uvg266/src/search.c

1148 lines
40 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2014 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Kvazaar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
/*
* \file
*/
#include "search.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "config.h"
#include "bitstream.h"
#include "picture.h"
#include "intra.h"
#include "inter.h"
#include "filter.h"
#include "rdo.h"
#include "transform.h"
// Temporarily for debugging.
#define SEARCH_MV_FULL_RADIUS 0
#define IN_FRAME(x, y, width, height, block_width, block_height) \
((x) >= 0 && (y) >= 0 \
&& (x) + (block_width) <= (width) \
&& (y) + (block_height) <= (height))
/**
* This is used in the hexagon_search to select 3 points to search.
*
* The start of the hexagonal pattern has been repeated at the end so that
* the indices between 1-6 can be used as the start of a 3-point list of new
* points to search.
*
* 6 o-o 1 / 7
* / \
* 5 o 0 o 2 / 8
* \ /
* 4 o-o 3
*/
const vector2d large_hexbs[10] = {
{ 0, 0 },
{ 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 },
{ 1, -2 }, { 2, 0 }
};
/**
* This is used as the last step of the hexagon search.
*/
const vector2d small_hexbs[5] = {
{ 0, 0 },
{ -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 }
};
static uint32_t get_ep_ex_golomb_bitcost(uint32_t symbol, uint32_t count)
{
int32_t num_bins = 0;
while (symbol >= (uint32_t)(1 << count)) {
++num_bins;
symbol -= 1 << count;
++count;
}
num_bins ++;
return num_bins;
}
static uint32_t get_mvd_coding_cost(vector2d *mvd)
{
uint32_t bitcost = 0;
const int32_t mvd_hor = mvd->x;
const int32_t mvd_ver = mvd->y;
const int8_t hor_abs_gr0 = mvd_hor != 0;
const int8_t ver_abs_gr0 = mvd_ver != 0;
const uint32_t mvd_hor_abs = abs(mvd_hor);
const uint32_t mvd_ver_abs = abs(mvd_ver);
// Greater than 0 for x/y
bitcost += 2;
if (hor_abs_gr0) {
if (mvd_hor_abs > 1) {
bitcost += get_ep_ex_golomb_bitcost(mvd_hor_abs-2, 1) - 2; // TODO: tune the costs
}
// Greater than 1 + sign
bitcost += 2;
}
if (ver_abs_gr0) {
if (mvd_ver_abs > 1) {
bitcost += get_ep_ex_golomb_bitcost(mvd_ver_abs-2, 1) - 2; // TODO: tune the costs
}
// Greater than 1 + sign
bitcost += 2;
}
return bitcost;
}
static int calc_mvd_cost(const encoder_state * const encoder_state, int x, int y,
int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3],
int16_t num_cand,int32_t ref_idx, uint32_t *bitcost)
{
uint32_t temp_bitcost = 0;
uint32_t merge_idx;
int cand1_cost,cand2_cost;
vector2d mvd_temp1, mvd_temp2;
int8_t merged = 0;
int8_t cur_mv_cand = 0;
x <<= 2;
y <<= 2;
// Check every candidate to find a match
for(merge_idx = 0; merge_idx < (uint32_t)num_cand; merge_idx++) {
if (merge_cand[merge_idx][0] == x &&
merge_cand[merge_idx][1] == y &&
merge_cand[merge_idx][2] == ref_idx) {
temp_bitcost += merge_idx;
merged = 1;
break;
}
}
// Check mvd cost only if mv is not merged
if(!merged) {
mvd_temp1.x = x - mv_cand[0][0];
mvd_temp1.y = y - mv_cand[0][1];
cand1_cost = get_mvd_coding_cost(&mvd_temp1);
mvd_temp2.x = x - mv_cand[1][0];
mvd_temp2.y = y - mv_cand[1][1];
cand2_cost = get_mvd_coding_cost(&mvd_temp2);
// Select candidate 1 if it has lower cost
if (cand2_cost < cand1_cost) {
cur_mv_cand = 1;
}
temp_bitcost += cur_mv_cand ? cand2_cost : cand1_cost;
}
*bitcost = temp_bitcost;
return temp_bitcost*(int32_t)(encoder_state->global->cur_lambda_cost+0.5);
}
/**
* \brief Do motion search using the HEXBS algorithm.
*
* \param depth log2 depth of the search
* \param pic Picture motion vector is searched for.
* \param ref Picture motion vector is searched from.
* \param orig Top left corner of the searched for block.
* \param mv_in_out Predicted mv in and best out. Quarter pixel precision.
*
* \returns Cost of the motion vector.
*
* Motion vector is searched by first searching iteratively with the large
* hexagon pattern until the best match is at the center of the hexagon.
* As a final step a smaller hexagon is used to check the adjacent pixels.
*
* If a non 0,0 predicted motion vector predictor is given as mv_in_out,
* the 0,0 vector is also tried. This is hoped to help in the case where
* the predicted motion vector is way off. In the future even more additional
* points like 0,0 might be used, such as vectors from top or left.
*/
static unsigned hexagon_search(const encoder_state * const encoder_state, unsigned depth,
const picture *pic, const picture *ref,
const vector2d *orig, vector2d *mv_in_out,
int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3],
int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out)
{
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
int block_width = CU_WIDTH_FROM_DEPTH(depth);
unsigned best_cost = UINT32_MAX;
uint32_t best_bitcost = 0, bitcost;
unsigned i;
unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs.
// Search the initial 7 points of the hexagon.
for (i = 0; i < 7; ++i) {
const vector2d *pattern = &large_hexbs[i];
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + pattern->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + pattern->y,
block_width, block_width);
cost += calc_mvd_cost(encoder_state, mv.x + pattern->x, mv.y + pattern->y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
if (cost < best_cost) {
best_cost = cost;
best_index = i;
best_bitcost = bitcost;
}
}
// Try the 0,0 vector.
if (!(mv.x == 0 && mv.y == 0)) {
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y,
block_width, block_width);
cost += calc_mvd_cost(encoder_state, 0, 0, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
// If the 0,0 is better, redo the hexagon around that point.
if (cost < best_cost) {
best_cost = cost;
best_bitcost = bitcost;
best_index = 0;
mv.x = 0;
mv.y = 0;
for (i = 1; i < 7; ++i) {
const vector2d *pattern = &large_hexbs[i];
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + pattern->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + pattern->y,
block_width, block_width);
cost += calc_mvd_cost(encoder_state, pattern->x, pattern->y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
if (cost < best_cost) {
best_cost = cost;
best_index = i;
best_bitcost = bitcost;
}
}
}
}
// Iteratively search the 3 new points around the best match, until the best
// match is in the center.
while (best_index != 0) {
unsigned start; // Starting point of the 3 offsets to be searched.
if (best_index == 1) {
start = 6;
} else if (best_index == 8) {
start = 1;
} else {
start = best_index - 1;
}
// Move the center to the best match.
mv.x += large_hexbs[best_index].x;
mv.y += large_hexbs[best_index].y;
best_index = 0;
// Iterate through the next 3 points.
for (i = 0; i < 3; ++i) {
const vector2d *offset = &large_hexbs[start + i];
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y,
block_width, block_width);
cost += calc_mvd_cost(encoder_state, mv.x + offset->x, mv.y + offset->y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
if (cost < best_cost) {
best_cost = cost;
best_index = start + i;
best_bitcost = bitcost;
}
++offset;
}
}
// Move the center to the best match.
mv.x += large_hexbs[best_index].x;
mv.y += large_hexbs[best_index].y;
best_index = 0;
// Do the final step of the search with a small pattern.
for (i = 1; i < 5; ++i) {
const vector2d *offset = &small_hexbs[i];
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
(encoder_state->tile->lcu_offset_x * LCU_WIDTH) + orig->x + mv.x + offset->x,
(encoder_state->tile->lcu_offset_y * LCU_WIDTH) + orig->y + mv.y + offset->y,
block_width, block_width);
cost += calc_mvd_cost(encoder_state, mv.x + offset->x, mv.y + offset->y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
best_index = i;
best_bitcost = bitcost;
}
}
// Adjust the movement vector according to the final best match.
mv.x += small_hexbs[best_index].x;
mv.y += small_hexbs[best_index].y;
// Return final movement vector in quarter-pixel precision.
mv_in_out->x = mv.x << 2;
mv_in_out->y = mv.y << 2;
*bitcost_out = best_bitcost;
return best_cost;
}
#if SEARCH_MV_FULL_RADIUS
static unsigned search_mv_full(unsigned depth,
const picture *pic, const picture *ref,
const vector2d *orig, vector2d *mv_in_out,
int16_t mv_cand[2][2], int16_t merge_cand[MRG_MAX_NUM_CANDS][3],
int16_t num_cand, int32_t ref_idx, uint32_t *bitcost_out)
{
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
int block_width = CU_WIDTH_FROM_DEPTH(depth);
unsigned best_cost = UINT32_MAX;
int x, y;
uint32_t best_bitcost = 0, bitcost;
vector2d min_mv, max_mv;
/*if (abs(mv.x) > SEARCH_MV_FULL_RADIUS || abs(mv.y) > SEARCH_MV_FULL_RADIUS) {
best_cost = calc_sad(pic, ref, orig->x, orig->y,
orig->x, orig->y,
block_width, block_width);
mv.x = 0;
mv.y = 0;
}*/
min_mv.x = mv.x - SEARCH_MV_FULL_RADIUS;
min_mv.y = mv.y - SEARCH_MV_FULL_RADIUS;
max_mv.x = mv.x + SEARCH_MV_FULL_RADIUS;
max_mv.y = mv.y + SEARCH_MV_FULL_RADIUS;
for (y = min_mv.y; y < max_mv.y; ++y) {
for (x = min_mv.x; x < max_mv.x; ++x) {
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
orig->x + x,
orig->y + y,
block_width, block_width);
cost += calc_mvd_cost(x, y, mv_cand,merge_cand,num_cand,ref_idx, &bitcost);
if (cost < best_cost) {
best_cost = cost;
best_bitcost = bitcost;
mv.x = x;
mv.y = y;
}
}
}
mv_in_out->x = mv.x << 2;
mv_in_out->y = mv.y << 2;
*bitcost_out = best_bitcost;
return best_cost;
}
#endif
/**
* Update lcu to have best modes at this depth.
* \return Cost of best mode.
*/
static int search_cu_inter(const encoder_state * const encoder_state, int x, int y, int depth, lcu_t *lcu)
{
const picture * const cur_pic = encoder_state->tile->cur_pic;
uint32_t ref_idx = 0;
int x_local = (x&0x3f), y_local = (y&0x3f);
int x_cu = x>>3;
int y_cu = y>>3;
int cu_pos = LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH;
cu_info *cur_cu = &lcu->cu[cu_pos];
int16_t mv_cand[2][2];
// Search for merge mode candidate
int16_t merge_cand[MRG_MAX_NUM_CANDS][3];
// Get list of candidates
int16_t num_cand = inter_get_merge_cand(x, y, depth, merge_cand, lcu);
// Select better candidate
cur_cu->inter.mv_cand = 0; // Default to candidate 0
cur_cu->inter.cost = UINT_MAX;
for (ref_idx = 0; ref_idx < encoder_state->global->ref->used_size; ref_idx++) {
picture *ref_pic = encoder_state->global->ref->pics[ref_idx];
unsigned width_in_scu = NO_SCU_IN_LCU(ref_pic->width_in_lcu);
cu_info *ref_cu = &ref_pic->cu_array[y_cu * width_in_scu + x_cu];
uint32_t temp_bitcost = 0;
uint32_t temp_cost = 0;
vector2d orig, mv, mvd;
int32_t merged = 0;
uint8_t cu_mv_cand = 0;
int8_t merge_idx = 0;
int8_t temp_ref_idx = cur_cu->inter.mv_ref;
orig.x = x_cu * CU_MIN_SIZE_PIXELS;
orig.y = y_cu * CU_MIN_SIZE_PIXELS;
mv.x = 0;
mv.y = 0;
if (ref_cu->type == CU_INTER) {
mv.x = ref_cu->inter.mv[0];
mv.y = ref_cu->inter.mv[1];
}
// Get MV candidates
cur_cu->inter.mv_ref = ref_idx;
inter_get_mv_cand(encoder_state, x, y, depth, mv_cand, cur_cu, lcu);
cur_cu->inter.mv_ref = temp_ref_idx;
#if SEARCH_MV_FULL_RADIUS
temp_cost += search_mv_full(depth, cur_pic, ref_pic, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost);
#else
temp_cost += hexagon_search(encoder_state, depth, cur_pic, ref_pic, &orig, &mv, mv_cand, merge_cand, num_cand, ref_idx, &temp_bitcost);
#endif
merged = 0;
// Check every candidate to find a match
for(merge_idx = 0; merge_idx < num_cand; merge_idx++) {
if (merge_cand[merge_idx][0] == mv.x &&
merge_cand[merge_idx][1] == mv.y &&
(uint32_t)merge_cand[merge_idx][2] == ref_idx) {
merged = 1;
break;
}
}
// Only check when candidates are different
if (!merged && (mv_cand[0][0] != mv_cand[1][0] || mv_cand[0][1] != mv_cand[1][1])) {
vector2d mvd_temp1, mvd_temp2;
int cand1_cost,cand2_cost;
mvd_temp1.x = mv.x - mv_cand[0][0];
mvd_temp1.y = mv.y - mv_cand[0][1];
cand1_cost = get_mvd_coding_cost(&mvd_temp1);
mvd_temp2.x = mv.x - mv_cand[1][0];
mvd_temp2.y = mv.y - mv_cand[1][1];
cand2_cost = get_mvd_coding_cost(&mvd_temp2);
// Select candidate 1 if it has lower cost
if (cand2_cost < cand1_cost) {
cu_mv_cand = 1;
}
}
mvd.x = mv.x - mv_cand[cu_mv_cand][0];
mvd.y = mv.y - mv_cand[cu_mv_cand][1];
if(temp_cost < cur_cu->inter.cost) {
cur_cu->merged = merged;
cur_cu->merge_idx = merge_idx;
cur_cu->inter.mv_ref = ref_idx;
cur_cu->inter.mv_dir = 1;
cur_cu->inter.mv[0] = (int16_t)mv.x;
cur_cu->inter.mv[1] = (int16_t)mv.y;
cur_cu->inter.mvd[0] = (int16_t)mvd.x;
cur_cu->inter.mvd[1] = (int16_t)mvd.y;
cur_cu->inter.cost = temp_cost;
cur_cu->inter.bitcost = temp_bitcost + ref_idx;
cur_cu->inter.mv_cand = cu_mv_cand;
}
}
return cur_cu->inter.cost;
}
/**
* Copy all non-reference CU data from depth+1 to depth.
*/
static void work_tree_copy_up(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1])
{
// Copy non-reference CUs.
{
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
const int width_cu = LCU_WIDTH >> MAX_DEPTH >> depth;
int x, y;
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
const cu_info *from_cu = &work_tree[depth + 1].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
cu_info *to_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
}
// Copy reconstructed pixels.
{
const int x = SUB_SCU(x_px);
const int y = SUB_SCU(y_px);
const int width_px = LCU_WIDTH >> depth;
const int luma_index = x + y * LCU_WIDTH;
const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2);
const lcu_yuv_t *from = &work_tree[depth + 1].rec;
lcu_yuv_t *to = &work_tree[depth].rec;
const lcu_coeff_t *from_coeff = &work_tree[depth + 1].coeff;
lcu_coeff_t *to_coeff = &work_tree[depth].coeff;
picture_blit_pixels(&from->y[luma_index], &to->y[luma_index],
width_px, width_px, LCU_WIDTH, LCU_WIDTH);
picture_blit_pixels(&from->u[chroma_index], &to->u[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
picture_blit_pixels(&from->v[chroma_index], &to->v[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
// Copy coefficients up. They do not have to be copied down because they
// are not used for the search.
picture_blit_coeffs(&from_coeff->y[luma_index], &to_coeff->y[luma_index],
width_px, width_px, LCU_WIDTH, LCU_WIDTH);
picture_blit_coeffs(&from_coeff->u[chroma_index], &to_coeff->u[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
picture_blit_coeffs(&from_coeff->v[chroma_index], &to_coeff->v[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
}
}
/**
* Copy all non-reference CU data from depth to depth+1..MAX_PU_DEPTH.
*/
static void work_tree_copy_down(int x_px, int y_px, int depth, lcu_t work_tree[MAX_PU_DEPTH + 1])
{
// TODO: clean up to remove the copy pasta
const int width_px = LCU_WIDTH >> depth;
int d;
for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) {
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
const int width_cu = width_px >> MAX_DEPTH;
int x, y;
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
const cu_info *from_cu = &work_tree[depth].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
cu_info *to_cu = &work_tree[d].cu[LCU_CU_OFFSET + x + y * LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
}
// Copy reconstructed pixels.
for (d = depth + 1; d < MAX_PU_DEPTH + 1; ++d) {
const int x = SUB_SCU(x_px);
const int y = SUB_SCU(y_px);
const int luma_index = x + y * LCU_WIDTH;
const int chroma_index = (x / 2) + (y / 2) * (LCU_WIDTH / 2);
lcu_yuv_t *from = &work_tree[depth].rec;
lcu_yuv_t *to = &work_tree[d].rec;
picture_blit_pixels(&from->y[luma_index], &to->y[luma_index],
width_px, width_px, LCU_WIDTH, LCU_WIDTH);
picture_blit_pixels(&from->u[chroma_index], &to->u[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
picture_blit_pixels(&from->v[chroma_index], &to->v[chroma_index],
width_px / 2, width_px / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
}
}
static void lcu_set_intra_mode(lcu_t *lcu, int x_px, int y_px, int depth, int pred_mode, int part_mode)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
// NxN can only be applied to a single CU at a time.
if (part_mode == SIZE_NxN) {
cu_info *cu = &lcu_cu[x_cu + y_cu * LCU_T_CU_WIDTH];
cu->depth = MAX_DEPTH;
cu->type = CU_INTRA;
// It is assumed that cu->intra[].mode's are already set.
cu->part_size = part_mode;
cu->tr_depth = depth;
return;
}
// Set mode in every CU covered by part_mode in this depth.
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
cu->depth = depth;
cu->type = CU_INTRA;
cu->intra[0].mode = pred_mode;
cu->intra[1].mode = pred_mode;
cu->intra[2].mode = pred_mode;
cu->intra[3].mode = pred_mode;
cu->part_size = part_mode;
cu->tr_depth = depth;
cu->coded = 1;
}
}
}
static void lcu_set_inter(lcu_t *lcu, int x_px, int y_px, int depth, cu_info *cur_cu)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
// Set mode in every CU covered by part_mode in this depth.
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
//Check if this could be moved inside the if
cu->coded = 1;
if (cu != cur_cu) {
cu->depth = cur_cu->depth;
cu->type = CU_INTER;
cu->tr_depth = cur_cu->tr_depth;
cu->merged = cur_cu->merged;
cu->skipped = cur_cu->skipped;
memcpy(&cu->inter, &cur_cu->inter, sizeof(cu_info_inter));
}
}
}
}
static void lcu_set_coeff(lcu_t *lcu, int x_px, int y_px, int depth, cu_info *cur_cu)
{
const int width_cu = LCU_CU_WIDTH >> depth;
const int x_cu = SUB_SCU(x_px) >> MAX_DEPTH;
const int y_cu = SUB_SCU(y_px) >> MAX_DEPTH;
cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
int tr_split = cur_cu->tr_depth-cur_cu->depth;
// Set coeff flags in every CU covered by part_mode in this depth.
for (y = y_cu; y < y_cu + width_cu; ++y) {
for (x = x_cu; x < x_cu + width_cu; ++x) {
cu_info *cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
// Use TU top-left CU to propagate coeff flags
uint32_t mask = ~((width_cu>>tr_split)-1);
cu_info *cu_from = &lcu_cu[(x & mask) + (y & mask) * LCU_T_CU_WIDTH];
if (cu != cu_from) {
// Chroma coeff data is not used, luma is needed for deblocking
cu->cbf.y = cu_from->cbf.y;
}
}
}
}
/**
* Update lcu to have best modes at this depth.
* \return Cost of best mode.
*/
static int search_cu_intra(encoder_state * const encoder_state,
const int x_px, const int y_px,
const int depth, lcu_t *lcu)
{
const picture * const cur_pic = encoder_state->tile->cur_pic;
const vector2d lcu_px = { x_px & 0x3f, y_px & 0x3f };
const vector2d lcu_cu = { lcu_px.x >> 3, lcu_px.y >> 3 };
const int8_t cu_width = (LCU_WIDTH >> (depth));
const int cu_index = LCU_CU_OFFSET + lcu_cu.x + lcu_cu.y * LCU_T_CU_WIDTH;
cu_info *cur_cu = &lcu->cu[cu_index];
pixel rec_buffer[(LCU_WIDTH * 2 + 1) * (LCU_WIDTH * 2 + 1)];
pixel *cu_in_rec_buffer = &rec_buffer[cu_width * 2 + 8 + 1];
int8_t candidate_modes[3];
cu_info *left_cu = 0;
cu_info *above_cu = 0;
if ((x_px >> 3) > 0) {
left_cu = &lcu->cu[cu_index - 1];
}
// Don't take the above CU across the LCU boundary.
if ((y_px >> 3) > 0 && lcu_cu.y != 0) {
above_cu = &lcu->cu[cu_index - LCU_T_CU_WIDTH];
}
// Get intra predictors
intra_get_dir_luma_predictor(x_px, y_px, candidate_modes, cur_cu, left_cu, above_cu);
// Build reconstructed block to use in prediction with extrapolated borders
intra_build_reference_border(encoder_state->encoder_control, x_px, y_px, cu_width * 2 + 8,
rec_buffer, cu_width * 2 + 8, 0,
cur_pic->width,
cur_pic->height,
lcu);
// Find best intra mode for 2Nx2N.
{
uint32_t cost = UINT32_MAX;
int16_t mode = -1;
uint32_t bitcost = UINT32_MAX;
pixel *ref_pixels = &lcu->ref.y[lcu_px.x + lcu_px.y * LCU_WIDTH];
unsigned pu_index = PU_INDEX(x_px >> 2, y_px >> 2);
mode = intra_prediction(encoder_state,ref_pixels, LCU_WIDTH,
cu_in_rec_buffer, cu_width * 2 + 8, cu_width,
&cost, candidate_modes, &bitcost);
cur_cu->intra[pu_index].mode = (int8_t)mode;
cur_cu->intra[pu_index].cost = cost;
cur_cu->intra[pu_index].bitcost = bitcost;
}
return cur_cu->intra[PU_INDEX(x_px >> 2, y_px >> 2)].cost;
}
/**
* Calculate "final cost" for the block
* \return Cost of block
*
* Take SSD between reconstruction and original and add cost from
* coding (bitcost * lambda) and cost for coding coefficients (estimated
* here as (coefficient_sum * 1.5) * lambda)
*/
static int lcu_get_final_cost(const encoder_state * const encoder_state,
const int x_px, const int y_px,
const int depth, lcu_t *lcu)
{
cu_info *cur_cu;
int x_local = (x_px&0x3f), y_local = (y_px&0x3f);
int cost = 0;
int coeff_cost = 0;
const int rdo = encoder_state->encoder_control->rdo;
int width = LCU_WIDTH>>depth;
int x,y;
cur_cu = &lcu->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH];
// SSD between reconstruction and original
for (y = y_local; y < y_local+width; ++y) {
for (x = x_local; x < x_local+width; ++x) {
int diff = (int)lcu->rec.y[y * LCU_WIDTH + x] - (int)lcu->ref.y[y * LCU_WIDTH + x];
cost += diff*diff;
}
}
// Chroma SSD
for (y = y_local>>1; y < (y_local+width)>>1; ++y) {
for (x = x_local>>1; x < (x_local+width)>>1; ++x) {
int diff = (int)lcu->rec.u[y * (LCU_WIDTH>>1) + x] - (int)lcu->ref.u[y * (LCU_WIDTH>>1) + x];
cost += diff*diff;
diff = (int)lcu->rec.v[y * (LCU_WIDTH>>1) + x] - (int)lcu->ref.v[y * (LCU_WIDTH>>1) + x];
cost += diff*diff;
}
}
if(rdo == 1) {
// sum of coeffs
for (y = y_local; y < y_local+width; ++y) {
for (x = x_local; x < x_local+width; ++x) {
coeff_cost += abs((int)lcu->coeff.y[y * LCU_WIDTH + x]);
}
}
// Chroma sum of coeffs
for (y = y_local>>1; y < (y_local+width)>>1; ++y) {
for (x = x_local>>1; x < (x_local+width)>>1; ++x) {
coeff_cost += abs((int)lcu->coeff.u[y * (LCU_WIDTH>>1) + x]);
coeff_cost += abs((int)lcu->coeff.v[y * (LCU_WIDTH>>1) + x]);
}
}
// Coefficient costs
cost += (coeff_cost + (coeff_cost>>1)) * (int32_t)(encoder_state->global->cur_lambda_cost+0.5);
// Calculate actual bit costs for coding the coeffs
// RDO
} else if (rdo == 2) {
coefficient coeff_temp[32*32];
coefficient coeff_temp_u[16*16];
coefficient coeff_temp_v[16*16];
int i;
int blocks = (width == 64)?4:1;
int8_t luma_scan_mode = SCAN_DIAG;
int8_t chroma_scan_mode = SCAN_DIAG;
for(i = 0; i < blocks; i++) {
// For 64x64 blocks we need to do transform split to 32x32
int blk_y = i&2 ? 32:0 + y_local;
int blk_x = i&1 ? 32:0 + x_local;
int blockwidth = (width == 64)?32:width;
if (cur_cu->type == CU_INTRA) {
// Scan mode is diagonal, except for 4x4 and 8x8, where:
// - angular 6-14 = vertical
// - angular 22-30 = horizontal
int luma_mode = cur_cu->intra[i].mode;
int chroma_mode = cur_cu->intra[0].mode_chroma;
if (width <= 8) {
if (luma_mode >= 6 && luma_mode <= 14) {
luma_scan_mode = SCAN_VER;
} else if (luma_mode >= 22 && luma_mode <= 30) {
luma_scan_mode = SCAN_HOR;
}
if (chroma_mode >= 6 && chroma_mode <= 14) {
chroma_scan_mode = SCAN_VER;
} else if (chroma_mode >= 22 && chroma_mode <= 30) {
chroma_scan_mode = SCAN_HOR;
}
}
}
// Calculate luma coeff bit count
picture_blit_coeffs(&lcu->coeff.y[(blk_y*LCU_WIDTH)+blk_x],coeff_temp,blockwidth,blockwidth,LCU_WIDTH,blockwidth);
coeff_cost += get_coeff_cost(encoder_state, coeff_temp, blockwidth, 0, luma_scan_mode);
blk_y >>= 1;
blk_x >>= 1;
if (blockwidth > 4) {
// Chroma is 1/4th of luma unless luma is 4x4.
blockwidth >>= 1;
} else if (x_px % 8 != 0 || y_px % 8 != 0) {
// Only add chroma cost for 4x4 blocks for the one on the 8x8 grid.
break;
}
picture_blit_coeffs(&lcu->coeff.u[(blk_y*(LCU_WIDTH>>1))+blk_x],coeff_temp_u,blockwidth,blockwidth,LCU_WIDTH>>1,blockwidth);
picture_blit_coeffs(&lcu->coeff.v[(blk_y*(LCU_WIDTH>>1))+blk_x],coeff_temp_v,blockwidth,blockwidth,LCU_WIDTH>>1,blockwidth);
coeff_cost += get_coeff_cost(encoder_state, coeff_temp_u, blockwidth, 2, chroma_scan_mode);
coeff_cost += get_coeff_cost(encoder_state, coeff_temp_v, blockwidth, 2, chroma_scan_mode);
}
// Multiply bit count with lambda to get RD-cost
cost += coeff_cost * (int32_t)(encoder_state->global->cur_lambda_cost+0.5);
}
// Bitcost
cost += (cur_cu->type == CU_INTER ? cur_cu->inter.bitcost : cur_cu->intra[PU_INDEX(x_px >> 2, y_px >> 2)].bitcost)*(int32_t)(encoder_state->global->cur_lambda_cost+0.5);
return cost;
}
/**
* Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode.
* - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH.
* - Data structure work_tree is maintained such that the neighbouring SCUs
* and pixels to the left and up of current CU are the final CUs decided
* via the search. This is done by copying the relevant data to all
* relevant levels whenever a decision is made whether to split or not.
* - All the final data for the LCU gets eventually copied to depth 0, which
* will be the final output of the recursion.
*/
static int search_cu(encoder_state * const encoder_state, int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH])
{
const picture * const cur_pic = encoder_state->tile->cur_pic;
int cu_width = LCU_WIDTH >> depth;
int cost = MAX_INT;
cu_info *cur_cu;
int x_local = (x&0x3f), y_local = (y&0x3f);
// Stop recursion if the CU is completely outside the frame.
if (x >= cur_pic->width || y >= cur_pic->height) {
// Return zero cost because this CU does not have to be coded.
return 0;
}
cur_cu = &(&work_tree[depth])->cu[LCU_CU_OFFSET+(x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH];
// Assign correct depth
cur_cu->depth = depth > MAX_DEPTH ? MAX_DEPTH : depth;
cur_cu->tr_depth = depth > 0 ? depth : 1;
cur_cu->type = CU_NOTSET;
cur_cu->part_size = depth > MAX_DEPTH ? SIZE_NxN : SIZE_2Nx2N;
// If the CU is completely inside the frame at this depth, search for
// prediction modes at this depth.
if (x + cu_width <= cur_pic->width &&
y + cu_width <= cur_pic->height)
{
if (encoder_state->global->slicetype != SLICE_I &&
depth >= MIN_INTER_SEARCH_DEPTH &&
depth <= MAX_INTER_SEARCH_DEPTH)
{
int mode_cost = search_cu_inter(encoder_state, x, y, depth, &work_tree[depth]);
if (mode_cost < cost) {
cost = mode_cost;
cur_cu->type = CU_INTER;
}
}
if (depth >= MIN_INTRA_SEARCH_DEPTH &&
depth <= MAX_INTRA_SEARCH_DEPTH)
{
int mode_cost = search_cu_intra(encoder_state, x, y, depth, &work_tree[depth]);
if (mode_cost < cost) {
cost = mode_cost;
cur_cu->type = CU_INTRA;
}
}
// Reconstruct best mode because we need the reconstructed pixels for
// mode search of adjacent CUs.
if (cur_cu->type == CU_INTRA) {
lcu_set_intra_mode(&work_tree[depth], x, y, depth, cur_cu->intra[PU_INDEX(x >> 2, y >> 2)].mode, cur_cu->part_size);
intra_recon_lcu(encoder_state, x, y, depth,&work_tree[depth], cur_pic->width, cur_pic->height);
} else if (cur_cu->type == CU_INTER) {
int cbf;
inter_recon_lcu(encoder_state, encoder_state->global->ref->pics[cur_cu->inter.mv_ref], x, y, LCU_WIDTH>>depth, cur_cu->inter.mv, &work_tree[depth]);
quantize_lcu_luma_residual(encoder_state, x, y, depth, &work_tree[depth]);
quantize_lcu_chroma_residual(encoder_state, x, y, depth, &work_tree[depth]);
cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth);
if(cur_cu->merged && !cbf) {
cur_cu->merged = 0;
cur_cu->skipped = 1;
// Selecting skip reduces bits needed to code the CU
cur_cu->inter.bitcost--;
}
lcu_set_inter(&work_tree[depth], x, y, depth, cur_cu);
lcu_set_coeff(&work_tree[depth], x, y, depth, cur_cu);
}
}
if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) {
cost = lcu_get_final_cost(encoder_state, x, y, depth, &work_tree[depth]);
}
// Recursively split all the way to max search depth.
if (depth < MAX_INTRA_SEARCH_DEPTH || depth < MAX_INTER_SEARCH_DEPTH) {
int half_cu = cu_width / 2;
int split_cost = (int)(4.5 * encoder_state->global->cur_lambda_cost);
int cbf = cbf_is_set(cur_cu->cbf.y, depth) || cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth);
// If skip mode was selected for the block, skip further search.
// Skip mode means there's no coefficients in the block, so splitting
// might not give any better results but takes more time to do.
if(cur_cu->type == CU_NOTSET || cbf) {
split_cost += search_cu(encoder_state, x, y, depth + 1, work_tree);
split_cost += search_cu(encoder_state, x + half_cu, y, depth + 1, work_tree);
split_cost += search_cu(encoder_state, x, y + half_cu, depth + 1, work_tree);
split_cost += search_cu(encoder_state, x + half_cu, y + half_cu, depth + 1, work_tree);
} else {
split_cost = INT_MAX;
}
if (split_cost < cost) {
// Copy split modes to this depth.
cost = split_cost;
work_tree_copy_up(x, y, depth, work_tree);
} else {
// Copy this CU's mode all the way down for use in adjacent CUs mode
// search.
work_tree_copy_down(x, y, depth, work_tree);
}
}
return cost;
}
/**
* Initialize lcu_t for search.
* - Copy reference CUs.
* - Copy reference pixels from neighbouring LCUs.
* - Copy reference pixels from this LCU.
*/
static void init_lcu_t(const encoder_state * const encoder_state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf)
{
const picture * const cur_pic = encoder_state->tile->cur_pic;
// Copy reference cu_info structs from neighbouring LCUs.
{
const int x_cu = x >> MAX_DEPTH;
const int y_cu = y >> MAX_DEPTH;
const int cu_array_width = cur_pic->width_in_lcu << MAX_DEPTH;
cu_info *const cu_array = cur_pic->cu_array;
// Use top-left sub-cu of LCU as pointer to lcu->cu array to make things
// simpler.
cu_info *lcu_cu = &lcu->cu[LCU_CU_OFFSET];
// Copy top CU row.
if (y_cu > 0) {
int i;
for (i = 0; i < LCU_CU_WIDTH; ++i) {
const cu_info *from_cu = &cu_array[(x_cu + i) + (y_cu - 1) * cu_array_width];
cu_info *to_cu = &lcu_cu[i - LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy left CU column.
if (x_cu > 0) {
int i;
for (i = 0; i < LCU_CU_WIDTH; ++i) {
const cu_info *from_cu = &cu_array[(x_cu - 1) + (y_cu + i) * cu_array_width];
cu_info *to_cu = &lcu_cu[-1 + i * LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy top-left CU.
if (x_cu > 0 && y_cu > 0) {
const cu_info *from_cu = &cu_array[(x_cu - 1) + (y_cu - 1) * cu_array_width];
cu_info *to_cu = &lcu_cu[-1 - LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
// Copy top-right CU.
if (y_cu > 0 && x + LCU_WIDTH < cur_pic->width) {
const cu_info *from_cu = &cu_array[(x_cu + LCU_CU_WIDTH) + (y_cu - 1) * cu_array_width];
cu_info *to_cu = &lcu->cu[LCU_T_CU_WIDTH*LCU_T_CU_WIDTH];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy reference pixels.
{
const int pic_width = cur_pic->width;
// Copy top reference pixels.
if (y > 0) {
// hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH
// number of allocated pixels left.
int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x);
memcpy(&lcu->top_ref.y[1], &hor_buf->y[x], x_max);
memcpy(&lcu->top_ref.u[1], &hor_buf->u[x / 2], x_max / 2);
memcpy(&lcu->top_ref.v[1], &hor_buf->v[x / 2], x_max / 2);
}
// Copy left reference pixels.
if (x > 0) {
memcpy(&lcu->left_ref.y[1], &ver_buf->y[1], LCU_WIDTH);
memcpy(&lcu->left_ref.u[1], &ver_buf->u[1], LCU_WIDTH / 2);
memcpy(&lcu->left_ref.v[1], &ver_buf->v[1], LCU_WIDTH / 2);
}
// Copy top-left reference pixel.
if (x > 0 && y > 0) {
lcu->top_ref.y[0] = ver_buf->y[0];
lcu->left_ref.y[0] = ver_buf->y[0];
lcu->top_ref.u[0] = ver_buf->u[0];
lcu->left_ref.u[0] = ver_buf->u[0];
lcu->top_ref.v[0] = ver_buf->v[0];
lcu->left_ref.v[0] = ver_buf->v[0];
}
}
// Copy LCU pixels.
{
const picture * const pic = encoder_state->tile->cur_pic;
int pic_width = cur_pic->width;
int x_max = MIN(x + LCU_WIDTH, pic_width) - x;
int y_max = MIN(y + LCU_WIDTH, cur_pic->height) - y;
int x_c = x / 2;
int y_c = y / 2;
int pic_width_c = pic_width / 2;
int x_max_c = x_max / 2;
int y_max_c = y_max / 2;
picture_blit_pixels(&pic->y_data[x + y * pic_width], lcu->ref.y,
x_max, y_max, pic_width, LCU_WIDTH);
picture_blit_pixels(&pic->u_data[x_c + y_c * pic_width_c], lcu->ref.u,
x_max_c, y_max_c, pic_width_c, LCU_WIDTH / 2);
picture_blit_pixels(&pic->v_data[x_c + y_c * pic_width_c], lcu->ref.v,
x_max_c, y_max_c, pic_width_c, LCU_WIDTH / 2);
}
}
/**
* Copy CU and pixel data to it's place in picture datastructure.
*/
static void copy_lcu_to_cu_data(const encoder_state * const encoder_state, int x_px, int y_px, const lcu_t *lcu)
{
// Copy non-reference CUs to picture.
{
const int x_cu = x_px >> MAX_DEPTH;
const int y_cu = y_px >> MAX_DEPTH;
const picture * const cur_pic = encoder_state->tile->cur_pic;
const int cu_array_width = cur_pic->width_in_lcu << MAX_DEPTH;
cu_info *const cu_array = cur_pic->cu_array;
// Use top-left sub-cu of LCU as pointer to lcu->cu array to make things
// simpler.
const cu_info *const lcu_cu = &lcu->cu[LCU_CU_OFFSET];
int x, y;
for (y = 0; y < LCU_CU_WIDTH; ++y) {
for (x = 0; x < LCU_CU_WIDTH; ++x) {
const cu_info *from_cu = &lcu_cu[x + y * LCU_T_CU_WIDTH];
cu_info *to_cu = &cu_array[(x_cu + x) + (y_cu + y) * cu_array_width];
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
}
// Copy pixels to picture.
{
picture * const pic = encoder_state->tile->cur_pic;
const int pic_width = pic->width;
const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px;
const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px;
const int luma_index = x_px + y_px * pic_width;
const int chroma_index = (x_px / 2) + (y_px / 2) * (pic_width / 2);
picture_blit_pixels(lcu->rec.y, &pic->y_recdata[luma_index],
x_max, y_max, LCU_WIDTH, pic_width);
picture_blit_coeffs(lcu->coeff.y, &pic->coeff_y[luma_index],
x_max, y_max, LCU_WIDTH, pic_width);
picture_blit_pixels(lcu->rec.u, &pic->u_recdata[chroma_index],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2);
picture_blit_pixels(lcu->rec.v, &pic->v_recdata[chroma_index],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2);
picture_blit_coeffs(lcu->coeff.u, &pic->coeff_u[chroma_index],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2);
picture_blit_coeffs(lcu->coeff.v, &pic->coeff_v[chroma_index],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic_width / 2);
}
}
/**
* Search LCU for modes.
* - Best mode gets copied to current picture.
*/
void search_lcu(encoder_state * const encoder_state, int x, int y, yuv_t* hor_buf, yuv_t* ver_buf)
{
lcu_t work_tree[MAX_PU_DEPTH + 1];
int depth;
// Initialize work tree.
for (depth = 0; depth <= MAX_PU_DEPTH; ++depth) {
memset(&work_tree[depth], 0, sizeof(work_tree[depth]));
init_lcu_t(encoder_state, x, y, &work_tree[depth], hor_buf, ver_buf);
}
// Start search from depth 0.
search_cu(encoder_state, x, y, 0, work_tree);
copy_lcu_to_cu_data(encoder_state, x, y, &work_tree[0]);
}