uvg266/src/cabac.c

583 lines
23 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
****************************************************************************/
#include "cabac.h"
#include "encoder.h"
#include "encoderstate.h"
#include "extras/crypto.h"
#include "kvazaar.h"
FILE* bit_cost_file = NULL;
const uint8_t kvz_g_auc_next_state_mps[128] =
{
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 124, 125, 126, 127
};
const uint8_t kvz_g_auc_next_state_lps[128] =
{
1, 0, 0, 1, 2, 3, 4, 5, 4, 5, 8, 9, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 18, 19, 22, 23, 22, 23, 24, 25,
26, 27, 26, 27, 30, 31, 30, 31, 32, 33, 32, 33, 36, 37, 36, 37,
38, 39, 38, 39, 42, 43, 42, 43, 44, 45, 44, 45, 46, 47, 48, 49,
48, 49, 50, 51, 52, 53, 52, 53, 54, 55, 54, 55, 56, 57, 58, 59,
58, 59, 60, 61, 60, 61, 60, 61, 62, 63, 64, 65, 64, 65, 66, 67,
66, 67, 66, 67, 68, 69, 68, 69, 70, 71, 70, 71, 70, 71, 72, 73,
72, 73, 72, 73, 74, 75, 74, 75, 74, 75, 76, 77, 76, 77, 126, 127
};
const uint8_t kvz_g_auc_lpst_table[64][4] =
{
{128, 176, 208, 240}, {128, 167, 197, 227}, {128, 158, 187, 216}, {123, 150, 178, 205}, {116, 142, 169, 195},
{111, 135, 160, 185}, {105, 128, 152, 175}, {100, 122, 144, 166}, { 95, 116, 137, 158}, { 90, 110, 130, 150},
{ 85, 104, 123, 142}, { 81, 99, 117, 135}, { 77, 94, 111, 128}, { 73, 89, 105, 122}, { 69, 85, 100, 116},
{ 66, 80, 95, 110}, { 62, 76, 90, 104}, { 59, 72, 86, 99}, { 56, 69, 81, 94}, { 53, 65, 77, 89},
{ 51, 62, 73, 85}, { 48, 59, 69, 80}, { 46, 56, 66, 76}, { 43, 53, 63, 72}, { 41, 50, 59, 69},
{ 39, 48, 56, 65}, { 37, 45, 54, 62}, { 35, 43, 51, 59}, { 33, 41, 48, 56}, { 32, 39, 46, 53},
{ 30, 37, 43, 50}, { 29, 35, 41, 48}, { 27, 33, 39, 45}, { 26, 31, 37, 43}, { 24, 30, 35, 41},
{ 23, 28, 33, 39}, { 22, 27, 32, 37}, { 21, 26, 30, 35}, { 20, 24, 29, 33}, { 19, 23, 27, 31},
{ 18, 22, 26, 30}, { 17, 21, 25, 28}, { 16, 20, 23, 27}, { 15, 19, 22, 25}, { 14, 18, 21, 24},
{ 14, 17, 20, 23}, { 13, 16, 19, 22}, { 12, 15, 18, 21}, { 12, 14, 17, 20}, { 11, 14, 16, 19},
{ 11, 13, 15, 18}, { 10, 12, 15, 17}, { 10, 12, 14, 16}, { 9, 11, 13, 15}, { 9, 11, 12, 14},
{ 8, 10, 12, 14}, { 8, 9, 11, 13}, { 7, 9, 11, 12}, { 7, 9, 10, 12}, { 7, 8, 10, 11},
{ 6, 8, 9, 11}, { 6, 7, 9, 10}, { 6, 7, 8, 9}, { 2, 2, 2, 2}
};
const uint8_t kvz_g_auc_renorm_table[32] =
{
6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
/**
* \brief Initialize struct cabac_data.
*/
void kvz_cabac_start(cabac_data_t * const data)
{
data->low = 0;
data->range = 510;
data->bits_left = 23;
data->num_buffered_bytes = 0;
data->buffered_byte = 0xff;
data->only_count = 0; // By default, write bits out
data->update = 0;
}
/**
* \brief
*/
void kvz_cabac_encode_bin(cabac_data_t * const data, const uint32_t bin_value)
{
uint32_t lps;
lps = kvz_g_auc_lpst_table[CTX_STATE(data->cur_ctx)][(data->range >> 6) & 3];
data->range -= lps;
// Not the Most Probable Symbol?
if ((bin_value ? 1 : 0) != CTX_MPS(data->cur_ctx)) {
int num_bits = kvz_g_auc_renorm_table[lps >> 3];
data->low = (data->low + data->range) << num_bits;
data->range = lps << num_bits;
CTX_UPDATE_LPS(data->cur_ctx);
data->bits_left -= num_bits;
} else {
CTX_UPDATE_MPS(data->cur_ctx);
if (data->range >= 256) return;
data->low <<= 1;
data->range <<= 1;
data->bits_left--;
}
if (data->bits_left < 12) {
kvz_cabac_write(data);
}
}
/**
* \brief
*/
void kvz_cabac_write(cabac_data_t * const data)
{
uint32_t lead_byte = data->low >> (24 - data->bits_left);
data->bits_left += 8;
data->low &= 0xffffffffu >> data->bits_left;
// Binary counter mode
if(data->only_count) {
data->num_buffered_bytes++;
return;
}
if (lead_byte == 0xff) {
data->num_buffered_bytes++;
} else {
if (data->num_buffered_bytes > 0) {
uint32_t carry = lead_byte >> 8;
uint32_t byte = data->buffered_byte + carry;
data->buffered_byte = lead_byte & 0xff;
kvz_bitstream_put_byte(data->stream, byte);
byte = (0xff + carry) & 0xff;
while (data->num_buffered_bytes > 1) {
kvz_bitstream_put_byte(data->stream, byte);
data->num_buffered_bytes--;
}
} else {
data->num_buffered_bytes = 1;
data->buffered_byte = lead_byte;
}
}
}
/**
* \brief
*/
void kvz_cabac_finish(cabac_data_t * const data)
{
assert(data->bits_left <= 32);
if (data->low >> (32 - data->bits_left)) {
kvz_bitstream_put_byte(data->stream, data->buffered_byte + 1);
while (data->num_buffered_bytes > 1) {
kvz_bitstream_put_byte(data->stream, 0);
data->num_buffered_bytes--;
}
data->low -= 1 << (32 - data->bits_left);
} else {
if (data->num_buffered_bytes > 0) {
kvz_bitstream_put_byte(data->stream, data->buffered_byte);
}
while (data->num_buffered_bytes > 1) {
kvz_bitstream_put_byte(data->stream, 0xff);
data->num_buffered_bytes--;
}
}
{
uint8_t bits = (uint8_t)(24 - data->bits_left);
kvz_bitstream_put(data->stream, data->low >> 8, bits);
}
}
/*!
\brief Encode terminating bin
\param binValue bin value
*/
void kvz_cabac_encode_bin_trm(cabac_data_t * const data, const uint8_t bin_value)
{
data->range -= 2;
if(bin_value) {
data->low += data->range;
data->low <<= 7;
data->range = 2 << 7;
data->bits_left -= 7;
} else if (data->range >= 256) {
return;
} else {
data->low <<= 1;
data->range <<= 1;
data->bits_left--;
}
if (data->bits_left < 12) {
kvz_cabac_write(data);
}
}
/**
* \brief
*/
void kvz_cabac_encode_bin_ep(cabac_data_t * const data, const uint32_t bin_value)
{
data->low <<= 1;
if (bin_value) {
data->low += data->range;
}
data->bits_left--;
if (data->bits_left < 12) {
kvz_cabac_write(data);
}
}
/**
* \brief
*/
void kvz_cabac_encode_bins_ep(cabac_data_t * const data, uint32_t bin_values, int num_bins)
{
uint32_t pattern;
while (num_bins > 8) {
num_bins -= 8;
pattern = bin_values >> num_bins;
data->low <<= 8;
data->low += data->range * pattern;
bin_values -= pattern << num_bins;
data->bits_left -= 8;
if(data->bits_left < 12) {
kvz_cabac_write(data);
}
}
data->low <<= num_bins;
data->low += data->range * bin_values;
data->bits_left -= num_bins;
if (data->bits_left < 12) {
kvz_cabac_write(data);
}
}
/**
* \brief Coding of coeff_abs_level_minus3.
* \param symbol Value of coeff_abs_level_minus3.
* \param r_param Reference to Rice parameter.
*/
void kvz_cabac_write_coeff_remain(cabac_data_t * const cabac, const uint32_t symbol, const uint32_t r_param)
{
int32_t code_number = symbol;
uint32_t length;
if (code_number < (3 << r_param)) {
length = code_number >> r_param;
CABAC_BINS_EP(cabac, (1 << (length + 1)) - 2 , length + 1, "coeff_abs_level_remaining");
CABAC_BINS_EP(cabac, (code_number % (1 << r_param)), r_param, "coeff_abs_level_remaining");
} else {
length = r_param;
code_number = code_number - (3 << r_param);
while (code_number >= (1 << length)) {
code_number -= 1 << length;
++length;
}
CABAC_BINS_EP(cabac, (1 << (3 + length + 1 - r_param)) - 2, 3 + length + 1 - r_param, "coeff_abs_level_remaining");
CABAC_BINS_EP(cabac, code_number, length, "coeff_abs_level_remaining");
}
}
void kvz_cabac_write_coeff_remain_encry(struct encoder_state_t * const state, cabac_data_t * const cabac,const uint32_t symbol, const uint32_t r_param, int32_t base_level)
{
int32_t codeNumber = (int32_t)symbol;
uint32_t length;
if (codeNumber < (3 << r_param)) {
length = codeNumber>>r_param;
CABAC_BINS_EP(cabac, (1 << (length + 1)) - 2 , length + 1, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP( (1<<(length+1))-2 , length+1);
uint32_t Suffix = (codeNumber%(1<<r_param));
if(!r_param)
CABAC_BINS_EP(cabac, Suffix, r_param, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(Suffix, r_param);
if(r_param==1) {
if(!(( base_level ==2 )&& (codeNumber==4 || codeNumber==5) ) ) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 1);
state->crypto_prev_pos = ( Suffix + ( state->crypto_prev_pos^key ) ) & 1;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 1, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 1);
} else {
CABAC_BINS_EP(cabac, Suffix, 1, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(Suffix, 1);
}
}
else
if(r_param==2) {
if( base_level ==1) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 2);
state->crypto_prev_pos = ( Suffix + ( state->crypto_prev_pos^key ) ) & 3;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 2, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 2);
} else
if( base_level ==2) {
if(codeNumber<=7 || codeNumber>=12) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 2);
state->crypto_prev_pos = ( Suffix + ( state->crypto_prev_pos^key ) ) & 3;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 2, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 2);
}
else
if(codeNumber<10) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 1);
state->crypto_prev_pos = (( (Suffix&1) + ( state->crypto_prev_pos^key )) & 1);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 2, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 2);
} else
CABAC_BINS_EP(cabac, Suffix, 2, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(Suffix, 2);
} else { //base_level=3
if(codeNumber<=7 || codeNumber>11) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 2);
state->crypto_prev_pos = (Suffix + ( state->crypto_prev_pos^key ) ) & 3;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 2, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 2);
} else {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 1);
state->crypto_prev_pos = ((Suffix&2))+(( (Suffix&1) + ( state->crypto_prev_pos^key)) & 1);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 2, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 2);
}
}
} else
if(r_param==3) {
if( base_level ==1) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 3);
state->crypto_prev_pos = ( Suffix + ( state->crypto_prev_pos^key ) ) & 7;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 3, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 3);
}
else if( base_level ==2) {
if(codeNumber<=15 || codeNumber>23) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 3);
state->crypto_prev_pos = ( Suffix + ( state->crypto_prev_pos^key ) ) & 7;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 3, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 3);
} else
if(codeNumber<=19){
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 2);
state->crypto_prev_pos = ((Suffix&4))+(( (Suffix&3) + (state->crypto_prev_pos^key )) & 3);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 3, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 3);
} else
if(codeNumber<=21){
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 1);
state->crypto_prev_pos = 4+(( (Suffix&1) + ( state->crypto_prev_pos^key )) & 1);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 3, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 3);
} else
CABAC_BINS_EP(cabac, Suffix, 3, "coeff_abs_level_remaining");
// m_pcBinIf->encodeBinsEP(Suffix, 3);
} else {//base_level=3
CABAC_BINS_EP(cabac, Suffix, 3, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(Suffix, 3);
if(codeNumber<=15 || codeNumber>23) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 3);
state->crypto_prev_pos = (Suffix + ( state->crypto_prev_pos^key ) ) & 7;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 3, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 3);
} else
if(codeNumber<=19) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 2);
state->crypto_prev_pos = (( (Suffix&3) + ( state->crypto_prev_pos^key )) &3);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 3, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 3);
} else
if(codeNumber<=23) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 1);
state->crypto_prev_pos = (Suffix&6)+(( (Suffix&1) + (state->crypto_prev_pos^key )) & 1);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 3, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 3);
}
}
} else
if(r_param==4) {
if( base_level ==1) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 4);
state->crypto_prev_pos = ( Suffix + ( state->crypto_prev_pos^key ) ) & 15;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 4, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 4);
} else
if( base_level ==2) {
if(codeNumber<=31 || codeNumber>47) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 4);
state->crypto_prev_pos = ( Suffix + ( state->crypto_prev_pos^key ) ) & 15;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, r_param, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, r_param);
} else
if(codeNumber<=39) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 3);
state->crypto_prev_pos = (( (Suffix&7) + ( state->crypto_prev_pos^key )) & 7);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 4, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 4);
} else
if(codeNumber<=43) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 2);
state->crypto_prev_pos = 8+(( (Suffix&3) + ( state->crypto_prev_pos^key )) & 3);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 4, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 4);
} else
if(codeNumber<=45){
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 1);
state->crypto_prev_pos = 12+(( (Suffix&1) + ( state->crypto_prev_pos^key )) & 1);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 4, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 4);
} else
CABAC_BINS_EP(cabac, Suffix, 4, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(Suffix, 4);
} else {//base_level=3
if(codeNumber<=31 || codeNumber>47) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 4);
state->crypto_prev_pos = (Suffix + ( state->crypto_prev_pos^key ) ) & 15;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, r_param, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, r_param);
} else
if(codeNumber<=39) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 3);
state->crypto_prev_pos = (( (Suffix&7) + ( state->crypto_prev_pos^key )) & 7);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 4, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 4);
} else
if(codeNumber<=43) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 2);
state->crypto_prev_pos = 8+(( (Suffix&3) + ( state->crypto_prev_pos^key )) & 3);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 4, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 4);
} else
if(codeNumber<=47) {
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, 1);
state->crypto_prev_pos = (Suffix&14)+(( (Suffix&1) + (state->crypto_prev_pos^key )) & 1);
CABAC_BINS_EP(cabac, state->crypto_prev_pos, 4, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos, 4);
}
}
}
} else {
length = r_param;
codeNumber = codeNumber - ( 3 << r_param);
while (codeNumber >= (1<<length)) {
codeNumber -= (1<<(length));
++length;
}
CABAC_BINS_EP(cabac, (1 << (3 + length + 1 - r_param)) - 2, 3 + length + 1 - r_param, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP((1<<(COEF_REMAIN_BIN_REDUCTION+length+1-r_param))-2,COEF_REMAIN_BIN_REDUCTION+length+1-r_param);
uint32_t Suffix = codeNumber;
uint32_t key = kvz_crypto_get_key(state->crypto_hdl, length);
uint32_t mask = ( (1<<length ) -1 );
state->crypto_prev_pos = ( Suffix + ( state->crypto_prev_pos^key ) ) & mask;
CABAC_BINS_EP(cabac, state->crypto_prev_pos, length, "coeff_abs_level_remaining");
//m_pcBinIf->encodeBinsEP(m_prev_pos,length);
}
}
/**
* \brief
*/
void kvz_cabac_write_unary_max_symbol(cabac_data_t * const data,
cabac_ctx_t * const ctx,
uint32_t symbol,
const int32_t offset,
const uint32_t max_symbol,
double* bits_out)
{
int8_t code_last = max_symbol > symbol;
assert(symbol <= max_symbol);
if (!max_symbol) return;
CABAC_FBITS_UPDATE(data, &ctx[0], symbol, *bits_out, "ums");
if (!symbol) return;
while (--symbol) {
CABAC_FBITS_UPDATE(data, &ctx[offset], 1, *bits_out, "ums");
}
if (code_last) {
CABAC_FBITS_UPDATE(data, &ctx[offset], 0,*bits_out, "ums");
}
}
/**
* This can be used for Truncated Rice binarization with cRiceParam=0.
*/
void kvz_cabac_write_unary_max_symbol_ep(cabac_data_t * const data, unsigned int symbol, const unsigned int max_symbol)
{
/*if (symbol == 0) {
CABAC_BIN_EP(data, 0, "ums_ep");
} else {
// Make a bit-string of (symbol) times 1 and a single 0, except when
// symbol == max_symbol.
unsigned bins = ((1 << symbol) - 1) << (symbol < max_symbol);
CABAC_BINS_EP(data, bins, symbol + (symbol < max_symbol), "ums_ep");
}*/
int8_t code_last = max_symbol > symbol;
assert(symbol <= max_symbol);
CABAC_BIN_EP(data, symbol ? 1 : 0, "ums_ep");
if (!symbol) return;
while (--symbol) {
CABAC_BIN_EP(data, 1, "ums_ep");
}
if (code_last) {
CABAC_BIN_EP(data, 0, "ums_ep");
}
}
/**
* \brief
*/
uint32_t kvz_cabac_write_ep_ex_golomb(encoder_state_t * const state,
cabac_data_t * const data,
uint32_t symbol,
uint32_t count)
{
uint32_t bins = 0;
int32_t num_bins = 0;
while (symbol >= (uint32_t)(1 << count)) {
bins = 2 * bins + 1;
++num_bins;
symbol -= 1 << count;
++count;
}
bins = 2 * bins;
++num_bins;
bins = (bins << count) | symbol;
num_bins += count;
if (!data->only_count) {
if (state->encoder_control->cfg.crypto_features & KVZ_CRYPTO_MVs) {
uint32_t key, mask;
key = kvz_crypto_get_key(state->crypto_hdl, num_bins>>1);
mask = ( (1<<(num_bins >>1) ) -1 );
state->crypto_prev_pos = ( bins + ( state->crypto_prev_pos^key ) ) & mask;
bins = ( (bins >> (num_bins >>1) ) << (num_bins >>1) ) | state->crypto_prev_pos;
}
}
kvz_cabac_encode_bins_ep(data, bins, num_bins);
return num_bins;
}