uvg266/src/strategyselector.c

597 lines
21 KiB
C

/*****************************************************************************
* This file is part of uvg266 VVC encoder.
*
* Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
****************************************************************************/
#include "strategyselector.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
hardware_flags_t uvg_g_hardware_flags;
hardware_flags_t uvg_g_strategies_in_use;
hardware_flags_t uvg_g_strategies_available;
static void set_hardware_flags(int32_t cpuid);
static void* strategyselector_choose_for(const strategy_list_t * const strategies, const char * const strategy_type);
//Strategies to include (add new file here)
//Returns 1 if successful
int uvg_strategyselector_init(int32_t cpuid, uint8_t bitdepth) {
const strategy_to_select_t *cur_strategy_to_select = strategies_to_select;
strategy_list_t strategies;
strategies.allocated = 0;
strategies.count = 0;
strategies.strategies = NULL;
set_hardware_flags(cpuid);
//Add new register function here
if (!uvg_strategy_register_picture(&strategies, bitdepth)) {
fprintf(stderr, "uvg_strategy_register_picture failed!\n");
return 0;
}
if (!uvg_strategy_register_nal(&strategies, bitdepth)) {
fprintf(stderr, "uvg_strategy_register_nal failed!\n");
return 0;
}
if (!uvg_strategy_register_dct(&strategies, bitdepth)) {
fprintf(stderr, "uvg_strategy_register_dct failed!\n");
return 0;
}
if (!uvg_strategy_register_ipol(&strategies, bitdepth)) {
fprintf(stderr, "uvg_strategy_register_ipol failed!\n");
return 0;
}
if (!uvg_strategy_register_quant(&strategies, bitdepth)) {
fprintf(stderr, "uvg_strategy_register_quant failed!\n");
return 0;
}
if (!uvg_strategy_register_intra(&strategies, bitdepth)) {
fprintf(stderr, "uvg_strategy_register_intra failed!\n");
return 0;
}
if (!uvg_strategy_register_sao(&strategies, bitdepth)) {
fprintf(stderr, "uvg_strategy_register_sao failed!\n");
return 0;
}
if (!uvg_strategy_register_encode(&strategies, bitdepth)) {
fprintf(stderr, "uvg_strategy_register_encode failed!\n");
return 0;
}
if (!uvg_strategy_register_alf(&strategies, bitdepth)) {
fprintf(stderr, "uvg_strategy_register_encode failed!\n");
return 0;
}
while(cur_strategy_to_select->fptr) {
*(cur_strategy_to_select->fptr) = strategyselector_choose_for(&strategies, cur_strategy_to_select->strategy_type);
if (!(*(cur_strategy_to_select->fptr))) {
fprintf(stderr, "Could not find a strategy for %s!\n", cur_strategy_to_select->strategy_type);
return 0;
}
++cur_strategy_to_select;
}
//We can free the structure now, as all strategies are statically set to pointers
if (strategies.allocated) {
//Also check what optimizations are available and what are in use
//SIMD optimizations available
bool strategies_available = false;
fprintf(stderr, "Available: ");
if (uvg_g_strategies_available.intel_flags.avx != 0){
fprintf(stderr, "avx(%d) ", uvg_g_strategies_available.intel_flags.avx);
strategies_available = true;
}
if (uvg_g_strategies_available.intel_flags.avx2 != 0){
fprintf(stderr, "avx2(%d) ", uvg_g_strategies_available.intel_flags.avx2);
strategies_available = true;
}
if (uvg_g_strategies_available.intel_flags.mmx != 0) {
fprintf(stderr, "mmx(%d) ", uvg_g_strategies_available.intel_flags.mmx);
strategies_available = true;
}
if (uvg_g_strategies_available.intel_flags.sse != 0) {
fprintf(stderr, "sse(%d) ", uvg_g_strategies_available.intel_flags.sse);
strategies_available = true;
}
if (uvg_g_strategies_available.intel_flags.sse2 != 0) {
fprintf(stderr, "sse2(%d) ", uvg_g_strategies_available.intel_flags.sse2);
strategies_available = true;
}
if (uvg_g_strategies_available.intel_flags.sse3 != 0) {
fprintf(stderr, "sse3(%d) ", uvg_g_strategies_available.intel_flags.sse3);
strategies_available = true;
}
if (uvg_g_strategies_available.intel_flags.sse41 != 0) {
fprintf(stderr, "sse41(%d) ", uvg_g_strategies_available.intel_flags.sse41);
strategies_available = true;
}
if (uvg_g_strategies_available.intel_flags.sse42 != 0) {
fprintf(stderr, "sse42(%d) ", uvg_g_strategies_available.intel_flags.sse42);
strategies_available = true;
}
if (uvg_g_strategies_available.intel_flags.ssse3 != 0) {
fprintf(stderr, "ssse3(%d) ", uvg_g_strategies_available.intel_flags.ssse3);
strategies_available = true;
}
if (uvg_g_strategies_available.arm_flags.neon != 0) {
fprintf(stderr, "neon(%d) ", uvg_g_strategies_available.arm_flags.neon);
strategies_available = true;
}
if (uvg_g_strategies_available.powerpc_flags.altivec != 0) {
fprintf(stderr, "altivec(%d) ", uvg_g_strategies_available.powerpc_flags.altivec);
strategies_available = true;
}
//If there is no strategies available
if (!strategies_available){
fprintf(stderr, "no SIMD optimizations");
}
fprintf(stderr, "\n");
//SIMD optimizations in use
bool strategies_in_use = false;
fprintf(stderr, "In use: ");
if (uvg_g_strategies_in_use.intel_flags.avx != 0){
fprintf(stderr, "avx(%d) ", uvg_g_strategies_in_use.intel_flags.avx);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.intel_flags.avx2 != 0){
fprintf(stderr, "avx2(%d) ", uvg_g_strategies_in_use.intel_flags.avx2);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.intel_flags.mmx != 0) {
fprintf(stderr, "mmx(%d) ", uvg_g_strategies_in_use.intel_flags.mmx);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.intel_flags.sse != 0) {
fprintf(stderr, "sse(%d) ", uvg_g_strategies_in_use.intel_flags.sse);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.intel_flags.sse2 != 0) {
fprintf(stderr, "sse2(%d) ", uvg_g_strategies_in_use.intel_flags.sse2);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.intel_flags.sse3 != 0) {
fprintf(stderr, "sse3(%d) ", uvg_g_strategies_in_use.intel_flags.sse3);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.intel_flags.sse41 != 0) {
fprintf(stderr, "sse41(%d) ", uvg_g_strategies_in_use.intel_flags.sse41);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.intel_flags.sse42 != 0) {
fprintf(stderr, "sse42(%d) ", uvg_g_strategies_in_use.intel_flags.sse42);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.intel_flags.ssse3 != 0) {
fprintf(stderr, "ssse3(%d) ", uvg_g_strategies_in_use.intel_flags.ssse3);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.arm_flags.neon != 0) {
fprintf(stderr, "neon(%d) ", uvg_g_strategies_in_use.arm_flags.neon);
strategies_in_use = true;
}
if (uvg_g_strategies_in_use.powerpc_flags.altivec != 0) {
fprintf(stderr, "altivec(%d) ", uvg_g_strategies_in_use.powerpc_flags.altivec);
strategies_in_use = true;
}
//If there is no strategies in use
if (!strategies_in_use){
fprintf(stderr, "no SIMD optimizations");
}
fprintf(stderr, "\n");
//Free memory
free(strategies.strategies);
}
return 1;
}
//Returns 1 if successful, 0 otherwise
int uvg_strategyselector_register(void * const opaque, const char * const type, const char * const strategy_name, int priority, void * const fptr) {
strategy_list_t * const strategies = opaque;
if (strategies->allocated == strategies->count) {
strategy_t* new_strategies = realloc(strategies->strategies, sizeof(strategy_t) * (strategies->allocated + STRATEGY_LIST_ALLOC_SIZE));
if (!new_strategies) {
fprintf(stderr, "Could not increase strategies list size!\n");
return 0;
}
strategies->strategies = new_strategies;
strategies->allocated += STRATEGY_LIST_ALLOC_SIZE;
}
{
strategy_t *new_strategy = &strategies->strategies[strategies->count++];
new_strategy->type = type;
new_strategy->strategy_name = strategy_name;
new_strategy->priority = priority;
new_strategy->fptr = fptr;
}
//Check what strategies are available when they are registered
if (strcmp(strategy_name, "avx") == 0) uvg_g_strategies_available.intel_flags.avx++;
if (strcmp(strategy_name, "avx2") == 0) uvg_g_strategies_available.intel_flags.avx2++;
if (strcmp(strategy_name, "mmx") == 0) uvg_g_strategies_available.intel_flags.mmx++;
if (strcmp(strategy_name, "sse") == 0) uvg_g_strategies_available.intel_flags.sse++;
if (strcmp(strategy_name, "sse2") == 0) uvg_g_strategies_available.intel_flags.sse2++;
if (strcmp(strategy_name, "sse3") == 0) uvg_g_strategies_available.intel_flags.sse3++;
if (strcmp(strategy_name, "sse41") == 0) uvg_g_strategies_available.intel_flags.sse41++;
if (strcmp(strategy_name, "sse42") == 0) uvg_g_strategies_available.intel_flags.sse42++;
if (strcmp(strategy_name, "ssse3") == 0) uvg_g_strategies_available.intel_flags.ssse3++;
if (strcmp(strategy_name, "altivec") == 0) uvg_g_strategies_available.powerpc_flags.altivec++;
if (strcmp(strategy_name, "neon") == 0) uvg_g_strategies_available.arm_flags.neon++;
#ifdef DEBUG_STRATEGYSELECTOR
fprintf(stderr, "Registered strategy %s:%s with priority %d (%p)\n", type, strategy_name, priority, fptr);
#endif //DEBUG_STRATEGYSELECTOR
return 1;
}
static void* strategyselector_choose_for(const strategy_list_t * const strategies, const char * const strategy_type) {
unsigned int max_priority = 0;
int max_priority_i = -1;
char buffer[256];
char *override = NULL;
uint32_t i = 0;
// Because VS doesn't support snprintf, let's assert that there is
// enough room in the buffer. Max length for strategy type is
// buffersize (256) - prefix including terminating zero.
assert(strlen(strategy_type) < 256 - sizeof("UVG266_OVERRIDE_") );
sprintf(buffer, "UVG266_OVERRIDE_%s", strategy_type);
override = getenv(buffer);
for (i=0; i < strategies->count; ++i) {
if (strcmp(strategies->strategies[i].type, strategy_type) == 0) {
if (override && strcmp(strategies->strategies[i].strategy_name, override) == 0) {
fprintf(stderr, "%s environment variable present, choosing %s:%s\n", buffer, strategy_type, strategies->strategies[i].strategy_name);
return strategies->strategies[i].fptr;
}
if (strategies->strategies[i].priority >= max_priority) {
max_priority_i = i;
max_priority = strategies->strategies[i].priority;
}
}
}
if (override) {
fprintf(stderr, "%s environment variable present, but no strategy %s was found!\n", buffer, override);
return NULL;
}
#ifdef DEBUG_STRATEGYSELECTOR
fprintf(stderr, "Choosing strategy for %s:\n", strategy_type);
for (i=0; i < strategies->count; ++i) {
if (strcmp(strategies->strategies[i].type, strategy_type) == 0) {
if (i != max_priority_i) {
fprintf(stderr, "- %s (%d, %p)\n", strategies->strategies[i].strategy_name, strategies->strategies[i].priority, strategies->strategies[i].fptr);
} else {
fprintf(stderr, "> %s (%d, %p)\n", strategies->strategies[i].strategy_name, strategies->strategies[i].priority, strategies->strategies[i].fptr);
}
}
}
#endif //DEBUG_STRATEGYSELECTOR
if (max_priority_i == -1) {
return NULL;
}
//Check what strategy we are going to use
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "avx") == 0) uvg_g_strategies_in_use.intel_flags.avx++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "avx2") == 0) uvg_g_strategies_in_use.intel_flags.avx2++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "mmx") == 0) uvg_g_strategies_in_use.intel_flags.mmx++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse") == 0) uvg_g_strategies_in_use.intel_flags.sse++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse2") == 0) uvg_g_strategies_in_use.intel_flags.sse2++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse3") == 0) uvg_g_strategies_in_use.intel_flags.sse3++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse41") == 0) uvg_g_strategies_in_use.intel_flags.sse41++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "sse42") == 0) uvg_g_strategies_in_use.intel_flags.sse42++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "ssse3") == 0) uvg_g_strategies_in_use.intel_flags.ssse3++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "altivec") == 0) uvg_g_strategies_in_use.powerpc_flags.altivec++;
if (strcmp(strategies->strategies[max_priority_i].strategy_name, "neon") == 0) uvg_g_strategies_in_use.arm_flags.neon++;
return strategies->strategies[max_priority_i].fptr;
}
#if COMPILE_INTEL
typedef struct {
unsigned int eax;
unsigned int ebx;
unsigned int ecx;
unsigned int edx;
} cpuid_t;
// CPUID adapters for different compilers.
# if defined(__GNUC__)
#include <cpuid.h>
static INLINE int get_cpuid(unsigned level, unsigned sublevel, cpuid_t *cpu_info) {
if (__get_cpuid_max(level & 0x80000000, NULL) < level) return 0;
__cpuid_count(level, sublevel, cpu_info->eax, cpu_info->ebx, cpu_info->ecx, cpu_info->edx);
return 1;
}
# elif defined(_MSC_VER)
#include <intrin.h>
static INLINE int get_cpuid(unsigned level, unsigned sublevel, cpuid_t *cpu_info) {
int vendor_info[4] = { 0, 0, 0, 0 };
__cpuidex(vendor_info, 0, 0);
// Check highest supported function.
if ((int32_t)level > vendor_info[0]) return 0;
int ms_cpu_info[4] = { cpu_info->eax, cpu_info->ebx, cpu_info->ecx, cpu_info->edx };
__cpuidex(ms_cpu_info, level, sublevel);
cpu_info->eax = ms_cpu_info[0];
cpu_info->ebx = ms_cpu_info[1];
cpu_info->ecx = ms_cpu_info[2];
cpu_info->edx = ms_cpu_info[3];
return 1;
}
# else
static INLINE int get_cpuid(unsigned level, unsigned sublevel, cpuid_t *cpu_info)
{
return 0;
}
# endif
#endif // COMPILE_INTEL
#if COMPILE_POWERPC
# if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD__ >= 12)
#ifdef __linux__
#include <asm/cputable.h>
#else
#include <machine/cpu.h>
#endif
#include <sys/auxv.h>
static int altivec_available(void)
{
unsigned long hwcap = 0;
#ifdef __linux__
hwcap = getauxval(AT_HWCAP);
#else
elf_aux_info(AT_HWCAP, &hwcap, sizeof(hwcap));
#endif
return !!(hwcap & PPC_FEATURE_HAS_ALTIVEC);
}
# elif defined(__FreeBSD__)
#include <sys/types.h>
#include <sys/sysctl.h>
#include <machine/cpu.h>
static int altivec_available(void)
{
u_long cpu_features = 0;
size_t len = sizeof(cpu_features);
sysctlbyname("hw.cpu_features", &cpu_features, &len, NULL, 0);
return !!(cpu_features & PPC_FEATURE_HAS_ALTIVEC);
}
# elif defined(__APPLE__) || defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/param.h>
#include <sys/sysctl.h>
#ifndef __APPLE__
#include <machine/cpu.h>
#endif
static int altivec_available(void)
{
int cpu_altivec = 0;
size_t len = sizeof(cpu_altivec);
#ifdef HW_VECTORUNIT
int mib[] = { CTL_HW, HW_VECTORUNIT };
#else
int mib[] = { CTL_MACHDEP, CPU_ALTIVEC };
#endif
sysctl(mib, sizeof(mib)/sizeof(mib[0]), &cpu_altivec, &len, NULL, 0);
return cpu_altivec;
}
# else
static int altivec_available(void)
{
#if COMPILE_POWERPC_ALTIVEC
return 1;
#else
return 0;
#endif
}
# endif
#endif //COMPILE_POWERPC
static void set_hardware_flags(int32_t cpuid) {
FILL(uvg_g_hardware_flags, 0);
#if COMPILE_INTEL
if (cpuid) {
cpuid_t cpuid1 = { 0, 0, 0, 0 };
/* CPU feature bits */
enum {
CPUID1_EDX_MMX = 1 << 23,
CPUID1_EDX_SSE = 1 << 25,
CPUID1_EDX_SSE2 = 1 << 26,
CPUID1_EDX_HYPER_THREADING = 1 << 28,
};
enum {
CPUID1_ECX_SSE3 = 1 << 0,
CPUID1_ECX_SSSE3 = 1 << 9,
CPUID1_ECX_SSE41 = 1 << 19,
CPUID1_ECX_SSE42 = 1 << 20,
CPUID1_ECX_XSAVE = 1 << 26,
CPUID1_ECX_OSXSAVE = 1 << 27,
CPUID1_ECX_AVX = 1 << 28,
};
enum {
CPUID7_EBX_AVX2 = 1 << 5,
};
enum {
XGETBV_XCR0_XMM = 1 << 1,
XGETBV_XCR0_YMM = 1 << 2,
};
// Dig CPU features with cpuid
get_cpuid(1, 0, &cpuid1);
#ifdef _WIN32
SYSTEM_INFO systeminfo;
GetSystemInfo(&systeminfo);
uvg_g_hardware_flags.logical_cpu_count = systeminfo.dwNumberOfProcessors;
#else
uvg_g_hardware_flags.logical_cpu_count = sysconf(_SC_NPROCESSORS_ONLN);
#endif
uvg_g_hardware_flags.physical_cpu_count = uvg_g_hardware_flags.logical_cpu_count;
uvg_g_hardware_flags.intel_flags.hyper_threading = cpuid1.edx & CPUID1_EDX_HYPER_THREADING;
if (uvg_g_hardware_flags.intel_flags.hyper_threading) {
uvg_g_hardware_flags.physical_cpu_count /= 2;
}
// EDX
if (cpuid1.edx & CPUID1_EDX_MMX) uvg_g_hardware_flags.intel_flags.mmx = 1;
if (cpuid1.edx & CPUID1_EDX_SSE) uvg_g_hardware_flags.intel_flags.sse = 1;
if (cpuid1.edx & CPUID1_EDX_SSE2) uvg_g_hardware_flags.intel_flags.sse2 = 1;
// ECX
if (cpuid1.ecx & CPUID1_ECX_SSE3) uvg_g_hardware_flags.intel_flags.sse3 = 1;;
if (cpuid1.ecx & CPUID1_ECX_SSSE3) uvg_g_hardware_flags.intel_flags.ssse3 = 1;
if (cpuid1.ecx & CPUID1_ECX_SSE41) uvg_g_hardware_flags.intel_flags.sse41 = 1;
if (cpuid1.ecx & CPUID1_ECX_SSE42) uvg_g_hardware_flags.intel_flags.sse42 = 1;
// Check hardware and OS support for xsave and xgetbv.
if (cpuid1.ecx & (CPUID1_ECX_XSAVE | CPUID1_ECX_OSXSAVE)) {
uint64_t xcr0 = 0;
// Use _XCR_XFEATURE_ENABLED_MASK to check if _xgetbv intrinsic is
// supported by the compiler.
#ifdef _XCR_XFEATURE_ENABLED_MASK
xcr0 = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
#elif defined(__GNUC__)
unsigned eax = 0, edx = 0;
asm("xgetbv" : "=a"(eax), "=d"(edx) : "c" (0));
xcr0 = (uint64_t)edx << 32 | eax;
#endif
bool avx_support = cpuid1.ecx & CPUID1_ECX_AVX || false;
bool xmm_support = xcr0 & XGETBV_XCR0_XMM || false;
bool ymm_support = xcr0 & XGETBV_XCR0_YMM || false;
if (avx_support && xmm_support && ymm_support) {
uvg_g_hardware_flags.intel_flags.avx = 1;
}
if (uvg_g_hardware_flags.intel_flags.avx) {
cpuid_t cpuid7 = { 0, 0, 0, 0 };
get_cpuid(7, 0, &cpuid7);
if (cpuid7.ebx & CPUID7_EBX_AVX2) uvg_g_hardware_flags.intel_flags.avx2 = 1;
}
}
}
fprintf(stderr, "Compiled: INTEL, flags:");
#if COMPILE_INTEL_MMX
fprintf(stderr, " MMX");
#endif
#if COMPILE_INTEL_SSE
fprintf(stderr, " SSE");
#endif
#if COMPILE_INTEL_SSE2
fprintf(stderr, " SSE2");
#endif
#if COMPILE_INTEL_SSE3
fprintf(stderr, " SSE3");
#endif
#if COMPILE_INTEL_SSSE3
fprintf(stderr, " SSSE3");
#endif
#if COMPILE_INTEL_SSE41
fprintf(stderr, " SSE41");
#endif
#if COMPILE_INTEL_SSE42
fprintf(stderr, " SSE42");
#endif
#if COMPILE_INTEL_AVX
fprintf(stderr, " AVX");
#endif
#if COMPILE_INTEL_AVX2
fprintf(stderr, " AVX2");
#endif
fprintf(stderr, "\nDetected: INTEL, flags:");
if (uvg_g_hardware_flags.intel_flags.mmx) fprintf(stderr, " MMX");
if (uvg_g_hardware_flags.intel_flags.sse) fprintf(stderr, " SSE");
if (uvg_g_hardware_flags.intel_flags.sse2) fprintf(stderr, " SSE2");
if (uvg_g_hardware_flags.intel_flags.sse3) fprintf(stderr, " SSE3");
if (uvg_g_hardware_flags.intel_flags.ssse3) fprintf(stderr, " SSSE3");
if (uvg_g_hardware_flags.intel_flags.sse41) fprintf(stderr, " SSE41");
if (uvg_g_hardware_flags.intel_flags.sse42) fprintf(stderr, " SSE42");
if (uvg_g_hardware_flags.intel_flags.avx) fprintf(stderr, " AVX");
if (uvg_g_hardware_flags.intel_flags.avx2) fprintf(stderr, " AVX2");
fprintf(stderr, "\n");
#endif //COMPILE_INTEL
#if COMPILE_POWERPC
if (cpuid) {
uvg_g_hardware_flags.powerpc_flags.altivec = altivec_available();
}
fprintf(stderr, "Compiled: PowerPC, flags:");
#if COMPILE_POWERPC_ALTIVEC
fprintf(stderr, " AltiVec");
#endif
fprintf(stderr, "\nDetected: PowerPC, flags:");
if (uvg_g_hardware_flags.powerpc_flags.altivec) fprintf(stderr, " AltiVec");
fprintf(stderr, "\n");
#endif
}