mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-23 18:14:06 +00:00
626 lines
22 KiB
C
626 lines
22 KiB
C
/**
|
|
* \file
|
|
* \brief Functions for handling intra frames.
|
|
*
|
|
* \author Marko Viitanen ( fador@iki.fi ),
|
|
* Tampere University of Technology,
|
|
* Department of Pervasive Computing.
|
|
* \author Ari Koivula ( ari@koivu.la ),
|
|
* Tampere University of Technology,
|
|
* Department of Pervasive Computing.
|
|
*/
|
|
|
|
|
|
#include "intra.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "config.h"
|
|
#include "encoder.h"
|
|
|
|
|
|
const uint8_t intra_hor_ver_dist_thres[5] = {0,7,1,0,0};
|
|
|
|
|
|
/**
|
|
* \brief Set intrablock mode (and init typedata)
|
|
* \param pic picture to use
|
|
* \param xCtb x CU position (smallest CU)
|
|
* \param yCtb y CU position (smallest CU)
|
|
* \param depth current CU depth
|
|
* \param mode mode to set
|
|
* \returns Void
|
|
*/
|
|
void intra_set_block_mode(picture *pic,uint32_t x_cu, uint32_t y_cu, uint8_t depth, uint8_t mode)
|
|
{
|
|
uint32_t x,y,d;
|
|
int width_in_scu = pic->width_in_lcu<<MAX_DEPTH; //!< Width in smallest CU
|
|
int block_scu_width = (LCU_WIDTH>>depth)/(LCU_WIDTH>>MAX_DEPTH);
|
|
|
|
// Loop through all the blocks in the area of cur_cu
|
|
for (y = y_cu; y < y_cu + block_scu_width; y++) {
|
|
int cu_pos = y * width_in_scu;
|
|
for (x = x_cu; x < x_cu + block_scu_width; x++) {
|
|
for (d = 0; d < MAX_DEPTH + 1; d++) {
|
|
pic->cu_array[d][cu_pos + x].depth = depth;
|
|
pic->cu_array[d][cu_pos + x].type = CU_INTRA;
|
|
pic->cu_array[d][cu_pos + x].intra.mode = mode;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief get intrablock mode
|
|
* \param pic picture to use
|
|
* \param xCtb x CU position (smallest CU)
|
|
* \param yCtb y CU position (smallest CU)
|
|
* \param depth current CU depth
|
|
* \returns mode if it's present, otherwise -1
|
|
*/
|
|
int8_t intra_get_block_mode(picture *pic, uint32_t x_cu, uint32_t y_cu, uint8_t depth)
|
|
{
|
|
int width_in_scu = pic->width_in_lcu<<MAX_DEPTH; //!< width in smallest CU
|
|
int cu_pos = y_cu * width_in_scu + x_cu;
|
|
if (pic->cu_array[depth][cu_pos].type == CU_INTRA) {
|
|
return pic->cu_array[depth][cu_pos].intra.mode;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* \brief get intrablock mode
|
|
* \param pic picture data to use
|
|
* \param picwidth width of the picture data
|
|
* \param xpos x-position
|
|
* \param ypos y-position
|
|
* \param width block width
|
|
* \returns DC prediction
|
|
*/
|
|
int16_t intra_get_dc_pred(int16_t *pic, uint16_t picwidth, uint32_t xpos, uint32_t ypos, uint8_t width)
|
|
{
|
|
int32_t i, sum = 0;
|
|
|
|
// pixels on top and left
|
|
for (i = -picwidth; i < width - picwidth; i++) {
|
|
sum += pic[i];
|
|
}
|
|
for (i = -1; i < width * picwidth - 1; i += picwidth) {
|
|
sum += pic[i];
|
|
}
|
|
|
|
// return the average
|
|
return (sum + width) / (width + width);
|
|
}
|
|
|
|
/**
|
|
* \brief Function for deriving intra luma predictions
|
|
* \param pic picture to use
|
|
* \param x_cu x CU position (smallest CU)
|
|
* \param y_cu y CU position (smallest CU)
|
|
* \param depth current CU depth
|
|
* \param preds output buffer for 3 predictions
|
|
* \returns (predictions are found)?1:0
|
|
*/
|
|
int8_t intra_get_dir_luma_predictor(picture* pic, uint32_t x_cu, uint32_t y_cu, uint8_t depth, int8_t* preds)
|
|
{
|
|
int32_t left_intra_dir = 1; // reset to DC_IDX
|
|
int32_t above_intra_dir = 1; // reset to DC_IDX
|
|
int width_in_scu = pic->width_in_lcu<<MAX_DEPTH;
|
|
int32_t cu_pos = y_cu * width_in_scu + x_cu;
|
|
|
|
// Left PU predictor
|
|
if(x_cu && pic->cu_array[depth][cu_pos - 1].type == CU_INTRA && pic->cu_array[depth][cu_pos - 1].coded) {
|
|
left_intra_dir = pic->cu_array[depth][cu_pos - 1].intra.mode;
|
|
}
|
|
|
|
// Top PU predictor
|
|
if(y_cu && ((y_cu * (LCU_WIDTH>>MAX_DEPTH)) % LCU_WIDTH) != 0
|
|
&& pic->cu_array[depth][cu_pos - width_in_scu].type == CU_INTRA && pic->cu_array[depth][cu_pos - width_in_scu].coded) {
|
|
above_intra_dir = pic->cu_array[depth][cu_pos - width_in_scu].intra.mode;
|
|
}
|
|
|
|
// If the predictions are the same, add new predictions
|
|
if (left_intra_dir == above_intra_dir) {
|
|
if (left_intra_dir > 1) { // angular modes
|
|
preds[0] = left_intra_dir;
|
|
preds[1] = ((left_intra_dir + 29) % 32) + 2;
|
|
preds[2] = ((left_intra_dir - 1 ) % 32) + 2;
|
|
} else { //non-angular
|
|
preds[0] = 0;//PLANAR_IDX;
|
|
preds[1] = 1;//DC_IDX;
|
|
preds[2] = 26;//VER_IDX;
|
|
}
|
|
} else { // If we have two distinct predictions
|
|
preds[0] = left_intra_dir;
|
|
preds[1] = above_intra_dir;
|
|
|
|
// add planar mode if it's not yet present
|
|
if (left_intra_dir && above_intra_dir ) {
|
|
preds[2] = 0; // PLANAR_IDX;
|
|
} else { // else we add 26 or 1
|
|
preds[2] = (left_intra_dir+above_intra_dir)<2? 26 : 1;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* \brief Intra filtering of the border samples
|
|
* \param ref reference picture data
|
|
* \param x_cu x CU position (smallest CU)
|
|
* \param y_cu y CU position (smallest CU)
|
|
* \param depth current CU depth
|
|
* \param preds output buffer for 3 predictions
|
|
* \returns (predictions are found)?1:0
|
|
*/
|
|
void intra_filter(int16_t *ref, int32_t stride,int32_t width, int8_t mode)
|
|
{
|
|
#define FWIDTH (LCU_WIDTH*2+1)
|
|
int16_t filtered[FWIDTH * FWIDTH]; //!< temporary buffer for filtered samples
|
|
int16_t *filteredShift = &filtered[FWIDTH+1]; //!< pointer to temporary buffer with offset (1,1)
|
|
int x,y;
|
|
|
|
if (!mode) {
|
|
// pF[ -1 ][ -1 ] = ( p[ -1 ][ 0 ] + 2*p[ -1 ][ -1 ] + p[ 0 ][ -1 ] + 2 ) >> 2 (8 35)
|
|
filteredShift[-FWIDTH-1] = (ref[-1] + 2*ref[-(int32_t)stride-1] + ref[-(int32_t)stride] + 2) >> 2;
|
|
|
|
// pF[ -1 ][ y ] = ( p[ -1 ][ y + 1 ] + 2*p[ -1 ][ y ] + p[ -1 ][ y - 1 ] + 2 ) >> 2 for y = 0..nTbS * 2 - 2 (8 36)
|
|
for (y = 0; y < (int32_t)width * 2 - 1; y++) {
|
|
filteredShift[y*FWIDTH-1] = (ref[(y + 1) * stride - 1] + 2*ref[y * stride - 1] + ref[(y - 1) * stride - 1] + 2) >> 2;
|
|
}
|
|
|
|
// pF[ -1 ][ nTbS * 2 - 1 ] = p[ -1 ][ nTbS * 2 - 1 ] (8 37)
|
|
filteredShift[(width * 2 - 1) * FWIDTH - 1] = ref[(width * 2 - 1) * stride - 1];
|
|
|
|
// pF[ x ][ -1 ] = ( p[ x - 1 ][ -1 ] + 2*p[ x ][ -1 ] + p[ x + 1 ][ -1 ] + 2 ) >> 2 for x = 0..nTbS * 2 - 2 (8 38)
|
|
for(x = 0; x < (int32_t)width*2-1; x++) {
|
|
filteredShift[x - FWIDTH] = (ref[x - 1 - stride] + 2*ref[x - stride] + ref[x + 1 - stride] + 2) >> 2;
|
|
}
|
|
|
|
// pF[ nTbS * 2 - 1 ][ -1 ] = p[ nTbS * 2 - 1 ][ -1 ]
|
|
filteredShift[(width * 2 - 1) - FWIDTH] = ref[(width * 2 - 1) - stride];
|
|
|
|
// Copy filtered samples to the input array
|
|
for (x = -1; x < (int32_t)width * 2; x++) {
|
|
ref[x - stride] = filtered[x + 1];
|
|
}
|
|
for(y = 0; y < (int32_t)width * 2; y++) {
|
|
ref[y * stride - 1] = filtered[(y + 1) * FWIDTH];
|
|
}
|
|
|
|
} else {
|
|
printf("UNHANDLED: %s: %d\r\n", __FILE__, __LINE__);
|
|
exit(1);
|
|
}
|
|
#undef FWIDTH
|
|
}
|
|
|
|
/**
|
|
* \brief Function to test best intra prediction mode
|
|
* \param orig original picture data
|
|
* \param origstride original picture stride
|
|
* \param rec reconstructed picture data
|
|
* \param recstride reconstructed picture stride
|
|
* \param xpos source x-position
|
|
* \param ypos source y-position
|
|
* \param width block size to predict
|
|
* \param dst destination buffer for best prediction
|
|
* \param dststride destination width
|
|
* \param sad_out sad value of best mode
|
|
* \returns best intra mode
|
|
|
|
This function derives the prediction samples for planar mode (intra coding).
|
|
*/
|
|
int16_t intra_prediction(uint8_t *orig, int32_t origstride, int16_t *rec, int32_t recstride, uint32_t xpos,
|
|
uint32_t ypos, uint32_t width, int16_t *dst, int32_t dststride, uint32_t *sad_out)
|
|
{
|
|
typedef uint32_t (*sad_function)(int16_t *block,uint32_t stride1,int16_t *block2, uint32_t stride2);
|
|
uint32_t best_sad = 0xffffffff;
|
|
uint32_t sad = 0;
|
|
int16_t best_mode = 1;
|
|
int32_t x,y,i;
|
|
uint32_t (*calc_sad)(int16_t *block,uint32_t stride1,int16_t* block2, uint32_t stride2);
|
|
|
|
// Temporary block arrays
|
|
// TODO: alloc with alignment
|
|
int16_t pred[LCU_WIDTH * LCU_WIDTH + 1];
|
|
int16_t orig_block[LCU_WIDTH * LCU_WIDTH + 1];
|
|
int16_t rec_filtered_temp[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8) + 1];
|
|
|
|
int16_t* rec_filtered = &rec_filtered_temp[recstride + 1]; //!< pointer to rec_filtered_temp with offset of (1,1)
|
|
uint8_t *orig_shift = &orig[xpos + ypos*origstride]; //!< pointer to orig with offset of (1,1)
|
|
int8_t filter = (width<32); // TODO: chroma support
|
|
|
|
sad_function sad_array[5] = {&sad4x4,&sad8x8,&sad16x16,&sad32x32,&sad64x64}; //TODO: get SAD functions from parameters
|
|
uint8_t threshold = intra_hor_ver_dist_thres[g_to_bits[width]]; //!< Intra filtering threshold
|
|
|
|
#define COPY_PRED_TO_DST() for (y = 0; y < (int32_t)width; y++) { for (x = 0; x < (int32_t)width; x++) { dst[x + y*dststride] = pred[x + y*width]; } }
|
|
#define CHECK_FOR_BEST(mode, additional_sad) sad = calc_sad(pred,width,orig_block,width); \
|
|
sad += additional_sad;\
|
|
if(sad < best_sad)\
|
|
{\
|
|
best_sad = sad;\
|
|
best_mode = mode;\
|
|
COPY_PRED_TO_DST();\
|
|
}
|
|
|
|
// Choose SAD function according to width
|
|
calc_sad = sad_array[g_to_bits[width]];
|
|
|
|
// Store original block for SAD computation
|
|
i = 0;
|
|
for(y = 0; y < (int32_t)width; y++) {
|
|
for(x = 0; x < (int32_t)width; x++) {
|
|
orig_block[i++] = orig_shift[x + y*origstride];
|
|
}
|
|
}
|
|
|
|
// Filtered only needs the borders
|
|
for (y = -1; y < (int32_t)recstride; y++) {
|
|
rec_filtered[y*recstride - 1] = rec[y*recstride - 1];
|
|
}
|
|
for (x = 0; x < (int32_t)recstride; x++) {
|
|
rec_filtered[y - recstride] = rec[y - recstride];
|
|
}
|
|
// Apply filter
|
|
intra_filter(rec_filtered,recstride,width,0);
|
|
|
|
|
|
// Test DC mode (never filtered)
|
|
x = intra_get_dc_pred(rec, recstride, xpos, ypos, width);
|
|
for (i = 0; i < (int32_t)(width*width); i++) {
|
|
pred[i] = x;
|
|
}
|
|
CHECK_FOR_BEST(1,0);
|
|
|
|
// Check angular not requiring filtering
|
|
for (i = 2; i < 35; i++) {
|
|
int distance = MIN(abs(i - 26),abs(i - 10)); //!< Distance from top and left predictions
|
|
if(distance <= threshold) {
|
|
intra_get_angular_pred(rec, recstride, pred, width, width, width, i, xpos?1:0, ypos?1:0, filter);
|
|
CHECK_FOR_BEST(i,0);
|
|
}
|
|
}
|
|
|
|
// FROM THIS POINT FORWARD, USING FILTERED PREDICTION
|
|
|
|
// Test planar mode (always filtered)
|
|
intra_get_planar_pred(rec_filtered, recstride, xpos, ypos, width, pred, width);
|
|
CHECK_FOR_BEST(0,0);
|
|
|
|
// Check angular predictions which require filtered samples
|
|
// TODO: add conditions to skip some modes on borders
|
|
// chroma can use only 26 and 10 (if not using luma-prediction)
|
|
for (i = 2; i < 35; i++) {
|
|
int distance = MIN(abs(i-26),abs(i-10)); //!< Distance from top and left predictions
|
|
if(distance > threshold) {
|
|
intra_get_angular_pred(rec_filtered, recstride, pred, width, width, width, i, xpos?1:0, ypos?1:0, filter);
|
|
CHECK_FOR_BEST(i,0);
|
|
}
|
|
}
|
|
|
|
// assign final sad to output
|
|
*sad_out = best_sad;
|
|
#undef COPY_PRED_TO_DST
|
|
#undef CHECK_FOR_BEST
|
|
|
|
return best_mode;
|
|
}
|
|
|
|
/**
|
|
* \brief Reconstruct intra block according to prediction
|
|
* \param rec reconstructed picture data
|
|
* \param recstride reconstructed picture stride
|
|
* \param xpos source x-position
|
|
* \param ypos source y-position
|
|
* \param width block size to predict
|
|
* \param dst destination buffer for best prediction
|
|
* \param dststride destination width
|
|
* \param mode intra mode to use
|
|
* \param chroma chroma-block flag
|
|
|
|
*/
|
|
void intra_recon(int16_t* rec,uint32_t recstride, uint32_t xpos, uint32_t ypos,uint32_t width, int16_t* dst,int32_t dststride, int8_t mode, int8_t chroma)
|
|
{
|
|
int32_t x,y,i;
|
|
int16_t pred[LCU_WIDTH * LCU_WIDTH];
|
|
int8_t filter = !chroma&&(width<32);
|
|
#define COPY_PRED_TO_DST() for(y = 0; y < (int32_t)width; y++) { for(x = 0; x < (int32_t)width; x++) { dst[x+y*dststride] = pred[x+y*width]; } }
|
|
|
|
// Filtering apply if luma and not DC
|
|
if (!chroma && mode != 1) {
|
|
uint8_t threshold = intra_hor_ver_dist_thres[g_to_bits[width]];
|
|
if(MIN(abs(mode-26),abs(mode-10)) > threshold) {
|
|
intra_filter(rec,recstride,width,0);
|
|
}
|
|
}
|
|
|
|
// planar
|
|
if (mode == 0) {
|
|
intra_get_planar_pred(rec, recstride, xpos, ypos, width, pred, width);
|
|
} else if (mode == 1) { // DC
|
|
i = intra_get_dc_pred(rec, recstride, xpos, ypos, width);
|
|
for (y = 0; y < (int32_t)width; y++) {
|
|
for (x = 0; x < (int32_t)width; x++) {
|
|
dst[x + y*dststride] = i;
|
|
}
|
|
}
|
|
// Assigned value directly to output, no need to stay here
|
|
return;
|
|
} else { // directional predictions
|
|
intra_get_angular_pred(rec, recstride,pred, width, width, width, mode, xpos?1:0, ypos?1:0, filter);
|
|
}
|
|
|
|
COPY_PRED_TO_DST();
|
|
|
|
#undef COPY_PRED_TO_DST
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief this functions build a reference block (only borders) used for intra predictions
|
|
* \param pic picture to use as a source, should contain full CU-data
|
|
* \param outwidth width of the prediction block
|
|
* \param chroma signaling if chroma is used, 0 = luma, 1 = U and 2 = V
|
|
*
|
|
*/
|
|
void intra_build_reference_border(picture *pic, int32_t x_cu, int32_t y_cu,int16_t outwidth, int16_t *dst, int32_t dststride, int8_t chroma)
|
|
{
|
|
int32_t left_column; //!< left column iterator
|
|
int16_t val; //!< variable to store extrapolated value
|
|
int32_t i; //!< index iterator
|
|
int16_t dc_val = 1<<(g_bitdepth-1); //!< default predictor value
|
|
int32_t top_row; //!< top row iterator
|
|
int32_t src_width = (pic->width>>(chroma?1:0)); //!< source picture width
|
|
int32_t src_height = (pic->height>>(chroma?1:0));//!< source picture height
|
|
uint8_t *src = (!chroma) ? pic->y_recdata : ((chroma == 1) ? pic->u_recdata : pic->v_recdata); //!< input picture pointer
|
|
int16_t scu_width = LCU_WIDTH>>(MAX_DEPTH+(chroma?1:0)); //!< Smallest Coding Unit width
|
|
uint8_t* src_shifted = &src[x_cu * scu_width + (y_cu * scu_width) * src_width]; //!< input picture pointer shifted to start from the left-top corner of the current block
|
|
int width_in_scu = pic->width_in_lcu<<MAX_DEPTH; //!< picture width in smallest CU
|
|
|
|
// Fill left column when not on the border
|
|
if (x_cu) {
|
|
// loop SCU's
|
|
for (left_column = 1; left_column < outwidth / scu_width; left_column++) {
|
|
// If over the picture height or block not yet coded, stop
|
|
if ((y_cu + left_column) * scu_width >= src_height || !pic->cu_array[0][x_cu - 1 + (y_cu + left_column) * width_in_scu].coded) {
|
|
break;
|
|
}
|
|
}
|
|
// Copy the pixels to output
|
|
for (i = 0; i < left_column*scu_width - 1; i ++) {
|
|
dst[(i + 1) * dststride] = src_shifted[i*src_width - 1];
|
|
}
|
|
|
|
// if the loop was not completed, extrapolate the last pixel pushed to output
|
|
if (left_column != outwidth / scu_width) {
|
|
val = src_shifted[(left_column * scu_width - 1) * src_width - 1];
|
|
for(i = (left_column * scu_width); i < outwidth; i++) {
|
|
dst[i * dststride] = val;
|
|
}
|
|
}
|
|
} else { // If left column not available, copy from toprow or use the default predictor
|
|
val = y_cu ? src_shifted[-src_width] : dc_val;
|
|
for (i = 0; i < outwidth; i++) {
|
|
dst[i * dststride] = val;
|
|
}
|
|
}
|
|
|
|
if(y_cu) {
|
|
// Loop top SCU's
|
|
for(top_row = 1; top_row < outwidth / scu_width; top_row++) {
|
|
// If over the picture width or block not yet coded, stop
|
|
if ((x_cu + top_row) * scu_width >= src_width || !pic->cu_array[0][x_cu + top_row+(y_cu - 1) * width_in_scu].coded) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Copy the pixels to output
|
|
for(i = 0; i < top_row * scu_width - 1; i++) {
|
|
dst[i + 1] = src_shifted[i - src_width];
|
|
}
|
|
|
|
if(top_row != outwidth/scu_width) {
|
|
val = src_shifted[(top_row * scu_width) - src_width - 1];
|
|
for(i = (top_row * scu_width); i < outwidth; i++) {
|
|
dst[i] = val;
|
|
}
|
|
}
|
|
} else {
|
|
val = x_cu ? src_shifted[-1] : dc_val;
|
|
for(i = 1; i < outwidth; i++)
|
|
{
|
|
dst[i] = val;
|
|
}
|
|
}
|
|
// Topleft corner sample
|
|
dst[0] = (x_cu && y_cu) ? src_shifted[-src_width - 1] : dst[dststride];
|
|
|
|
}
|
|
|
|
const int32_t ang_table[9] = {0, 2, 5, 9, 13, 17, 21, 26, 32};
|
|
const int32_t inv_ang_table[9] = {0, 4096, 1638, 910, 630, 482, 390, 315, 256}; // (256 * 32) / Angle
|
|
|
|
/**
|
|
* \brief this functions constructs the angular intra prediction from border samples
|
|
*
|
|
*/
|
|
void intra_get_angular_pred(int16_t* src, int32_t src_stride, int16_t* dst, int32_t dst_stride, int32_t width,
|
|
int32_t height, int32_t dir_mode, int8_t left_avail,int8_t top_avail, int8_t filter)
|
|
{
|
|
int32_t k,l;
|
|
int32_t blk_size = width;
|
|
|
|
// Map the mode index to main prediction direction and angle
|
|
int8_t mode_hor = dir_mode < 18;
|
|
int8_t mode_ver = !mode_hor;
|
|
int32_t intra_pred_angle = mode_ver ? (int32_t)dir_mode - 26 : mode_hor ? -((int32_t)dir_mode - 10) : 0;
|
|
int32_t abs_ang = abs(intra_pred_angle);
|
|
int32_t sign_ang = intra_pred_angle < 0 ? -1 : 1;
|
|
|
|
// Set bitshifts and scale the angle parameter to block size
|
|
int32_t inv_angle = inv_ang_table[abs_ang];
|
|
|
|
// Do angular predictions
|
|
int16_t *ref_main;
|
|
int16_t *ref_side;
|
|
int16_t ref_above[2 * LCU_WIDTH + 1];
|
|
int16_t ref_left[2 * LCU_WIDTH + 1];
|
|
|
|
abs_ang = ang_table[abs_ang];
|
|
intra_pred_angle = sign_ang * abs_ang;
|
|
|
|
// Initialise the Main and Left reference array.
|
|
if (intra_pred_angle < 0) {
|
|
int32_t invAngleSum = 128; // rounding for (shift by 8)
|
|
for (k = 0; k < blk_size + 1; k++) {
|
|
ref_above[k + blk_size - 1] = src[k - src_stride - 1];
|
|
ref_left[k + blk_size - 1] = src[(k - 1) * src_stride - 1];
|
|
}
|
|
|
|
ref_main = (mode_ver ? ref_above : ref_left) + (blk_size - 1);
|
|
ref_side = (mode_ver ? ref_left : ref_above) + (blk_size - 1);
|
|
|
|
// Extend the Main reference to the left.
|
|
for (k =- 1; k > blk_size * intra_pred_angle>>5; k--) {
|
|
invAngleSum += inv_angle;
|
|
ref_main[k] = ref_side[invAngleSum>>8];
|
|
}
|
|
} else {
|
|
for (k = 0; k < 2 * blk_size + 1; k++) {
|
|
ref_above[k] = src[k - src_stride - 1];
|
|
ref_left[k] = src[(k - 1) * src_stride - 1];
|
|
}
|
|
ref_main = mode_ver ? ref_above : ref_left;
|
|
ref_side = mode_ver ? ref_left : ref_above;
|
|
}
|
|
|
|
if (intra_pred_angle == 0) {
|
|
for (k = 0; k < blk_size; k++) {
|
|
for (l = 0; l < blk_size; l++) {
|
|
dst[k * dst_stride + l] = ref_main[l + 1];
|
|
}
|
|
}
|
|
|
|
if (filter) {
|
|
for (k=0;k<blk_size;k++) {
|
|
dst[k * dst_stride] = CLIP(0, (1<<g_bitdepth) - 1, dst[k * dst_stride] + (( ref_side[k + 1] - ref_side[0]) >> 1));
|
|
}
|
|
}
|
|
} else {
|
|
int32_t delta_pos=0;
|
|
int32_t delta_int;
|
|
int32_t delta_fract;
|
|
int32_t minus_delta_fract;
|
|
int32_t ref_main_index;
|
|
for (k = 0; k < blk_size; k++) {
|
|
delta_pos += intra_pred_angle;
|
|
delta_int = delta_pos >> 5;
|
|
delta_fract = delta_pos & (32 - 1);
|
|
|
|
|
|
if (delta_fract) {
|
|
minus_delta_fract = (32 - delta_fract);
|
|
// Do linear filtering
|
|
for (l = 0; l < blk_size; l++) {
|
|
ref_main_index = l + delta_int + 1;
|
|
dst[k * dst_stride + l] = (int16_t) ( (minus_delta_fract * ref_main[ref_main_index]
|
|
+ delta_fract * ref_main[ref_main_index + 1] + 16) >> 5);
|
|
}
|
|
} else {
|
|
// Just copy the integer samples
|
|
for (l = 0; l < blk_size; l++) {
|
|
dst[k * dst_stride + l] = ref_main[l + delta_int + 1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Flip the block if this is the horizontal mode
|
|
if (mode_hor) {
|
|
int16_t tmp;
|
|
for (k=0;k<blk_size-1;k++) {
|
|
for (l=k+1;l<blk_size;l++) {
|
|
tmp = dst[k * dst_stride + l];
|
|
dst[k * dst_stride + l] = dst[l * dst_stride + k];
|
|
dst[l * dst_stride + k] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void intra_dc_pred_filtering(int16_t *src, int32_t src_stride, int16_t *dst, int32_t dst_stride, int32_t width, int32_t height )
|
|
{
|
|
int32_t x, y, dst_stride2, src_stride2;
|
|
|
|
// boundary pixels processing
|
|
dst[0] = ((src[-src_stride] + src[-1] + 2 * dst[0] + 2) >> 2);
|
|
|
|
for (x = 1; x < width; x++) {
|
|
dst[x] = ((src[x - src_stride] + 3 * dst[x] + 2) >> 2);
|
|
}
|
|
for ( y = 1, dst_stride2 = dst_stride, src_stride2 = src_stride-1;
|
|
y < height; y++, dst_stride2+=dst_stride, src_stride2+=src_stride ) {
|
|
dst[dst_stride2] = ((src[src_stride2] + 3 * dst[dst_stride2] + 2) >> 2);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* \brief Function for deriving planar intra prediction.
|
|
* \param src source pixel array
|
|
* \param srcstride source width
|
|
* \param xpos source x-position
|
|
* \param ypos source y-position
|
|
* \param width block size to predict
|
|
* \param dst destination buffer for prediction
|
|
* \param dststride destination width
|
|
|
|
This function derives the prediction samples for planar mode (intra coding).
|
|
*/
|
|
void intra_get_planar_pred(int16_t* src,int32_t srcstride, uint32_t xpos, uint32_t ypos,uint32_t width, int16_t* dst,int32_t dststride)
|
|
{
|
|
int16_t dc_val = 1<<(g_bitdepth-1);
|
|
int32_t k, l, bottom_left, top_right;
|
|
int32_t hor_pred;
|
|
int32_t left_column[LCU_WIDTH+1], top_row[LCU_WIDTH+1], bottom_row[LCU_WIDTH+1], right_column[LCU_WIDTH+1];
|
|
uint32_t blk_size = width;
|
|
uint32_t offset_2d = width;
|
|
uint32_t shift_1d = g_convert_to_bit[ width ] + 2;
|
|
uint32_t shift_2d = shift_1d + 1;
|
|
|
|
// Get left and above reference column and row
|
|
for (k = 0; k < (int32_t)blk_size + 1; k++) {
|
|
top_row[k] = src[k - srcstride];
|
|
left_column[k] = src[k * srcstride - 1];
|
|
}
|
|
|
|
// Prepare intermediate variables used in interpolation
|
|
bottom_left = left_column[blk_size];
|
|
top_right = top_row[blk_size];
|
|
for (k = 0; k < (int32_t)blk_size; k++) {
|
|
bottom_row[k] = bottom_left - top_row[k];
|
|
right_column[k] = top_right - left_column[k];
|
|
top_row[k] <<= shift_1d;
|
|
left_column[k] <<= shift_1d;
|
|
}
|
|
|
|
// Generate prediction signal
|
|
for (k = 0; k < (int32_t)blk_size; k++) {
|
|
hor_pred = left_column[k] + offset_2d;
|
|
for (l = 0; l < (int32_t)blk_size; l++) {
|
|
hor_pred += right_column[k];
|
|
top_row[l] += bottom_row[l];
|
|
dst[k * dststride + l] = ( (hor_pred + top_row[l]) >> shift_2d );
|
|
}
|
|
}
|
|
}
|