uvg266/tests/sad_tests.c

401 lines
9.2 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1 as
* published by the Free Software Foundation.
*
* Kvazaar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "greatest/greatest.h"
#include "test_strategies.h"
#include "src/image.h"
#include <string.h>
//////////////////////////////////////////////////////////////////////////
// EXTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////
// DEFINES
#define TEST_SAD(X, Y) kvz_image_calc_sad(g_pic, g_ref, 0, 0, (X), (Y), 8, 8, NULL)
//////////////////////////////////////////////////////////////////////////
// GLOBALS
static const kvz_pixel ref_data[64] = {
1,2,2,2,2,2,2,3,
4,5,5,5,5,5,5,6,
4,5,5,5,5,5,5,6,
4,5,5,5,5,5,5,6,
4,5,5,5,5,5,5,6,
4,5,5,5,5,5,5,6,
4,5,5,5,5,5,5,6,
7,8,8,8,8,8,8,9
};
static const kvz_pixel pic_data[64] = {
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1
};
static kvz_picture *g_pic = 0;
static kvz_picture *g_ref = 0;
static kvz_picture *g_big_pic = 0;
static kvz_picture *g_big_ref = 0;
static kvz_picture *g_64x64_zero = 0;
static kvz_picture *g_64x64_max = 0;
static struct sad_test_env_t {
int width;
int height;
void * tested_func;
const strategy_t * strategy;
char msg[255];
} sad_test_env;
//////////////////////////////////////////////////////////////////////////
// SETUP, TEARDOWN AND HELPER FUNCTIONS
static void setup_tests()
{
g_pic = kvz_image_alloc(KVZ_CSP_420, 8, 8);
for (int y = 0; y < 8; ++y) {
for (int x = 0; x < 8; ++x) {
g_pic->y[y*g_pic->stride + x] = pic_data[8*y + x] + 48;
}
}
g_ref = kvz_image_alloc(KVZ_CSP_420, 8, 8);
for (int y = 0; y < 8; ++y) {
for (int x = 0; x < 8; ++x) {
g_ref->y[y*g_ref->stride + x] = ref_data[8*y + x] + 48;
}
}
int i = 0;
g_big_pic = kvz_image_alloc(KVZ_CSP_420, 64, 64);
for (int y = 0; y < 64; ++y) {
for (int x = 0; x < 64; ++x) {
i = ((64 * y) + x);
g_big_pic->y[y*g_big_pic->stride + x] = (i*i / 32 + i) % 255;
}
}
i = 0;
g_big_ref = kvz_image_alloc(KVZ_CSP_420, 64, 64);
for (int y = 0; y < 64; ++y) {
for (int x = 0; x < 64; ++x) {
i = ((64 * y) + x);
g_big_ref->y[y*g_big_ref->stride + x] = (i*i / 16 + i) % 255;
}
}
g_64x64_zero = kvz_image_alloc(KVZ_CSP_420, 64, 64);
memset(g_64x64_zero->y, 0, 64 * 64 * sizeof(kvz_pixel));
g_64x64_max = kvz_image_alloc(KVZ_CSP_420, 64, 64);
memset(g_64x64_max->y, PIXEL_MAX, 64 * 64 * sizeof(kvz_pixel));
}
static void tear_down_tests()
{
kvz_image_free(g_pic);
kvz_image_free(g_ref);
kvz_image_free(g_big_pic);
kvz_image_free(g_big_ref);
kvz_image_free(g_64x64_zero);
kvz_image_free(g_64x64_max);
}
//////////////////////////////////////////////////////////////////////////
// OVERLAPPING BOUNDARY TESTS
TEST test_topleft(void)
{
ASSERT_EQ(
1*(4*4) + (2+4)*(4*4) + 5*(4*4) - 64,
TEST_SAD(-3, -3));
PASS();
}
TEST test_top(void)
{
ASSERT_EQ(
(1+3)*4 + 2*(6*4) + (4+6)*4 + 5*(6*4) - 64,
TEST_SAD(0, -3));
PASS();
}
TEST test_topright(void)
{
ASSERT_EQ(
3*(4*4) + (2+6)*(4*4) + 5*(4*4) - 64,
TEST_SAD(3, -3));
PASS();
}
TEST test_left(void)
{
ASSERT_EQ(
(1+7)*4 + 4*(6*4) + (2+8)*4 + 5*(6*4) - 64,
TEST_SAD(-3, 0));
PASS();
}
TEST test_no_offset(void)
{
ASSERT_EQ(
(1+3+7+9) + (2+4+6+8)*6 + 5*(6*6) - 64,
TEST_SAD(0, 0));
PASS();
}
TEST test_right(void)
{
ASSERT_EQ(
(3+9)*4 + 6*(4*6) + (2+8)*4 + 5*(6*4) - 64,
TEST_SAD(3, 0));
PASS();
}
TEST test_bottomleft(void)
{
ASSERT_EQ(
7*(4*4) + (4+8)*(4*4) + 5*(4*4) - 64,
TEST_SAD(-3, 3));
PASS();
}
TEST test_bottom(void)
{
ASSERT_EQ(
(7+9)*4 + 8*(6*4) + (4+6)*4 + 5*(6*4) - 64,
TEST_SAD(0, 3));
PASS();
}
TEST test_bottomright(void)
{
ASSERT_EQ(
9*(4*4) + (6+8)*(4*4) + 5*(4*4) - 64,
TEST_SAD(3, 3));
PASS();
}
//////////////////////////////////////////////////////////////////////////
// OUT OF FRAME TESTS
#define DIST 10
TEST test_topleft_out(void)
{
ASSERT_EQ(
1*(8*8) - 64,
TEST_SAD(-DIST, -DIST));
PASS();
}
TEST test_top_out(void)
{
ASSERT_EQ(
(1+3)*8 + 2*(6*8) - 64,
TEST_SAD(0, -DIST));
PASS();
}
TEST test_topright_out(void)
{
ASSERT_EQ(
3*(8*8) - 64,
TEST_SAD(DIST, -DIST));
PASS();
}
TEST test_left_out(void)
{
ASSERT_EQ(
(1+7)*8 + 4*(6*8) - 64,
TEST_SAD(-DIST, 0));
PASS();
}
TEST test_right_out(void)
{
ASSERT_EQ(
(3+9)*8 + 6*(6*8) - 64,
TEST_SAD(DIST, 0));
PASS();
}
TEST test_bottomleft_out(void)
{
ASSERT_EQ(
7*(8*8) - 64,
TEST_SAD(-DIST, DIST));
PASS();
}
TEST test_bottom_out(void)
{
ASSERT_EQ(
(7+9)*8 + 8*(6*8) - 64,
TEST_SAD(0, DIST));
PASS();
}
TEST test_bottomright_out(void)
{
ASSERT_EQ(
9*(8*8) - 64,
TEST_SAD(DIST, DIST));
PASS();
}
static unsigned simple_sad(const kvz_pixel* buf1, const kvz_pixel* buf2, unsigned stride,
unsigned width, unsigned height)
{
unsigned sum = 0;
for (unsigned y = 0; y < height; ++y) {
for (unsigned x = 0; x < width; ++x) {
sum += abs((int)buf1[y * stride + x] - (int)buf2[y * stride + x]);
}
}
return sum;
}
TEST test_reg_sad(void)
{
unsigned width = sad_test_env.width;
unsigned height = sad_test_env.height;
unsigned stride = 64;
unsigned correct_result = simple_sad(g_big_pic->y, g_big_ref->y, stride, width, height);
unsigned(*tested_func)(const kvz_pixel *, const kvz_pixel *, int, int, unsigned, unsigned) = sad_test_env.tested_func;
unsigned result = tested_func(g_big_pic->y, g_big_ref->y, width, height, stride, stride);
sprintf(sad_test_env.msg, "%s(%ux%u):%s",
sad_test_env.strategy->type,
width,
height,
sad_test_env.strategy->strategy_name);
if (result != correct_result) {
FAILm(sad_test_env.msg);
}
PASSm(sad_test_env.msg);
}
TEST test_reg_sad_overflow(void)
{
unsigned width = sad_test_env.width;
unsigned height = sad_test_env.height;
unsigned stride = 64;
unsigned correct_result = simple_sad(g_64x64_zero->y, g_64x64_max->y, stride, width, height);
unsigned(*tested_func)(const kvz_pixel *, const kvz_pixel *, int, int, unsigned, unsigned) = sad_test_env.tested_func;
unsigned result = tested_func(g_64x64_zero->y, g_64x64_max->y, width, height, stride, stride);
sprintf(sad_test_env.msg, "overflow %s(%ux%u):%s",
sad_test_env.strategy->type,
width,
height,
sad_test_env.strategy->strategy_name);
if (result != correct_result) {
FAILm(sad_test_env.msg);
}
PASSm(sad_test_env.msg);
}
//////////////////////////////////////////////////////////////////////////
// TEST FIXTURES
SUITE(sad_tests)
{
//SET_SETUP(sad_setup);
//SET_TEARDOWN(sad_teardown);
setup_tests();
for (volatile unsigned i = 0; i < strategies.count; ++i) {
if (strcmp(strategies.strategies[i].type, "reg_sad") != 0) {
continue;
}
// Change the global reg_sad function pointer.
kvz_reg_sad = strategies.strategies[i].fptr;
// Tests for movement vectors that overlap frame.
RUN_TEST(test_topleft);
RUN_TEST(test_top);
RUN_TEST(test_topright);
RUN_TEST(test_left);
RUN_TEST(test_no_offset);
RUN_TEST(test_right);
RUN_TEST(test_bottomleft);
RUN_TEST(test_bottom);
RUN_TEST(test_bottomright);
// Tests for movement vectors that are outside the frame.
RUN_TEST(test_topleft_out);
RUN_TEST(test_top_out);
RUN_TEST(test_topright_out);
RUN_TEST(test_left_out);
RUN_TEST(test_right_out);
RUN_TEST(test_bottomleft_out);
RUN_TEST(test_bottom_out);
RUN_TEST(test_bottomright_out);
struct dimension {
int width;
int height;
};
static const struct dimension tested_dims[] = {
// Square motion partitions
{64, 64}, {32, 32}, {16, 16}, {8, 8},
// Symmetric motion partitions
{64, 32}, {32, 64}, {32, 16}, {16, 32}, {16, 8}, {8, 16}, {8, 4}, {4, 8},
// Asymmetric motion partitions
{48, 16}, {16, 48}, {24, 16}, {16, 24}, {12, 4}, {4, 12}
};
sad_test_env.tested_func = strategies.strategies[i].fptr;
sad_test_env.strategy = &strategies.strategies[i];
int num_dim_tests = sizeof(tested_dims) / sizeof(tested_dims[0]);
for (volatile int dim_test = 0; dim_test < num_dim_tests; ++dim_test) {
sad_test_env.width = tested_dims[dim_test].width;
sad_test_env.height = tested_dims[dim_test].height;
RUN_TEST(test_reg_sad);
RUN_TEST(test_reg_sad_overflow);
}
}
tear_down_tests();
}