mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-12-04 05:54:05 +00:00
893 lines
36 KiB
C
893 lines
36 KiB
C
/*****************************************************************************
|
|
* This file is part of Kvazaar HEVC encoder.
|
|
*
|
|
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
|
|
* COPYING file).
|
|
*
|
|
* Kvazaar is free software: you can redistribute it and/or modify it under
|
|
* the terms of the GNU Lesser General Public License as published by the
|
|
* Free Software Foundation; either version 2.1 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* \file
|
|
*/
|
|
|
|
#include "strategies/avx2/quant-avx2.h"
|
|
|
|
#if COMPILE_INTEL_AVX2 && defined X86_64
|
|
#include <immintrin.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "avx2_common_functions.h"
|
|
#include "cu.h"
|
|
#include "encoder.h"
|
|
#include "encoderstate.h"
|
|
#include "kvazaar.h"
|
|
#include "rdo.h"
|
|
#include "scalinglist.h"
|
|
#include "strategies/generic/quant-generic.h"
|
|
#include "strategies/strategies-quant.h"
|
|
#include "strategyselector.h"
|
|
#include "tables.h"
|
|
#include "transform.h"
|
|
|
|
static INLINE int32_t hsum32_8x32i(__m256i src)
|
|
{
|
|
__m128i a = _mm256_extracti128_si256(src, 0);
|
|
__m128i b = _mm256_extracti128_si256(src, 1);
|
|
|
|
a = _mm_add_epi32(a, b);
|
|
b = _mm_shuffle_epi32(a, _MM_SHUFFLE(0, 1, 2, 3));
|
|
|
|
a = _mm_add_epi32(a, b);
|
|
b = _mm_shuffle_epi32(a, _MM_SHUFFLE(2, 3, 0, 1));
|
|
|
|
a = _mm_add_epi32(a, b);
|
|
return _mm_cvtsi128_si32(a);
|
|
}
|
|
|
|
static INLINE int32_t hsum32_16x16i(__m256i src)
|
|
{
|
|
__m128i a = _mm256_extracti128_si256(src, 0);
|
|
__m128i b = _mm256_extracti128_si256(src, 1);
|
|
__m256i c = _mm256_cvtepi16_epi32(a);
|
|
__m256i d = _mm256_cvtepi16_epi32(b);
|
|
|
|
c = _mm256_add_epi32(c, d);
|
|
return hsum32_8x32i(c);
|
|
}
|
|
|
|
// Rearranges a 16x32b double vector into a format suitable for a stable SIMD
|
|
// max algorithm:
|
|
// (abcd|efgh) (ijkl|mnop) => (aceg|ikmo) (bdfh|jlnp)
|
|
static INLINE void rearrange_512(__m256i *hi, __m256i *lo)
|
|
{
|
|
const __m256i perm8x32mask = _mm256_setr_epi32(0, 2, 4, 6, 1, 3, 5, 7);
|
|
|
|
__m256i tmphi = _mm256_permutevar8x32_epi32(*hi, perm8x32mask);
|
|
__m256i tmplo = _mm256_permutevar8x32_epi32(*lo, perm8x32mask);
|
|
|
|
*hi = _mm256_permute2x128_si256(tmplo, tmphi, 0x31);
|
|
*lo = _mm256_permute2x128_si256(tmplo, tmphi, 0x20);
|
|
}
|
|
|
|
static INLINE void get_cheapest_alternative(__m256i costs_hi, __m256i costs_lo,
|
|
__m256i ns, __m256i changes,
|
|
int16_t *final_change, int32_t *min_pos)
|
|
{
|
|
// Interleave ns and lo into 32-bit variables and to two 256-bit wide vecs,
|
|
// to have the same data layout as in costs. Zero extend to 32b width, shift
|
|
// changes 16 bits to the left, and store them into the same vectors.
|
|
__m256i tmp1hi = _mm256_unpackhi_epi16(ns, changes);
|
|
__m256i tmp1lo = _mm256_unpacklo_epi16(ns, changes);
|
|
|
|
__m256i pl1hi = _mm256_permute2x128_si256(tmp1lo, tmp1hi, 0x31);
|
|
__m256i pl1lo = _mm256_permute2x128_si256(tmp1lo, tmp1hi, 0x20);
|
|
|
|
// Reorder to afford result stability (if multiple atoms tie for cheapest,
|
|
// rightmost ie. the highest is the wanted one)
|
|
rearrange_512(&costs_hi, &costs_lo);
|
|
rearrange_512(&pl1hi, &pl1lo);
|
|
|
|
// 0: pick hi, 1: pick lo (equality evaluates as 0)
|
|
__m256i cmpmask1 = _mm256_cmpgt_epi32(costs_hi, costs_lo);
|
|
__m256i cost1 = _mm256_blendv_epi8(costs_hi, costs_lo, cmpmask1);
|
|
__m256i pl1_1 = _mm256_blendv_epi8(pl1hi, pl1lo, cmpmask1);
|
|
|
|
__m256i cost2 = _mm256_shuffle_epi32(cost1, _MM_SHUFFLE(2, 3, 0, 1));
|
|
__m256i pl1_2 = _mm256_shuffle_epi32(pl1_1, _MM_SHUFFLE(2, 3, 0, 1));
|
|
|
|
__m256i cmpmask2 = _mm256_cmpgt_epi32(cost2, cost1);
|
|
__m256i cost3 = _mm256_blendv_epi8(cost2, cost1, cmpmask2);
|
|
__m256i pl1_3 = _mm256_blendv_epi8(pl1_2, pl1_1, cmpmask2);
|
|
|
|
__m256i cost4 = _mm256_shuffle_epi32(cost3, _MM_SHUFFLE(1, 0, 3, 2));
|
|
__m256i pl1_4 = _mm256_shuffle_epi32(pl1_3, _MM_SHUFFLE(1, 0, 3, 2));
|
|
|
|
__m256i cmpmask3 = _mm256_cmpgt_epi32(cost4, cost3);
|
|
__m256i cost5 = _mm256_blendv_epi8(cost4, cost3, cmpmask3);
|
|
__m256i pl1_5 = _mm256_blendv_epi8(pl1_4, pl1_3, cmpmask3);
|
|
|
|
__m256i cost6 = _mm256_permute4x64_epi64(cost5, _MM_SHUFFLE(1, 0, 3, 2));
|
|
__m256i pl1_6 = _mm256_permute4x64_epi64(pl1_5, _MM_SHUFFLE(1, 0, 3, 2));
|
|
|
|
__m256i cmpmask4 = _mm256_cmpgt_epi32(cost6, cost5);
|
|
__m256i pl1_7 = _mm256_blendv_epi8(pl1_6, pl1_5, cmpmask4);
|
|
|
|
__m128i res1_128 = _mm256_castsi256_si128(pl1_7);
|
|
uint32_t tmp1 = (uint32_t)_mm_extract_epi32(res1_128, 0);
|
|
uint16_t n = (uint16_t)(tmp1 & 0xffff);
|
|
uint16_t chng = (uint16_t)(tmp1 >> 16);
|
|
|
|
*final_change = (int16_t)chng;
|
|
*min_pos = (int32_t)n;
|
|
}
|
|
|
|
static INLINE __m256i concatenate_2x128i(__m128i lo, __m128i hi)
|
|
{
|
|
__m256i v = _mm256_castsi128_si256(lo);
|
|
return _mm256_inserti128_si256(v, hi, 1);
|
|
}
|
|
|
|
static INLINE void scanord_read_vector_32(const int32_t *__restrict quant_coeff,
|
|
const uint32_t *__restrict scan,
|
|
int8_t scan_mode,
|
|
int32_t subpos,
|
|
int32_t width,
|
|
__m256i *__restrict v_quant_coeffs)
|
|
{
|
|
const size_t row_offsets[4] = {
|
|
scan[subpos] + width * 0,
|
|
scan[subpos] + width * 1,
|
|
scan[subpos] + width * 2,
|
|
scan[subpos] + width * 3,
|
|
};
|
|
|
|
const __m256i shufmasks[3] = {
|
|
_mm256_setr_epi32(5, 2, 6, 0, 3, 7, 4, 1),
|
|
_mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7),
|
|
_mm256_setr_epi32(2, 3, 0, 1, 6, 7, 4, 5),
|
|
};
|
|
|
|
const __m256i blend_masks[3] = {
|
|
_mm256_setr_epi32( 0, 0, 0, -1, 0, 0, -1, -1),
|
|
_mm256_setr_epi32( 0, 0, 0, 0, 0, 0, 0, 0),
|
|
_mm256_setr_epi32( 0, 0, -1, -1, 0, 0, -1, -1),
|
|
};
|
|
|
|
const __m256i rearr_masks_lo[3] = {
|
|
_mm256_setr_epi32(0, 4, 1, 3, 5, 2, 6, 7),
|
|
_mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7),
|
|
_mm256_setr_epi32(0, 4, 2, 6, 1, 5, 3, 7),
|
|
};
|
|
|
|
const __m256i rearr_masks_hi[3] = {
|
|
_mm256_setr_epi32(6, 3, 0, 1, 7, 2, 4, 5),
|
|
_mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7),
|
|
_mm256_setr_epi32(2, 6, 0, 4, 3, 7, 1, 5),
|
|
};
|
|
|
|
__m128i coeffs[4] = {
|
|
_mm_loadu_si128((__m128i *)(quant_coeff + row_offsets[0])),
|
|
_mm_loadu_si128((__m128i *)(quant_coeff + row_offsets[1])),
|
|
_mm_loadu_si128((__m128i *)(quant_coeff + row_offsets[2])),
|
|
_mm_loadu_si128((__m128i *)(quant_coeff + row_offsets[3])),
|
|
};
|
|
|
|
__m256i coeffs_upper = concatenate_2x128i(coeffs[0], coeffs[1]);
|
|
__m256i coeffs_lower = concatenate_2x128i(coeffs[2], coeffs[3]);
|
|
|
|
__m256i lower_shuffled = _mm256_permutevar8x32_epi32(coeffs_lower, shufmasks[scan_mode]);
|
|
|
|
__m256i upper_blended = _mm256_blendv_epi8(coeffs_upper, lower_shuffled, blend_masks[scan_mode]);
|
|
__m256i lower_blended = _mm256_blendv_epi8(lower_shuffled, coeffs_upper, blend_masks[scan_mode]);
|
|
|
|
__m256i result_lo = _mm256_permutevar8x32_epi32(upper_blended, rearr_masks_lo[scan_mode]);
|
|
__m256i result_hi = _mm256_permutevar8x32_epi32(lower_blended, rearr_masks_hi[scan_mode]);
|
|
|
|
v_quant_coeffs[0] = result_lo;
|
|
v_quant_coeffs[1] = result_hi;
|
|
}
|
|
|
|
#define VEC_WIDTH 16
|
|
#define SCAN_SET_SIZE 16
|
|
#define LOG2_SCAN_SET_SIZE 4
|
|
|
|
static INLINE int32_t hide_block_sign(__m256i coefs, __m256i q_coefs, __m256i deltas_h, __m256i deltas_l, coeff_t * __restrict q_coef, const uint32_t * __restrict scan, int32_t subpos, int32_t last_cg)
|
|
{
|
|
assert(SCAN_SET_SIZE == 16);
|
|
|
|
int32_t first_nz_pos_in_cg, last_nz_pos_in_cg;
|
|
int32_t abssum = 0;
|
|
|
|
// Find first and last nonzero coeffs
|
|
get_first_last_nz_int16(q_coefs, &first_nz_pos_in_cg, &last_nz_pos_in_cg);
|
|
|
|
// Sum all kvz_quant coeffs between first and last
|
|
abssum = hsum32_16x16i(q_coefs);
|
|
|
|
if (last_nz_pos_in_cg >= 0 && last_cg == -1) {
|
|
last_cg = 1;
|
|
}
|
|
|
|
if (last_nz_pos_in_cg - first_nz_pos_in_cg >= 4) {
|
|
|
|
uint32_t q_coef_signbits = _mm256_movemask_epi8(q_coefs);
|
|
int32_t signbit = (q_coef_signbits >> (2 * first_nz_pos_in_cg + 1)) & 0x1;
|
|
|
|
if (signbit != (abssum & 0x1)) { // compare signbit with sum_parity
|
|
int32_t min_pos;
|
|
int16_t final_change;
|
|
int16_t cheapest_q;
|
|
|
|
const int32_t mask_max = (last_cg == 1) ? last_nz_pos_in_cg : SCAN_SET_SIZE - 1;
|
|
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
const __m256i ones = _mm256_set1_epi16(1);
|
|
const __m256i maxiters = _mm256_set1_epi16(mask_max);
|
|
const __m256i ff = _mm256_set1_epi8(0xff);
|
|
|
|
const __m256i fnpics = _mm256_set1_epi16((int16_t)first_nz_pos_in_cg);
|
|
const __m256i ns = _mm256_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
|
|
__m256i block_signbit = _mm256_set1_epi16(((int16_t)signbit) * -1);
|
|
__m256i coef_signbits = _mm256_cmpgt_epi16(zero, coefs);
|
|
__m256i signbits_equal_block = _mm256_cmpeq_epi16(coef_signbits, block_signbit);
|
|
|
|
__m256i q_coefs_zero = _mm256_cmpeq_epi16(q_coefs, zero);
|
|
|
|
__m256i dus_packed = _mm256_packs_epi32(deltas_l, deltas_h);
|
|
__m256i dus_ordered = _mm256_permute4x64_epi64(dus_packed, _MM_SHUFFLE(3, 1, 2, 0));
|
|
__m256i dus_positive = _mm256_cmpgt_epi16(dus_ordered, zero);
|
|
|
|
__m256i q_coef_abss = _mm256_abs_epi16(q_coefs);
|
|
__m256i q_coefs_plusminus_one = _mm256_cmpeq_epi16(q_coef_abss, ones);
|
|
|
|
__m256i eq_fnpics = _mm256_cmpeq_epi16(fnpics, ns);
|
|
__m256i lt_fnpics = _mm256_cmpgt_epi16(fnpics, ns);
|
|
|
|
__m256i maxcost_subcond1s = _mm256_and_si256(eq_fnpics, q_coefs_plusminus_one);
|
|
__m256i maxcost_subcond2s = _mm256_andnot_si256(signbits_equal_block, lt_fnpics);
|
|
__m256i elsecond1s_inv = _mm256_or_si256(dus_positive, maxcost_subcond1s);
|
|
__m256i elsecond1s = _mm256_andnot_si256(elsecond1s_inv, ff);
|
|
|
|
__m256i outside_maxiters = _mm256_cmpgt_epi16(ns, maxiters);
|
|
|
|
__m256i negdelta_cond1s = _mm256_andnot_si256(q_coefs_zero, dus_positive);
|
|
__m256i negdelta_cond2s = _mm256_andnot_si256(maxcost_subcond2s, q_coefs_zero);
|
|
__m256i negdelta_mask16s_part1 = _mm256_or_si256(negdelta_cond1s, negdelta_cond2s);
|
|
__m256i negdelta_mask16s = _mm256_andnot_si256(outside_maxiters, negdelta_mask16s_part1);
|
|
|
|
__m256i posdelta_mask16s_part1 = _mm256_andnot_si256(q_coefs_zero, elsecond1s);
|
|
__m256i posdelta_mask16s = _mm256_andnot_si256(outside_maxiters, posdelta_mask16s_part1);
|
|
|
|
__m256i maxcost_cond1_parts = _mm256_andnot_si256(dus_positive, maxcost_subcond1s);
|
|
__m256i maxcost_cond1s = _mm256_andnot_si256(q_coefs_zero, maxcost_cond1_parts);
|
|
__m256i maxcost_cond2s = _mm256_and_si256(q_coefs_zero, maxcost_subcond2s);
|
|
__m256i maxcost_mask16s_parts = _mm256_or_si256(maxcost_cond1s, maxcost_cond2s);
|
|
__m256i maxcost_mask16s = _mm256_or_si256(maxcost_mask16s_parts, outside_maxiters);
|
|
|
|
__m128i tmp_l, tmp_h;
|
|
tmp_l = _mm256_extracti128_si256(negdelta_mask16s, 0);
|
|
tmp_h = _mm256_extracti128_si256(negdelta_mask16s, 1);
|
|
__m256i negdelta_mask32s_l = _mm256_cvtepi16_epi32(tmp_l);
|
|
__m256i negdelta_mask32s_h = _mm256_cvtepi16_epi32(tmp_h);
|
|
|
|
tmp_l = _mm256_extracti128_si256(posdelta_mask16s, 0);
|
|
tmp_h = _mm256_extracti128_si256(posdelta_mask16s, 1);
|
|
__m256i posdelta_mask32s_l = _mm256_cvtepi16_epi32(tmp_l);
|
|
__m256i posdelta_mask32s_h = _mm256_cvtepi16_epi32(tmp_h);
|
|
|
|
tmp_l = _mm256_extracti128_si256(maxcost_mask16s, 0);
|
|
tmp_h = _mm256_extracti128_si256(maxcost_mask16s, 1);
|
|
__m256i maxcost_mask32s_l = _mm256_cvtepi16_epi32(tmp_l);
|
|
__m256i maxcost_mask32s_h = _mm256_cvtepi16_epi32(tmp_h);
|
|
|
|
// Output value generation
|
|
// cur_change_max: zero
|
|
// cur_change_negdelta: ff
|
|
// cur_change_posdelta: ones
|
|
__m256i costs_negdelta_h = _mm256_sub_epi32(zero, deltas_h);
|
|
__m256i costs_negdelta_l = _mm256_sub_epi32(zero, deltas_l);
|
|
// costs_posdelta_l and _h: deltas_l and _h
|
|
__m256i costs_max_lh = _mm256_set1_epi32(0x7fffffff);
|
|
|
|
__m256i change_neg = _mm256_and_si256(negdelta_mask16s, ones);
|
|
__m256i change_pos = _mm256_and_si256(posdelta_mask16s, ff);
|
|
__m256i change_max = _mm256_and_si256(maxcost_mask16s, zero);
|
|
|
|
__m256i cost_neg_l = _mm256_and_si256(negdelta_mask32s_l, costs_negdelta_l);
|
|
__m256i cost_neg_h = _mm256_and_si256(negdelta_mask32s_h, costs_negdelta_h);
|
|
__m256i cost_pos_l = _mm256_and_si256(posdelta_mask32s_l, deltas_l);
|
|
__m256i cost_pos_h = _mm256_and_si256(posdelta_mask32s_h, deltas_h);
|
|
__m256i cost_max_l = _mm256_and_si256(maxcost_mask32s_l, costs_max_lh);
|
|
__m256i cost_max_h = _mm256_and_si256(maxcost_mask32s_h, costs_max_lh);
|
|
|
|
__m256i changes = _mm256_or_si256(change_neg, _mm256_or_si256(change_pos, change_max));
|
|
__m256i costs_l = _mm256_or_si256(cost_neg_l, _mm256_or_si256(cost_pos_l, cost_max_l));
|
|
__m256i costs_h = _mm256_or_si256(cost_neg_h, _mm256_or_si256(cost_pos_h, cost_max_h));
|
|
|
|
get_cheapest_alternative(costs_h, costs_l, ns, changes, &final_change, &min_pos);
|
|
const int32_t best_id = scan[min_pos + subpos];
|
|
|
|
cheapest_q = q_coef[best_id];
|
|
if (cheapest_q == 32767 || cheapest_q == -32768)
|
|
final_change = -1;
|
|
|
|
uint32_t coef_signs = _mm256_movemask_epi8(coef_signbits);
|
|
uint32_t cheapest_coef_sign_mask = (uint32_t)(1 << (2 * min_pos));
|
|
|
|
if (!(coef_signs & cheapest_coef_sign_mask))
|
|
cheapest_q += final_change;
|
|
else
|
|
cheapest_q -= final_change;
|
|
|
|
q_coef[best_id] = cheapest_q;
|
|
} // Hide
|
|
}
|
|
if (last_cg == 1)
|
|
last_cg = 0;
|
|
|
|
return last_cg;
|
|
}
|
|
|
|
/**
|
|
* \brief quantize transformed coefficents
|
|
*
|
|
*/
|
|
void kvz_quant_avx2(const encoder_state_t * const state, const coeff_t * __restrict coef, coeff_t * __restrict q_coef, int32_t width,
|
|
int32_t height, int8_t type, int8_t scan_idx, int8_t block_type)
|
|
{
|
|
const encoder_control_t * const encoder = state->encoder_control;
|
|
//const uint32_t log2_block_size = kvz_g_convert_to_bit[width] + 2;
|
|
//const uint32_t * const scan = kvz_g_sig_last_scan[scan_idx][log2_block_size - 1];
|
|
|
|
int32_t qp_scaled = kvz_get_scaled_qp(type, state->qp, (encoder->bitdepth - 8) * 6);
|
|
const uint32_t log2_tr_size = kvz_g_convert_to_bit[width] + 2;
|
|
const int32_t scalinglist_type = (block_type == CU_INTRA ? 0 : 3) + (int8_t)("\0\3\1\2"[type]);
|
|
const int32_t *quant_coeff = encoder->scaling_list.quant_coeff[log2_tr_size - 2][scalinglist_type][qp_scaled % 6];
|
|
const int32_t transform_shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size; //!< Represents scaling through forward transform
|
|
const int32_t q_bits = QUANT_SHIFT + qp_scaled / 6 + transform_shift;
|
|
const int32_t add = ((state->frame->slicetype == KVZ_SLICE_I) ? 171 : 85) << (q_bits - 9);
|
|
//const int32_t q_bits8 = q_bits - 8;
|
|
|
|
uint32_t ac_sum = 0;
|
|
int32_t last_cg = -1;
|
|
|
|
__m256i v_ac_sum = _mm256_setzero_si256();
|
|
|
|
// Loading once is enough if scaling lists are not off
|
|
__m256i low_b = _mm256_setzero_si256(), high_b = _mm256_setzero_si256();
|
|
if (!(state->encoder_control->scaling_list.enable)) {
|
|
low_b = _mm256_set1_epi32(quant_coeff[0]);
|
|
high_b = low_b;
|
|
}
|
|
|
|
for (int32_t n = 0; n < width * height; n += VEC_WIDTH) {
|
|
|
|
__m256i v_level = _mm256_loadu_si256((__m256i *)(coef + n));
|
|
__m256i v_sign = _mm256_cmpgt_epi16(_mm256_setzero_si256(), v_level);
|
|
v_sign = _mm256_or_si256(v_sign, _mm256_set1_epi16(1));
|
|
|
|
if (state->encoder_control->scaling_list.enable) {
|
|
__m256i v_quant_coeff_lo = _mm256_loadu_si256(((__m256i *)(quant_coeff + n)) + 0);
|
|
__m256i v_quant_coeff_hi = _mm256_loadu_si256(((__m256i *)(quant_coeff + n)) + 1);
|
|
|
|
low_b = _mm256_permute2x128_si256(v_quant_coeff_lo,
|
|
v_quant_coeff_hi,
|
|
0x20);
|
|
|
|
high_b = _mm256_permute2x128_si256(v_quant_coeff_lo,
|
|
v_quant_coeff_hi,
|
|
0x31);
|
|
}
|
|
|
|
// TODO: do we need to have this?
|
|
// #define CHECK_QUANT_COEFFS
|
|
#ifdef CHECK_QUANT_COEFFS
|
|
__m256i abs_vq_lo = _mm256_abs_epi32(v_quant_coeff_lo);
|
|
__m256i abs_vq_hi = _mm256_abs_epi32(v_quant_coeff_hi);
|
|
|
|
__m256i vq_over_16b_lo = _mm256_cmpgt_epi32(abs_vq_lo, _mm256_set1_epi32(0x7fff));
|
|
__m256i vq_over_16b_hi = _mm256_cmpgt_epi32(abs_vq_hi, _mm256_set1_epi32(0x7fff));
|
|
|
|
uint32_t over_16b_mask_lo = _mm256_movemask_epi8(vq_over_16b_lo);
|
|
uint32_t over_16b_mask_hi = _mm256_movemask_epi8(vq_over_16b_hi);
|
|
|
|
assert(!(over_16b_mask_lo || over_16b_mask_hi));
|
|
#endif
|
|
|
|
v_level = _mm256_abs_epi16(v_level);
|
|
__m256i low_a = _mm256_unpacklo_epi16(v_level, _mm256_setzero_si256());
|
|
__m256i high_a = _mm256_unpackhi_epi16(v_level, _mm256_setzero_si256());
|
|
|
|
__m256i v_level32_a = _mm256_mullo_epi32(low_a, low_b);
|
|
__m256i v_level32_b = _mm256_mullo_epi32(high_a, high_b);
|
|
|
|
v_level32_a = _mm256_add_epi32(v_level32_a, _mm256_set1_epi32(add));
|
|
v_level32_b = _mm256_add_epi32(v_level32_b, _mm256_set1_epi32(add));
|
|
|
|
v_level32_a = _mm256_srai_epi32(v_level32_a, q_bits);
|
|
v_level32_b = _mm256_srai_epi32(v_level32_b, q_bits);
|
|
|
|
v_level = _mm256_packs_epi32(v_level32_a, v_level32_b);
|
|
v_level = _mm256_sign_epi16(v_level, v_sign);
|
|
|
|
_mm256_storeu_si256((__m256i *)(q_coef + n), v_level);
|
|
|
|
v_ac_sum = _mm256_add_epi32(v_ac_sum, v_level32_a);
|
|
v_ac_sum = _mm256_add_epi32(v_ac_sum, v_level32_b);
|
|
}
|
|
|
|
__m128i temp = _mm_add_epi32(_mm256_castsi256_si128(v_ac_sum), _mm256_extracti128_si256(v_ac_sum, 1));
|
|
temp = _mm_add_epi32(temp, _mm_shuffle_epi32(temp, _MM_SHUFFLE(1, 0, 3, 2)));
|
|
temp = _mm_add_epi32(temp, _mm_shuffle_epi32(temp, _MM_SHUFFLE(0, 1, 0, 1)));
|
|
ac_sum += _mm_cvtsi128_si32(temp);
|
|
/*
|
|
// Signhiding disabled in VVC
|
|
if (!encoder->cfg.signhide_enable || ac_sum < 2)
|
|
return;
|
|
|
|
assert(VEC_WIDTH == SCAN_SET_SIZE);
|
|
for (int32_t subpos = (width * height - 1) & (~(VEC_WIDTH - 1)); subpos >= 0; subpos -= VEC_WIDTH) {
|
|
const int16_t *coeffs[2] = {coef, q_coef};
|
|
__m256i result_coeffs[2];
|
|
__m256i v_quant_coeffs[2];
|
|
|
|
__m256i v_coef, q_coefs;
|
|
__m256i v_quant_coeff_lo, v_quant_coeff_hi;
|
|
|
|
scanord_read_vector(coeffs, scan, scan_idx, subpos, width, result_coeffs, 2);
|
|
|
|
v_coef = result_coeffs[0];
|
|
q_coefs = result_coeffs[1];
|
|
|
|
if (state->encoder_control->scaling_list.enable) {
|
|
scanord_read_vector_32(quant_coeff, scan, scan_idx, subpos, width, v_quant_coeffs);
|
|
|
|
v_quant_coeff_lo = v_quant_coeffs[0];
|
|
v_quant_coeff_hi = v_quant_coeffs[1];
|
|
|
|
low_b = _mm256_permute2x128_si256(v_quant_coeff_lo,
|
|
v_quant_coeff_hi,
|
|
0x20);
|
|
|
|
high_b = _mm256_permute2x128_si256(v_quant_coeff_lo,
|
|
v_quant_coeff_hi,
|
|
0x31);
|
|
}
|
|
|
|
__m256i v_level = _mm256_abs_epi16(v_coef);
|
|
__m256i low_a = _mm256_unpacklo_epi16(v_level, _mm256_setzero_si256());
|
|
__m256i high_a = _mm256_unpackhi_epi16(v_level, _mm256_setzero_si256());
|
|
|
|
__m256i v_quant_coeff_a = _mm256_or_si256(low_b, _mm256_setzero_si256());
|
|
__m256i v_quant_coeff_b = _mm256_or_si256(high_b, _mm256_setzero_si256());
|
|
|
|
__m256i v_level32_a = _mm256_mullo_epi32(low_a, low_b);
|
|
__m256i v_level32_b = _mm256_mullo_epi32(high_a, high_b);
|
|
|
|
v_level32_a = _mm256_add_epi32(v_level32_a, _mm256_set1_epi32(add));
|
|
v_level32_b = _mm256_add_epi32(v_level32_b, _mm256_set1_epi32(add));
|
|
|
|
v_level32_a = _mm256_srai_epi32(v_level32_a, q_bits);
|
|
v_level32_b = _mm256_srai_epi32(v_level32_b, q_bits);
|
|
|
|
v_level = _mm256_packs_epi32(v_level32_a, v_level32_b);
|
|
|
|
__m256i v_coef_a = _mm256_unpacklo_epi16(_mm256_abs_epi16(v_coef), _mm256_set1_epi16(0));
|
|
__m256i v_coef_b = _mm256_unpackhi_epi16(_mm256_abs_epi16(v_coef), _mm256_set1_epi16(0));
|
|
|
|
v_coef_a = _mm256_mullo_epi32(v_coef_a, v_quant_coeff_a);
|
|
v_coef_b = _mm256_mullo_epi32(v_coef_b, v_quant_coeff_b);
|
|
|
|
v_coef_a = _mm256_sub_epi32(v_coef_a, _mm256_slli_epi32(_mm256_unpacklo_epi16(v_level, _mm256_set1_epi16(0)), q_bits) );
|
|
v_coef_b = _mm256_sub_epi32(v_coef_b, _mm256_slli_epi32(_mm256_unpackhi_epi16(v_level, _mm256_set1_epi16(0)), q_bits) );
|
|
v_coef_a = _mm256_srai_epi32(v_coef_a, q_bits8);
|
|
v_coef_b = _mm256_srai_epi32(v_coef_b, q_bits8);
|
|
|
|
__m256i deltas_h = _mm256_permute2x128_si256(v_coef_a, v_coef_b, 0x31);
|
|
__m256i deltas_l = _mm256_permute2x128_si256(v_coef_a, v_coef_b, 0x20);
|
|
|
|
last_cg = hide_block_sign(v_coef, q_coefs, deltas_h, deltas_l, q_coef, scan, subpos, last_cg);
|
|
}
|
|
|
|
#undef VEC_WIDTH
|
|
#undef SCAN_SET_SIZE
|
|
#undef LOG2_SCAN_SET_SIZE
|
|
*/
|
|
}
|
|
|
|
#if KVZ_BIT_DEPTH == 8
|
|
|
|
static INLINE __m128i get_residual_4x1_avx2(const uint8_t *a_in, const uint8_t *b_in){
|
|
__m128i a = _mm_cvtsi32_si128(*(int32_t*)a_in);
|
|
__m128i b = _mm_cvtsi32_si128(*(int32_t*)b_in);
|
|
__m128i diff = _mm_sub_epi16(_mm_cvtepu8_epi16(a), _mm_cvtepu8_epi16(b) );
|
|
return diff;
|
|
}
|
|
|
|
static INLINE __m128i get_residual_8x1_avx2(const uint8_t *a_in, const uint8_t *b_in){
|
|
__m128i a = _mm_cvtsi64_si128(*(int64_t*)a_in);
|
|
__m128i b = _mm_cvtsi64_si128(*(int64_t*)b_in);
|
|
__m128i diff = _mm_sub_epi16(_mm_cvtepu8_epi16(a), _mm_cvtepu8_epi16(b) );
|
|
return diff;
|
|
}
|
|
|
|
static INLINE int32_t get_quantized_recon_4x1_avx2(int16_t *residual, const uint8_t *pred_in){
|
|
__m128i res = _mm_loadl_epi64((__m128i*)residual);
|
|
__m128i pred = _mm_cvtsi32_si128(*(int32_t*)pred_in);
|
|
__m128i rec = _mm_add_epi16(res, _mm_cvtepu8_epi16(pred));
|
|
return _mm_cvtsi128_si32(_mm_packus_epi16(rec, rec));
|
|
}
|
|
|
|
static INLINE int64_t get_quantized_recon_8x1_avx2(int16_t *residual, const uint8_t *pred_in){
|
|
__m128i res = _mm_loadu_si128((__m128i*)residual);
|
|
__m128i pred = _mm_cvtsi64_si128(*(int64_t*)pred_in);
|
|
__m128i rec = _mm_add_epi16(res, _mm_cvtepu8_epi16(pred));
|
|
return _mm_cvtsi128_si64(_mm_packus_epi16(rec, rec));
|
|
}
|
|
|
|
static void get_residual_avx2(const uint8_t *ref_in, const uint8_t *pred_in, int16_t *residual, int width, int in_stride){
|
|
|
|
__m128i diff = _mm_setzero_si128();
|
|
switch (width) {
|
|
case 4:
|
|
diff = get_residual_4x1_avx2(ref_in + 0 * in_stride, pred_in + 0 * in_stride);
|
|
_mm_storel_epi64((__m128i*)&(residual[0]), diff);
|
|
diff = get_residual_4x1_avx2(ref_in + 1 * in_stride, pred_in + 1 * in_stride);
|
|
_mm_storel_epi64((__m128i*)&(residual[4]), diff);
|
|
diff = get_residual_4x1_avx2(ref_in + 2 * in_stride, pred_in + 2 * in_stride);
|
|
_mm_storel_epi64((__m128i*)&(residual[8]), diff);
|
|
diff = get_residual_4x1_avx2(ref_in + 3 * in_stride, pred_in + 3 * in_stride);
|
|
_mm_storel_epi64((__m128i*)&(residual[12]), diff);
|
|
break;
|
|
case 8:
|
|
diff = get_residual_8x1_avx2(&ref_in[0 * in_stride], &pred_in[0 * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&(residual[0]), diff);
|
|
diff = get_residual_8x1_avx2(&ref_in[1 * in_stride], &pred_in[1 * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&(residual[8]), diff);
|
|
diff = get_residual_8x1_avx2(&ref_in[2 * in_stride], &pred_in[2 * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&(residual[16]), diff);
|
|
diff = get_residual_8x1_avx2(&ref_in[3 * in_stride], &pred_in[3 * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&(residual[24]), diff);
|
|
diff = get_residual_8x1_avx2(&ref_in[4 * in_stride], &pred_in[4 * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&(residual[32]), diff);
|
|
diff = get_residual_8x1_avx2(&ref_in[5 * in_stride], &pred_in[5 * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&(residual[40]), diff);
|
|
diff = get_residual_8x1_avx2(&ref_in[6 * in_stride], &pred_in[6 * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&(residual[48]), diff);
|
|
diff = get_residual_8x1_avx2(&ref_in[7 * in_stride], &pred_in[7 * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&(residual[56]), diff);
|
|
break;
|
|
default:
|
|
for (int y = 0; y < width; ++y) {
|
|
for (int x = 0; x < width; x+=16) {
|
|
diff = get_residual_8x1_avx2(&ref_in[x + y * in_stride], &pred_in[x + y * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&residual[x + y * width], diff);
|
|
diff = get_residual_8x1_avx2(&ref_in[(x+8) + y * in_stride], &pred_in[(x+8) + y * in_stride]);
|
|
_mm_storeu_si128((__m128i*)&residual[(x+8) + y * width], diff);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void get_quantized_recon_avx2(int16_t *residual, const uint8_t *pred_in, int in_stride, uint8_t *rec_out, int out_stride, int width){
|
|
|
|
switch (width) {
|
|
case 4:
|
|
*(int32_t*)&(rec_out[0 * out_stride]) = get_quantized_recon_4x1_avx2(residual + 0 * width, pred_in + 0 * in_stride);
|
|
*(int32_t*)&(rec_out[1 * out_stride]) = get_quantized_recon_4x1_avx2(residual + 1 * width, pred_in + 1 * in_stride);
|
|
*(int32_t*)&(rec_out[2 * out_stride]) = get_quantized_recon_4x1_avx2(residual + 2 * width, pred_in + 2 * in_stride);
|
|
*(int32_t*)&(rec_out[3 * out_stride]) = get_quantized_recon_4x1_avx2(residual + 3 * width, pred_in + 3 * in_stride);
|
|
break;
|
|
case 8:
|
|
*(int64_t*)&(rec_out[0 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 0 * width, pred_in + 0 * in_stride);
|
|
*(int64_t*)&(rec_out[1 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 1 * width, pred_in + 1 * in_stride);
|
|
*(int64_t*)&(rec_out[2 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 2 * width, pred_in + 2 * in_stride);
|
|
*(int64_t*)&(rec_out[3 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 3 * width, pred_in + 3 * in_stride);
|
|
*(int64_t*)&(rec_out[4 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 4 * width, pred_in + 4 * in_stride);
|
|
*(int64_t*)&(rec_out[5 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 5 * width, pred_in + 5 * in_stride);
|
|
*(int64_t*)&(rec_out[6 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 6 * width, pred_in + 6 * in_stride);
|
|
*(int64_t*)&(rec_out[7 * out_stride]) = get_quantized_recon_8x1_avx2(residual + 7 * width, pred_in + 7 * in_stride);
|
|
break;
|
|
default:
|
|
for (int y = 0; y < width; ++y) {
|
|
for (int x = 0; x < width; x += 16) {
|
|
*(int64_t*)&(rec_out[x + y * out_stride]) = get_quantized_recon_8x1_avx2(residual + x + y * width, pred_in + x + y * in_stride);
|
|
*(int64_t*)&(rec_out[(x + 8) + y * out_stride]) = get_quantized_recon_8x1_avx2(residual + (x + 8) + y * width, pred_in + (x + 8) + y * in_stride);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Quantize residual and get both the reconstruction and coeffs.
|
|
*
|
|
* \param width Transform width.
|
|
* \param color Color.
|
|
* \param scan_order Coefficient scan order.
|
|
* \param use_trskip Whether transform skip is used.
|
|
* \param stride Stride for ref_in, pred_in and rec_out.
|
|
* \param ref_in Reference pixels.
|
|
* \param pred_in Predicted pixels.
|
|
* \param rec_out Reconstructed pixels.
|
|
* \param coeff_out Coefficients used for reconstruction of rec_out.
|
|
* \param early_skip if this is used for early skip, bypass IT and IQ
|
|
*
|
|
* \returns Whether coeff_out contains any non-zero coefficients.
|
|
*/
|
|
int kvz_quantize_residual_avx2(encoder_state_t *const state,
|
|
const cu_info_t *const cur_cu, const int width, const color_t color,
|
|
const coeff_scan_order_t scan_order, const int use_trskip,
|
|
const int in_stride, const int out_stride,
|
|
const uint8_t *const ref_in, const uint8_t *const pred_in,
|
|
uint8_t *rec_out, coeff_t *coeff_out,
|
|
bool early_skip)
|
|
{
|
|
// Temporary arrays to pass data to and from kvz_quant and transform functions.
|
|
ALIGNED(64) int16_t residual[TR_MAX_WIDTH * TR_MAX_WIDTH];
|
|
ALIGNED(64) coeff_t coeff[TR_MAX_WIDTH * TR_MAX_WIDTH];
|
|
|
|
int has_coeffs = 0;
|
|
|
|
assert(width <= TR_MAX_WIDTH);
|
|
assert(width >= TR_MIN_WIDTH);
|
|
|
|
// Get residual. (ref_in - pred_in -> residual)
|
|
get_residual_avx2(ref_in, pred_in, residual, width, in_stride);
|
|
|
|
// Transform residual. (residual -> coeff)
|
|
if (use_trskip) {
|
|
kvz_transformskip(state->encoder_control, residual, coeff, width);
|
|
}
|
|
else {
|
|
kvz_transform2d(state->encoder_control, residual, coeff, width, color, cur_cu);
|
|
}
|
|
|
|
// Quantize coeffs. (coeff -> coeff_out)
|
|
|
|
if (state->encoder_control->cfg.rdoq_enable &&
|
|
(width > 4 || !state->encoder_control->cfg.rdoq_skip))
|
|
{
|
|
int8_t tr_depth = cur_cu->tr_depth - cur_cu->depth;
|
|
tr_depth += (cur_cu->part_size == SIZE_NxN ? 1 : 0);
|
|
kvz_rdoq(state, coeff, coeff_out, width, width, (color == COLOR_Y ? 0 : 2),
|
|
scan_order, cur_cu->type, tr_depth);
|
|
} else {
|
|
kvz_quant(state, coeff, coeff_out, width, width, (color == COLOR_Y ? 0 : 2),
|
|
scan_order, cur_cu->type);
|
|
}
|
|
|
|
// Check if there are any non-zero coefficients.
|
|
for (int i = 0; i < width * width; i += 8) {
|
|
__m128i v_quant_coeff = _mm_loadu_si128((__m128i*)&(coeff_out[i]));
|
|
has_coeffs = !_mm_testz_si128(_mm_set1_epi8(0xFF), v_quant_coeff);
|
|
if(has_coeffs) break;
|
|
}
|
|
|
|
// Do the inverse quantization and transformation and the reconstruction to
|
|
// rec_out.
|
|
if (has_coeffs && !early_skip) {
|
|
|
|
// Get quantized residual. (coeff_out -> coeff -> residual)
|
|
kvz_dequant(state, coeff_out, coeff, width, width, (color == COLOR_Y ? 0 : (color == COLOR_U ? 2 : 3)), cur_cu->type);
|
|
if (use_trskip) {
|
|
kvz_itransformskip(state->encoder_control, residual, coeff, width);
|
|
}
|
|
else {
|
|
kvz_itransform2d(state->encoder_control, residual, coeff, width, color, cur_cu);
|
|
}
|
|
|
|
// Get quantized reconstruction. (residual + pred_in -> rec_out)
|
|
get_quantized_recon_avx2(residual, pred_in, in_stride, rec_out, out_stride, width);
|
|
}
|
|
else if (rec_out != pred_in) {
|
|
// With no coeffs and rec_out == pred_int we skip copying the coefficients
|
|
// because the reconstruction is just the prediction.
|
|
int y, x;
|
|
|
|
for (y = 0; y < width; ++y) {
|
|
for (x = 0; x < width; ++x) {
|
|
rec_out[x + y * out_stride] = pred_in[x + y * in_stride];
|
|
}
|
|
}
|
|
}
|
|
|
|
return has_coeffs;
|
|
}
|
|
|
|
/**
|
|
* \brief inverse quantize transformed and quantized coefficents
|
|
*
|
|
*/
|
|
void kvz_dequant_avx2(const encoder_state_t * const state, coeff_t *q_coef, coeff_t *coef, int32_t width, int32_t height,int8_t type, int8_t block_type)
|
|
{
|
|
const encoder_control_t * const encoder = state->encoder_control;
|
|
int32_t shift,add,coeff_q;
|
|
int32_t n;
|
|
int32_t transform_shift = 15 - encoder->bitdepth - (kvz_g_convert_to_bit[ width ] + 2);
|
|
|
|
int32_t qp_scaled = kvz_get_scaled_qp(type, state->qp, (encoder->bitdepth-8)*6);
|
|
|
|
shift = 20 - QUANT_SHIFT - transform_shift;
|
|
|
|
if (encoder->scaling_list.enable)
|
|
{
|
|
uint32_t log2_tr_size = kvz_g_convert_to_bit[ width ] + 2;
|
|
int32_t scalinglist_type = (block_type == CU_INTRA ? 0 : 3) + (int8_t)("\0\3\1\2"[type]);
|
|
|
|
const int32_t *dequant_coef = encoder->scaling_list.de_quant_coeff[log2_tr_size-2][scalinglist_type][qp_scaled%6];
|
|
shift += 4;
|
|
|
|
if (shift >qp_scaled / 6) {
|
|
add = 1 << (shift - qp_scaled/6 - 1);
|
|
|
|
for (n = 0; n < width * height; n++) {
|
|
coeff_q = ((q_coef[n] * dequant_coef[n]) + add ) >> (shift - qp_scaled/6);
|
|
coef[n] = (coeff_t)CLIP(-32768,32767,coeff_q);
|
|
}
|
|
} else {
|
|
for (n = 0; n < width * height; n++) {
|
|
// Clip to avoid possible overflow in following shift left operation
|
|
coeff_q = CLIP(-32768, 32767, q_coef[n] * dequant_coef[n]);
|
|
coef[n] = (coeff_t)CLIP(-32768, 32767, coeff_q << (qp_scaled/6 - shift));
|
|
}
|
|
}
|
|
} else {
|
|
int32_t scale = kvz_g_inv_quant_scales[qp_scaled%6] << (qp_scaled/6);
|
|
add = 1 << (shift-1);
|
|
|
|
__m256i v_scale = _mm256_set1_epi32(scale);
|
|
__m256i v_add = _mm256_set1_epi32(add);
|
|
|
|
for (n = 0; n < width*height; n+=16) {
|
|
__m128i temp0 = _mm_loadu_si128((__m128i*)&(q_coef[n]));
|
|
__m128i temp1 = _mm_loadu_si128((__m128i*)&(q_coef[n + 8]));
|
|
__m256i v_coeff_q_lo = _mm256_cvtepi16_epi32(_mm_unpacklo_epi64(temp0, temp1));
|
|
__m256i v_coeff_q_hi = _mm256_cvtepi16_epi32(_mm_unpackhi_epi64(temp0, temp1));
|
|
v_coeff_q_lo = _mm256_mullo_epi32(v_coeff_q_lo, v_scale);
|
|
v_coeff_q_hi = _mm256_mullo_epi32(v_coeff_q_hi, v_scale);
|
|
v_coeff_q_lo = _mm256_add_epi32(v_coeff_q_lo, v_add);
|
|
v_coeff_q_hi = _mm256_add_epi32(v_coeff_q_hi, v_add);
|
|
v_coeff_q_lo = _mm256_srai_epi32(v_coeff_q_lo, shift);
|
|
v_coeff_q_hi = _mm256_srai_epi32(v_coeff_q_hi, shift);
|
|
v_coeff_q_lo = _mm256_packs_epi32(v_coeff_q_lo, v_coeff_q_hi);
|
|
_mm_storeu_si128((__m128i*)&(coef[n]), _mm256_castsi256_si128(v_coeff_q_lo) );
|
|
_mm_storeu_si128((__m128i*)&(coef[n + 8]), _mm256_extracti128_si256(v_coeff_q_lo, 1) );
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // KVZ_BIT_DEPTH == 8
|
|
|
|
static uint32_t coeff_abs_sum_avx2(const coeff_t *coeffs, const size_t length)
|
|
{
|
|
assert(length % 8 == 0);
|
|
|
|
__m256i total = _mm256_abs_epi32(_mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) coeffs)));
|
|
|
|
for (int i = 8; i < length; i += 8) {
|
|
__m256i temp = _mm256_abs_epi32(_mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &coeffs[i])));
|
|
total = _mm256_add_epi32(total, temp);
|
|
}
|
|
|
|
__m128i result128 = _mm_add_epi32(
|
|
_mm256_castsi256_si128(total),
|
|
_mm256_extractf128_si256(total, 1)
|
|
);
|
|
|
|
uint32_t parts[4];
|
|
_mm_storeu_si128((__m128i*) parts, result128);
|
|
|
|
return parts[0] + parts[1] + parts[2] + parts[3];
|
|
}
|
|
|
|
#define TO_Q88(f) ((int16_t)((f) * 256.0f))
|
|
|
|
static uint32_t fast_coeff_cost_avx2(const coeff_t *coeff, int32_t width, int32_t qp)
|
|
{
|
|
#define NUM_BUCKETS 5
|
|
static const int16_t wt_m[NUM_BUCKETS] = {
|
|
TO_Q88(-0.004916),
|
|
TO_Q88( 0.010806),
|
|
TO_Q88( 0.055562),
|
|
TO_Q88( 0.033436),
|
|
TO_Q88(-0.007690),
|
|
};
|
|
static const int16_t wt_c[NUM_BUCKETS] = {
|
|
TO_Q88( 0.172024),
|
|
TO_Q88( 3.421462),
|
|
TO_Q88( 2.879506),
|
|
TO_Q88( 5.585471),
|
|
TO_Q88( 0.256772),
|
|
};
|
|
|
|
const __m256i zero = _mm256_setzero_si256();
|
|
const __m256i threes = _mm256_set1_epi16(3);
|
|
const __m256i ones = _mm256_srli_epi16(threes, 1);
|
|
const __m256i twos = _mm256_slli_epi16(ones, 1);
|
|
|
|
__m256i wt[NUM_BUCKETS - 1];
|
|
for (int32_t i = 0; i < NUM_BUCKETS - 1; i++)
|
|
wt[i] = _mm256_set1_epi16(wt_m[i] * qp + wt_c[i]);
|
|
|
|
uint32_t wid_wt = width * (wt_m[NUM_BUCKETS - 1] * qp + wt_c[NUM_BUCKETS - 1]);
|
|
__m256i avx_inc = _mm256_setzero_si256();
|
|
|
|
for (int32_t i = 0; i < width * width; i += 16) {
|
|
__m256i curr = _mm256_loadu_si256((__m256i *)(coeff + i));
|
|
__m256i curr_abs = _mm256_abs_epi16 (curr);
|
|
__m256i curr_max3 = _mm256_min_epi16 (curr_abs, threes);
|
|
|
|
__m256i curr_eq_0 = _mm256_cmpeq_epi16(curr_max3, zero);
|
|
__m256i curr_eq_1 = _mm256_cmpeq_epi16(curr_max3, ones);
|
|
__m256i curr_eq_2 = _mm256_cmpeq_epi16(curr_max3, twos);
|
|
__m256i curr_eq_3 = _mm256_cmpeq_epi16(curr_max3, threes);
|
|
|
|
__m256i curr_0_wt = _mm256_and_si256 (curr_eq_0, wt[0]);
|
|
__m256i curr_1_wt = _mm256_and_si256 (curr_eq_1, wt[1]);
|
|
__m256i curr_2_wt = _mm256_and_si256 (curr_eq_2, wt[2]);
|
|
__m256i curr_3_wt = _mm256_and_si256 (curr_eq_3, wt[3]);
|
|
|
|
// Use madd to horizontally sum 16-bit weights into 32-bit atoms
|
|
__m256i wt_0_32b = _mm256_madd_epi16(curr_0_wt, ones);
|
|
__m256i wt_1_32b = _mm256_madd_epi16(curr_1_wt, ones);
|
|
__m256i wt_2_32b = _mm256_madd_epi16(curr_2_wt, ones);
|
|
__m256i wt_3_32b = _mm256_madd_epi16(curr_3_wt, ones);
|
|
|
|
__m256i wt_01 = _mm256_add_epi32(wt_0_32b, wt_1_32b);
|
|
__m256i wt_23 = _mm256_add_epi32(wt_2_32b, wt_3_32b);
|
|
__m256i curr_wts = _mm256_add_epi32(wt_01, wt_23);
|
|
avx_inc = _mm256_add_epi32(avx_inc, curr_wts);
|
|
}
|
|
__m128i inchi = _mm256_extracti128_si256(avx_inc, 1);
|
|
__m128i inclo = _mm256_castsi256_si128 (avx_inc);
|
|
|
|
__m128i sum_1 = _mm_add_epi32 (inclo, inchi);
|
|
__m128i sum_2 = _mm_shuffle_epi32(sum_1, _MM_SHUFFLE(1, 0, 3, 2));
|
|
__m128i sum_3 = _mm_add_epi32 (sum_1, sum_2);
|
|
__m128i sum_4 = _mm_shuffle_epi32(sum_3, _MM_SHUFFLE(2, 3, 0, 1));
|
|
__m128i sum = _mm_add_epi32 (sum_3, sum_4);
|
|
|
|
uint32_t sum_u32 = _mm_cvtsi128_si32(sum);
|
|
uint32_t sum_total = sum_u32 + wid_wt;
|
|
return sum_total >> 8;
|
|
#undef NUM_BUCKETS
|
|
}
|
|
|
|
#undef TO_Q88
|
|
|
|
#endif //COMPILE_INTEL_AVX2 && defined X86_64
|
|
|
|
int kvz_strategy_register_quant_avx2(void* opaque, uint8_t bitdepth)
|
|
{
|
|
bool success = true;
|
|
|
|
#if COMPILE_INTEL_AVX2 && defined X86_64
|
|
#if KVZ_BIT_DEPTH == 8
|
|
if (bitdepth == 8) {
|
|
success &= kvz_strategyselector_register(opaque, "quantize_residual", "avx2", 40, &kvz_quantize_residual_avx2);
|
|
success &= kvz_strategyselector_register(opaque, "dequant", "avx2", 40, &kvz_dequant_avx2);
|
|
}
|
|
#endif // KVZ_BIT_DEPTH == 8
|
|
success &= kvz_strategyselector_register(opaque, "quant", "avx2", 40, &kvz_quant_avx2);
|
|
success &= kvz_strategyselector_register(opaque, "coeff_abs_sum", "avx2", 0, &coeff_abs_sum_avx2);
|
|
success &= kvz_strategyselector_register(opaque, "fast_coeff_cost", "avx2", 40, &fast_coeff_cost_avx2);
|
|
#endif //COMPILE_INTEL_AVX2 && defined X86_64
|
|
|
|
return success;
|
|
}
|