder->cfg.optional_key = MALLOC(uint8_t,16);
if (!encoder->cfg.optional_key) goto init_failed;
memcpy(encoder->cfg.optional_key, cfg->optional_key, 16);
}
return encoder;
init_failed:
kvz_encoder_control_free(encoder);
return NULL;
}
/**
* \brief Free an encoder control structure.
*/
void kvz_encoder_control_free(encoder_control_t *const encoder)
{
if (!encoder) return;
//Slices
FREE_POINTER(encoder->slice_addresses_in_ts);
//Tiles
FREE_POINTER(encoder->tiles_col_width);
FREE_POINTER(encoder->tiles_row_height);
FREE_POINTER(encoder->tiles_col_bd);
FREE_POINTER(encoder->tiles_row_bd);
FREE_POINTER(encoder->tiles_ctb_addr_rs_to_ts);
FREE_POINTER(encoder->tiles_ctb_addr_ts_to_rs);
FREE_POINTER(encoder->tiles_tile_id);
FREE_POINTER(encoder->cfg.roi.dqps);
FREE_POINTER(encoder->cfg.optional_key);
kvz_scalinglist_destroy(&encoder->scaling_list);
kvz_threadqueue_free(encoder->threadqueue);
encoder->threadqueue = NULL;
free(encoder);
}
void kvz_encoder_control_input_init(encoder_control_t * const encoder,
const int32_t width, int32_t height)
{
// Halve for interlaced content
if (encoder->in.source_scan_type != 0) height /= 2;
encoder->in.width = width;
encoder->in.height = height;
encoder->in.real_width = width;
encoder->in.real_height = height;
// If input dimensions are not divisible by the smallest block size, add
// pixels to the dimensions, so that they are. These extra pixels will be
// compressed along with the real ones but they will be cropped out before
// rendering.
if (encoder->in.width % CU_MIN_SIZE_PIXELS) {
encoder->in.width += CU_MIN_SIZE_PIXELS - (width % CU_MIN_SIZE_PIXELS);
}
if (encoder->in.height % CU_MIN_SIZE_PIXELS) {
encoder->in.height += CU_MIN_SIZE_PIXELS - (height % CU_MIN_SIZE_PIXELS);
}
encoder->in.height_in_lcu = encoder->in.height / LCU_WIDTH;
encoder->in.width_in_lcu = encoder->in.width / LCU_WIDTH;
// Add one extra LCU when image not divisible by LCU_WIDTH
if (encoder->in.height_in_lcu * LCU_WIDTH < height) {
encoder->in.height_in_lcu++;
}
if (encoder->in.width_in_lcu * LCU_WIDTH < width) {
encoder->in.width_in_lcu++;
}
encoder->in.pixels_per_pic = encoder->in.width * encoder->in.height;
#ifdef KVZ_DEBUG
if (width != encoder->in.width || height != encoder->in.height) {
printf("Picture buffer has been extended to be a multiple of the smallest block size:\r\n");
printf(" Width = %d (%d), Height = %d (%d)\r\n", width, encoder->in.width, height,
encoder->in.height);
}
#endif
}
/**
* \brief Initialize GOP layer weights.
* \return 1 on success, 0 on failure.
*
* Selects appropriate weights for layers according to the target bpp.
* Only GOP structures with exactly four layers are supported with the.
* exception of experimental GOP 16.
*/
static int encoder_control_init_gop_layer_weights(encoder_control_t * const encoder)
{
kvz_gop_config const * const gop = encoder->cfg.gop;
const int8_t gop_len = encoder->cfg.gop_len;
int num_layers = 0;
for (int i = 0; i < gop_len; ++i) {
num_layers = MAX(gop[i].layer, num_layers);
}
switch (num_layers) {
case 0:
case 1:
encoder->gop_layer_weights[0] = 1;
break;
// Use the first layers of the 4-layer weights.
case 2:
case 3:
case 4:
if (encoder->cfg.gop_lowdelay) {
// These weights are based on http://doi.org/10.1109/TIP.2014.2336550
// They are meant for lp-g4d3r4t1 gop, but work ok for others.
if (encoder->target_avg_bpp <= 0.05) {
encoder->gop_layer_weights[0] = 14;
encoder->gop_layer_weights[1] = 3;
encoder->gop_layer_weights[2] = 2;
encoder->gop_layer_weights[3] = 1;
} else if (encoder->target_avg_bpp <= 0.1) {
encoder->gop_layer_weights[0] = 12;
encoder->gop_layer_weights[1] = 3;
encoder->gop_layer_weights[2] = 2;
encoder->gop_layer_weights[3] = 1;
} else if (encoder->target_avg_bpp <= 0.2) {
encoder->gop_layer_weights[0] = 10;
encoder->gop_layer_weights[1] = 3;
encoder->gop_layer_weights[2] = 2;
encoder->gop_layer_weights[3] = 1;
} else {
encoder->gop_layer_weights[0] = 6;
encoder->gop_layer_weights[1] = 3;
encoder->gop_layer_weights[2] = 2;
encoder->gop_layer_weights[3] = 1;
}
} else {
// These weights are from http://doi.org/10.1109/TIP.2014.2336550
if (encoder->target_avg_bpp <= 0.05) {
encoder->gop_layer_weights[0] = 30;
encoder->gop_layer_weights[1] = 8;
encoder->gop_layer_weights[2] = 4;
encoder->gop_layer_weights[3] = 1;
} else if (encoder->target_avg_bpp <= 0.1) {
encoder->gop_layer_weights[0] = 25;
encoder->gop_layer_weights[1] = 7;
encoder->gop_layer_weights[2] = 4;
encoder->gop_layer_weights[3] = 1;
} else if (encoder->target_avg_bpp <= 0.2) {
encoder->gop_layer_weights[0] = 20;
encoder->gop_layer_weights[1] = 6;
encoder->gop_layer_weights[2] = 4;
encoder->gop_layer_weights[3] = 1;
} else {
encoder->gop_layer_weights[0] = 15;
encoder->gop_layer_weights[1] = 5;
encoder->gop_layer_weights[2] = 4;
encoder->gop_layer_weights[3] = 1;
}
}
break;
default:
if (!encoder->cfg.gop_lowdelay && encoder->cfg.gop_len == 16) {
fprintf(stdout,
"Rate control: Using experimental weights for GOP layers (%d)\n",
num_layers);
for (int i = 0; i < MAX_GOP_LAYERS; ++i) {
encoder->gop_layer_weights[i] = (i == 0) ? 10 : 2;
}
} else {
fprintf(stderr, "Unsupported number of GOP layers (%d)\n", num_layers);
return 0;
}
}
// Normalize weights so that the sum of weights in a GOP is one.
double sum_weights = 0;
for (int i = 0; i < gop_len; ++i) {
sum_weights += encoder->gop_layer_weights[gop[i].layer - 1];
}
for (int i = 0; i < num_layers; ++i) {
encoder->gop_layer_weights[i] /= sum_weights;
}
return 1;
}