mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-24 18:34:06 +00:00
679 lines
28 KiB
C
679 lines
28 KiB
C
/*****************************************************************************
|
|
* This file is part of Kvazaar HEVC encoder.
|
|
*
|
|
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
|
|
* COPYING file).
|
|
*
|
|
* Kvazaar is free software: you can redistribute it and/or modify it under
|
|
* the terms of the GNU Lesser General Public License as published by the
|
|
* Free Software Foundation; either version 2.1 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
|
|
****************************************************************************/
|
|
|
|
#include "encoder_state-ctors_dtors.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "encoderstate.h"
|
|
|
|
|
|
static int encoder_state_config_global_init(encoder_state_t * const state) {
|
|
state->global->ref = kvz_image_list_alloc(MAX_REF_PIC_COUNT);
|
|
if(!state->global->ref) {
|
|
fprintf(stderr, "Failed to allocate the picture list!\n");
|
|
return 0;
|
|
}
|
|
state->global->ref_list = REF_PIC_LIST_0;
|
|
state->global->frame = 0;
|
|
state->global->poc = 0;
|
|
state->global->total_bits_coded = 0;
|
|
state->global->cur_gop_bits_coded = 0;
|
|
state->global->rc_alpha = 3.2003;
|
|
state->global->rc_beta = -1.367;
|
|
return 1;
|
|
}
|
|
|
|
static void encoder_state_config_global_finalize(encoder_state_t * const state) {
|
|
kvz_image_list_destroy(state->global->ref);
|
|
}
|
|
|
|
static int encoder_state_config_tile_init(encoder_state_t * const state,
|
|
const int lcu_offset_x, const int lcu_offset_y,
|
|
const int width, const int height, const int width_in_lcu, const int height_in_lcu) {
|
|
|
|
const encoder_control_t * const encoder = state->encoder_control;
|
|
state->tile->frame = kvz_videoframe_alloc(width, height, 0);
|
|
|
|
state->tile->frame->rec = NULL;
|
|
|
|
state->tile->frame->source = NULL;
|
|
|
|
if (!state->tile->frame) {
|
|
printf("Error allocating videoframe!\r\n");
|
|
return 0;
|
|
}
|
|
|
|
// Init coeff data table
|
|
//FIXME: move them
|
|
state->tile->frame->coeff_y = MALLOC(coeff_t, width * height);
|
|
state->tile->frame->coeff_u = MALLOC(coeff_t, (width * height) >> 2);
|
|
state->tile->frame->coeff_v = MALLOC(coeff_t, (width * height) >> 2);
|
|
|
|
state->tile->lcu_offset_x = lcu_offset_x;
|
|
state->tile->lcu_offset_y = lcu_offset_y;
|
|
|
|
state->tile->lcu_offset_in_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_offset_x + lcu_offset_y * encoder->in.width_in_lcu];
|
|
|
|
//Allocate buffers
|
|
//order by row of (LCU_WIDTH * frame->width_in_lcu) pixels
|
|
state->tile->hor_buf_search = kvz_yuv_t_alloc(LCU_WIDTH * state->tile->frame->width_in_lcu * state->tile->frame->height_in_lcu);
|
|
//order by column of (LCU_WIDTH * encoder_state->height_in_lcu) pixels (there is no more extra pixel, since we can use a negative index)
|
|
state->tile->ver_buf_search = kvz_yuv_t_alloc(LCU_WIDTH * state->tile->frame->height_in_lcu * state->tile->frame->width_in_lcu);
|
|
|
|
if (encoder->sao_enable) {
|
|
state->tile->hor_buf_before_sao = kvz_yuv_t_alloc(LCU_WIDTH * state->tile->frame->width_in_lcu * state->tile->frame->height_in_lcu);
|
|
} else {
|
|
state->tile->hor_buf_before_sao = NULL;
|
|
}
|
|
|
|
if (encoder->wpp) {
|
|
int num_jobs = state->tile->frame->width_in_lcu * state->tile->frame->height_in_lcu;
|
|
state->tile->wf_jobs = MALLOC(threadqueue_job_t*, num_jobs);
|
|
if (!state->tile->wf_jobs) {
|
|
printf("Error allocating wf_jobs array!\n");
|
|
return 0;
|
|
}
|
|
} else {
|
|
state->tile->wf_jobs = NULL;
|
|
}
|
|
|
|
state->tile->id = encoder->tiles_tile_id[state->tile->lcu_offset_in_ts];
|
|
return 1;
|
|
}
|
|
|
|
static void encoder_state_config_tile_finalize(encoder_state_t * const state) {
|
|
if (state->tile->hor_buf_before_sao) kvz_yuv_t_free(state->tile->hor_buf_before_sao);
|
|
|
|
kvz_yuv_t_free(state->tile->hor_buf_search);
|
|
kvz_yuv_t_free(state->tile->ver_buf_search);
|
|
|
|
kvz_videoframe_free(state->tile->frame);
|
|
state->tile->frame = NULL;
|
|
|
|
FREE_POINTER(state->tile->wf_jobs);
|
|
}
|
|
|
|
static int encoder_state_config_slice_init(encoder_state_t * const state,
|
|
const int start_address_in_ts, const int end_address_in_ts) {
|
|
int i = 0, slice_found=0;
|
|
for (i = 0; i < state->encoder_control->slice_count; ++i) {
|
|
if (state->encoder_control->slice_addresses_in_ts[i] == start_address_in_ts) {
|
|
state->slice->id = i;
|
|
slice_found = 1;
|
|
break;
|
|
}
|
|
}
|
|
assert(slice_found);
|
|
|
|
state->slice->start_in_ts = start_address_in_ts;
|
|
state->slice->end_in_ts = end_address_in_ts;
|
|
|
|
state->slice->start_in_rs = state->encoder_control->tiles_ctb_addr_ts_to_rs[start_address_in_ts];
|
|
state->slice->end_in_rs = state->encoder_control->tiles_ctb_addr_ts_to_rs[end_address_in_ts];
|
|
return 1;
|
|
}
|
|
|
|
static void encoder_state_config_slice_finalize(encoder_state_t * const state) {
|
|
//Nothing to do (yet?)
|
|
}
|
|
|
|
static int encoder_state_config_wfrow_init(encoder_state_t * const state,
|
|
const int lcu_offset_y) {
|
|
|
|
state->wfrow->lcu_offset_y = lcu_offset_y;
|
|
return 1;
|
|
}
|
|
|
|
static void encoder_state_config_wfrow_finalize(encoder_state_t * const state) {
|
|
//Nothing to do (yet?)
|
|
}
|
|
|
|
#ifdef KVZ_DEBUG_PRINT_THREADING_INFO
|
|
static void encoder_state_dump_graphviz(const encoder_state_t * const state) {
|
|
int i;
|
|
|
|
if (!state->parent) {
|
|
const encoder_control_t * const encoder = state->encoder_control;
|
|
int y,x;
|
|
//Empty lines (easier to copy-paste)
|
|
printf("\n\n\n\n\n");
|
|
//Some styling...
|
|
printf("digraph EncoderStates {\n");
|
|
printf(" fontname = \"Bitstream Vera Sans\"\n");
|
|
printf(" fontsize = 8\n\n");
|
|
printf(" node [\n");
|
|
printf(" fontname = \"Bitstream Vera Sans\"\n");
|
|
printf(" fontsize = 8\n");
|
|
printf(" shape = \"record\"\n");
|
|
printf(" ]\n\n");
|
|
printf(" edge [\n");
|
|
printf(" arrowtail = \"empty\"\n");
|
|
printf(" ]\n\n");
|
|
|
|
printf(" \"Map\" [\n");
|
|
printf(" shape=plaintext\n");
|
|
printf(" label = <<table cellborder=\"1\" cellspacing=\"0\" border=\"0\">");
|
|
printf("<tr><td colspan=\"%d\" height=\"20\" valign=\"bottom\"><b>RS Map</b></td></tr>", encoder->in.width_in_lcu);
|
|
for (y = 0; y < encoder->in.height_in_lcu; ++y) {
|
|
printf("<tr>");
|
|
for (x = 0; x < encoder->in.width_in_lcu; ++x) {
|
|
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
|
|
|
|
printf("<td>%d</td>", lcu_id_rs);
|
|
}
|
|
printf("</tr>");
|
|
}
|
|
printf("<tr><td colspan=\"%d\" height=\"20\" valign=\"bottom\"><b>TS Map</b></td></tr>", encoder->in.width_in_lcu);
|
|
for (y = 0; y < encoder->in.height_in_lcu; ++y) {
|
|
printf("<tr>");
|
|
for (x = 0; x < encoder->in.width_in_lcu; ++x) {
|
|
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
|
|
const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs];
|
|
|
|
printf("<td>%d</td>", lcu_id_ts);
|
|
}
|
|
printf("</tr>");
|
|
}
|
|
printf("<tr><td colspan=\"%d\" height=\"20\" valign=\"bottom\"><b>Tile map</b></td></tr>", encoder->in.width_in_lcu);
|
|
for (y = 0; y < encoder->in.height_in_lcu; ++y) {
|
|
printf("<tr>");
|
|
for (x = 0; x < encoder->in.width_in_lcu; ++x) {
|
|
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
|
|
const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs];
|
|
|
|
printf("<td>%d</td>", encoder->tiles_tile_id[lcu_id_ts]);
|
|
}
|
|
printf("</tr>");
|
|
}
|
|
printf("<tr><td colspan=\"%d\" height=\"20\" valign=\"bottom\"><b>Slice map</b></td></tr>", encoder->in.width_in_lcu);
|
|
for (y = 0; y < encoder->in.height_in_lcu; ++y) {
|
|
printf("<tr>");
|
|
for (x = 0; x < encoder->in.width_in_lcu; ++x) {
|
|
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
|
|
const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs];
|
|
int slice_id = 0;
|
|
|
|
//Not efficient, but who cares
|
|
for (i=0; i < encoder->slice_count; ++i) {
|
|
if (encoder->slice_addresses_in_ts[i] <= lcu_id_ts) {
|
|
slice_id = i;
|
|
}
|
|
}
|
|
|
|
printf("<td>%d</td>", slice_id);
|
|
}
|
|
printf("</tr>");
|
|
}
|
|
printf("</table>>\n ]\n");
|
|
}
|
|
|
|
printf(" \"%p\" [\n", state);
|
|
printf(" label = \"{encoder_state|");
|
|
printf("+ type=%c\\l", state->type);
|
|
if (!state->parent || state->global != state->parent->global) {
|
|
printf("|+ global\\l");
|
|
}
|
|
if (!state->parent || state->tile != state->parent->tile) {
|
|
printf("|+ tile\\l");
|
|
printf(" - id = %d\\l", state->tile->id);
|
|
printf(" - lcu_offset_x = %d\\l", state->tile->lcu_offset_x);
|
|
printf(" - lcu_offset_y = %d\\l", state->tile->lcu_offset_y);
|
|
printf(" - lcu_offset_in_ts = %d\\l", state->tile->lcu_offset_in_ts);
|
|
}
|
|
if (!state->parent || state->slice != state->parent->slice) {
|
|
printf("|+ slice\\l");
|
|
printf(" - id = %d\\l", state->slice->id);
|
|
printf(" - start_in_ts = %d\\l", state->slice->start_in_ts);
|
|
printf(" - end_in_ts = %d\\l", state->slice->end_in_ts);
|
|
printf(" - start_in_rs = %d\\l", state->slice->start_in_rs);
|
|
printf(" - end_in_rs = %d\\l", state->slice->end_in_rs);
|
|
}
|
|
if (!state->parent || state->wfrow != state->parent->wfrow) {
|
|
printf("|+ wfrow\\l");
|
|
printf(" - lcu_offset_y = %d\\l", state->wfrow->lcu_offset_y);
|
|
}
|
|
printf("}\"\n");
|
|
printf(" ]\n");
|
|
|
|
if (state->parent) {
|
|
printf(" \"%p\" -> \"%p\"\n", state->parent, state);
|
|
}
|
|
|
|
for (i = 0; state->children[i].encoder_control; ++i) {
|
|
encoder_state_dump_graphviz(&state->children[i]);
|
|
}
|
|
|
|
if (!state->parent) {
|
|
printf("}\n");
|
|
//Empty lines (easier to copy-paste)
|
|
printf("\n\n\n\n\n");
|
|
}
|
|
}
|
|
#endif //KVZ_DEBUG_PRINT_THREADING_INFO
|
|
|
|
int kvz_encoder_state_init(encoder_state_t * const child_state, encoder_state_t * const parent_state) {
|
|
//We require that, if parent_state is NULL:
|
|
//child_state->encoder_control is set
|
|
//
|
|
//If parent_state is not NULL, the following variable should either be set to NULL,
|
|
//in order to inherit from parent, or should point to a valid structure:
|
|
//child_state->global
|
|
//child_state->tile
|
|
//child_state->slice
|
|
//child_state->wfrow
|
|
|
|
child_state->parent = parent_state;
|
|
child_state->children = MALLOC(encoder_state_t, 1);
|
|
child_state->children[0].encoder_control = NULL;
|
|
child_state->tqj_bitstream_written = NULL;
|
|
child_state->tqj_recon_done = NULL;
|
|
child_state->prepared = 0;
|
|
child_state->frame_done = 1;
|
|
|
|
if (!parent_state) {
|
|
const encoder_control_t * const encoder = child_state->encoder_control;
|
|
child_state->type = ENCODER_STATE_TYPE_MAIN;
|
|
assert(child_state->encoder_control);
|
|
child_state->global = MALLOC(encoder_state_config_global_t, 1);
|
|
if (!child_state->global || !encoder_state_config_global_init(child_state)) {
|
|
fprintf(stderr, "Could not initialize encoder_state->global!\n");
|
|
return 0;
|
|
}
|
|
child_state->tile = MALLOC(encoder_state_config_tile_t, 1);
|
|
if (!child_state->tile || !encoder_state_config_tile_init(child_state, 0, 0, encoder->in.width, encoder->in.height, encoder->in.width_in_lcu, encoder->in.height_in_lcu)) {
|
|
fprintf(stderr, "Could not initialize encoder_state->tile!\n");
|
|
return 0;
|
|
}
|
|
child_state->slice = MALLOC(encoder_state_config_slice_t, 1);
|
|
if (!child_state->slice || !encoder_state_config_slice_init(child_state, 0, encoder->in.width_in_lcu * encoder->in.height_in_lcu - 1)) {
|
|
fprintf(stderr, "Could not initialize encoder_state->slice!\n");
|
|
return 0;
|
|
}
|
|
child_state->wfrow = MALLOC(encoder_state_config_wfrow_t, 1);
|
|
if (!child_state->wfrow || !encoder_state_config_wfrow_init(child_state, 0)) {
|
|
fprintf(stderr, "Could not initialize encoder_state->wfrow!\n");
|
|
return 0;
|
|
}
|
|
} else {
|
|
child_state->encoder_control = parent_state->encoder_control;
|
|
if (!child_state->global) child_state->global = parent_state->global;
|
|
if (!child_state->tile) child_state->tile = parent_state->tile;
|
|
if (!child_state->slice) child_state->slice = parent_state->slice;
|
|
if (!child_state->wfrow) child_state->wfrow = parent_state->wfrow;
|
|
}
|
|
|
|
kvz_bitstream_init(&child_state->stream);
|
|
|
|
// Set CABAC output bitstream
|
|
child_state->cabac.stream = &child_state->stream;
|
|
|
|
//Create sub-encoders
|
|
{
|
|
const encoder_control_t * const encoder = child_state->encoder_control;
|
|
int child_count = 0;
|
|
//We first check the type of this element.
|
|
//If it's a MAIN, it can allow both slices or tiles as child
|
|
//If it's a TILE, it can allow slices as child, if its parent is not a slice, or wavefront rows if there is no other children
|
|
//If it's a SLICE, it can allow tiles as child, if its parent is not a tile, or wavefront rows if there is no other children
|
|
//If it's a WAVEFRONT_ROW, it doesn't allow any children
|
|
int children_allow_wavefront_row = 0;
|
|
int children_allow_slice = 0;
|
|
int children_allow_tile = 0;
|
|
int range_start;
|
|
|
|
int start_in_ts, end_in_ts;
|
|
|
|
switch(child_state->type) {
|
|
case ENCODER_STATE_TYPE_MAIN:
|
|
children_allow_slice = 1;
|
|
children_allow_tile = 1;
|
|
start_in_ts = 0;
|
|
end_in_ts = child_state->tile->frame->width_in_lcu * child_state->tile->frame->height_in_lcu;
|
|
break;
|
|
case ENCODER_STATE_TYPE_SLICE:
|
|
assert(child_state->parent);
|
|
if (child_state->parent->type != ENCODER_STATE_TYPE_TILE) children_allow_tile = 1;
|
|
children_allow_wavefront_row = encoder->wpp;
|
|
start_in_ts = child_state->slice->start_in_ts;
|
|
end_in_ts = child_state->slice->end_in_ts;
|
|
break;
|
|
case ENCODER_STATE_TYPE_TILE:
|
|
assert(child_state->parent);
|
|
if (child_state->parent->type != ENCODER_STATE_TYPE_SLICE) children_allow_slice = 1;
|
|
children_allow_wavefront_row = encoder->wpp;
|
|
start_in_ts = child_state->tile->lcu_offset_in_ts;
|
|
end_in_ts = child_state->tile->lcu_offset_in_ts + child_state->tile->frame->width_in_lcu * child_state->tile->frame->height_in_lcu;
|
|
break;
|
|
case ENCODER_STATE_TYPE_WAVEFRONT_ROW:
|
|
//GCC tries to be too clever...
|
|
start_in_ts = -1;
|
|
end_in_ts = -1;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Invalid encoder_state->type %d!\n", child_state->type);
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
range_start = start_in_ts;
|
|
//printf("%c-%p: start_in_ts=%d, end_in_ts=%d\n",child_state->type, child_state, start_in_ts, end_in_ts);
|
|
while (range_start < end_in_ts && (children_allow_slice || children_allow_tile)) {
|
|
encoder_state_t *new_child = NULL;
|
|
int range_end_slice = range_start; //Will be incremented to get the range of the "thing"
|
|
int range_end_tile = range_start; //Will be incremented to get the range of the "thing"
|
|
|
|
int tile_allowed = kvz_lcu_at_tile_start(encoder, range_start) && children_allow_tile;
|
|
int slice_allowed = kvz_lcu_at_slice_start(encoder, range_start) && children_allow_slice;
|
|
|
|
//Find the smallest structure following the cursor
|
|
if (slice_allowed) {
|
|
while(!kvz_lcu_at_slice_end(encoder, range_end_slice)) {
|
|
++range_end_slice;
|
|
}
|
|
}
|
|
|
|
if (tile_allowed) {
|
|
while(!kvz_lcu_at_tile_end(encoder, range_end_tile)) {
|
|
++range_end_tile;
|
|
}
|
|
}
|
|
|
|
//printf("range_start=%d, range_end_slice=%d, range_end_tile=%d, tile_allowed=%d, slice_allowed=%d end_in_ts=%d\n",range_start,range_end_slice,range_end_tile,tile_allowed,slice_allowed,end_in_ts);
|
|
|
|
if ((!tile_allowed || (range_end_slice >= range_end_tile)) && !new_child && slice_allowed) {
|
|
//Create a slice
|
|
new_child = &child_state->children[child_count];
|
|
new_child->encoder_control = encoder;
|
|
new_child->type = ENCODER_STATE_TYPE_SLICE;
|
|
new_child->global = child_state->global;
|
|
new_child->tile = child_state->tile;
|
|
new_child->wfrow = child_state->wfrow;
|
|
new_child->slice = MALLOC(encoder_state_config_slice_t, 1);
|
|
if (!new_child->slice || !encoder_state_config_slice_init(new_child, range_start, range_end_slice)) {
|
|
fprintf(stderr, "Could not initialize encoder_state->slice!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if ((!slice_allowed || (range_end_slice < range_end_tile)) && !new_child && tile_allowed) {
|
|
//Create a tile
|
|
int tile_id = encoder->tiles_tile_id[range_start];
|
|
int tile_x = tile_id % encoder->tiles_num_tile_columns;
|
|
int tile_y = tile_id / encoder->tiles_num_tile_columns;
|
|
|
|
int lcu_offset_x = encoder->tiles_col_bd[tile_x];
|
|
int lcu_offset_y = encoder->tiles_row_bd[tile_y];
|
|
int width_in_lcu = encoder->tiles_col_bd[tile_x+1]-encoder->tiles_col_bd[tile_x];
|
|
int height_in_lcu = encoder->tiles_row_bd[tile_y+1]-encoder->tiles_row_bd[tile_y];
|
|
int width = MIN(width_in_lcu * LCU_WIDTH, encoder->in.width - lcu_offset_x * LCU_WIDTH);
|
|
int height = MIN(height_in_lcu * LCU_WIDTH, encoder->in.height - lcu_offset_y * LCU_WIDTH);
|
|
|
|
new_child = &child_state->children[child_count];
|
|
new_child->encoder_control = encoder;
|
|
new_child->type = ENCODER_STATE_TYPE_TILE;
|
|
new_child->global = child_state->global;
|
|
new_child->tile = MALLOC(encoder_state_config_tile_t, 1);
|
|
new_child->slice = child_state->slice;
|
|
new_child->wfrow = child_state->wfrow;
|
|
|
|
if (!new_child->tile || !encoder_state_config_tile_init(new_child, lcu_offset_x, lcu_offset_y, width, height, width_in_lcu, height_in_lcu)) {
|
|
fprintf(stderr, "Could not initialize encoder_state->tile!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (new_child) {
|
|
child_state->children = realloc(child_state->children, sizeof(encoder_state_t) * (2+child_count));
|
|
if (!child_state->children) {
|
|
fprintf(stderr, "Failed to allocate memory for children...\n");
|
|
return 0;
|
|
}
|
|
|
|
child_state->children[1 + child_count].encoder_control = NULL;
|
|
|
|
//Fix children parent (since we changed the address), except for the last one which is not ready yet
|
|
{
|
|
int i, j;
|
|
for (i = 0; child_state->children[i].encoder_control && i < child_count; ++i) {
|
|
for (j = 0; child_state->children[i].children[j].encoder_control; ++j) {
|
|
child_state->children[i].children[j].parent = &child_state->children[i];
|
|
}
|
|
for (j = 0; j < child_state->children[i].lcu_order_count; ++j) {
|
|
child_state->children[i].lcu_order[j].encoder_state = &child_state->children[i];
|
|
}
|
|
child_state->children[i].cabac.stream = &child_state->children[i].stream;
|
|
}
|
|
}
|
|
|
|
if (!kvz_encoder_state_init(&child_state->children[child_count], child_state)) {
|
|
fprintf(stderr, "Unable to init child...\n");
|
|
return 0;
|
|
}
|
|
child_count += 1;
|
|
}
|
|
|
|
range_start = MAX(range_end_slice, range_end_tile) + 1;
|
|
}
|
|
|
|
//We create wavefronts only if we have no children
|
|
if (children_allow_wavefront_row && child_count == 0) {
|
|
int first_row = encoder->tiles_ctb_addr_ts_to_rs[start_in_ts] / encoder->in.width_in_lcu;
|
|
int last_row = encoder->tiles_ctb_addr_ts_to_rs[start_in_ts] / encoder->in.width_in_lcu;
|
|
int num_rows;
|
|
int i;
|
|
|
|
assert(!(children_allow_slice || children_allow_tile));
|
|
assert(child_count == 0);
|
|
|
|
for (i=start_in_ts; i<end_in_ts; ++i) {
|
|
const int row = encoder->tiles_ctb_addr_ts_to_rs[i] / encoder->in.width_in_lcu;
|
|
if (row < first_row) first_row = row;
|
|
if (row > last_row) last_row = row;
|
|
}
|
|
|
|
num_rows = last_row - first_row + 1;
|
|
|
|
//When entropy_coding_sync_enabled_flag is equal to 1 and the first coding tree block in a slice is not the first coding
|
|
//tree block of a row of coding tree blocks in a tile, it is a requirement of bitstream conformance that the last coding tree
|
|
//block in the slice shall belong to the same row of coding tree blocks as the first coding tree block in the slice.
|
|
|
|
if (encoder->tiles_ctb_addr_ts_to_rs[start_in_ts] % encoder->in.width_in_lcu != child_state->tile->lcu_offset_x) {
|
|
if (num_rows > 1) {
|
|
fprintf(stderr, "Invalid: first CTB in slice %d is not at the tile %d edge, and the slice spans on more than one row.\n", child_state->slice->id, child_state->tile->id);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
//FIXME Do the same kind of check if we implement slice segments
|
|
|
|
child_count = num_rows;
|
|
child_state->children = realloc(child_state->children, sizeof(encoder_state_t) * (num_rows + 1));
|
|
child_state->children[num_rows].encoder_control = NULL;
|
|
|
|
for (i=0; i < num_rows; ++i) {
|
|
encoder_state_t *new_child = &child_state->children[i];
|
|
|
|
new_child->encoder_control = encoder;
|
|
new_child->type = ENCODER_STATE_TYPE_WAVEFRONT_ROW;
|
|
new_child->global = child_state->global;
|
|
new_child->tile = child_state->tile;
|
|
new_child->slice = child_state->slice;
|
|
new_child->wfrow = MALLOC(encoder_state_config_wfrow_t, 1);
|
|
|
|
if (!new_child->wfrow || !encoder_state_config_wfrow_init(new_child, i)) {
|
|
fprintf(stderr, "Could not initialize encoder_state->wfrow!\n");
|
|
return 0;
|
|
}
|
|
|
|
if (!kvz_encoder_state_init(new_child, child_state)) {
|
|
fprintf(stderr, "Unable to init child...\n");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
child_state->is_leaf = (child_count == 0);
|
|
//This node is a leaf, compute LCU-order
|
|
if (child_state->is_leaf) {
|
|
//All LCU computations are relative to the tile
|
|
//Remark: this could be optimized, but since it's run only once, it's better to do it in a understandable way.
|
|
|
|
//By default, the full tile
|
|
int i;
|
|
int lcu_id;
|
|
int lcu_start = 0;
|
|
//End is the element AFTER the end (iterate < lcu_end)
|
|
int lcu_end = child_state->tile->frame->width_in_lcu * child_state->tile->frame->height_in_lcu;
|
|
|
|
//Restrict to the current slice if needed
|
|
lcu_start = MAX(lcu_start, child_state->slice->start_in_ts - child_state->tile->lcu_offset_in_ts);
|
|
lcu_end = MIN(lcu_end, child_state->slice->end_in_ts - child_state->tile->lcu_offset_in_ts + 1);
|
|
|
|
//Restrict to the current wavefront row if needed
|
|
if (child_state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
|
|
lcu_start = MAX(lcu_start, (child_state->wfrow->lcu_offset_y) * child_state->tile->frame->width_in_lcu);
|
|
lcu_end = MIN(lcu_end, (child_state->wfrow->lcu_offset_y + 1) * child_state->tile->frame->width_in_lcu);
|
|
}
|
|
|
|
child_state->lcu_order_count = lcu_end - lcu_start;
|
|
child_state->lcu_order = MALLOC(lcu_order_element_t, child_state->lcu_order_count);
|
|
assert(child_state->lcu_order);
|
|
|
|
for (i = 0; i < child_state->lcu_order_count; ++i) {
|
|
lcu_id = lcu_start + i;
|
|
child_state->lcu_order[i].encoder_state = child_state;
|
|
child_state->lcu_order[i].id = lcu_id;
|
|
child_state->lcu_order[i].index = i;
|
|
child_state->lcu_order[i].position.x = lcu_id % child_state->tile->frame->width_in_lcu;
|
|
child_state->lcu_order[i].position.y = lcu_id / child_state->tile->frame->width_in_lcu;
|
|
child_state->lcu_order[i].position_px.x = child_state->lcu_order[i].position.x * LCU_WIDTH;
|
|
child_state->lcu_order[i].position_px.y = child_state->lcu_order[i].position.y * LCU_WIDTH;
|
|
child_state->lcu_order[i].size.x = MIN(LCU_WIDTH, encoder->in.width - (child_state->tile->lcu_offset_x * LCU_WIDTH + child_state->lcu_order[i].position_px.x));
|
|
child_state->lcu_order[i].size.y = MIN(LCU_WIDTH, encoder->in.height - (child_state->tile->lcu_offset_y * LCU_WIDTH + child_state->lcu_order[i].position_px.y));
|
|
child_state->lcu_order[i].first_row = kvz_lcu_in_first_row(child_state, child_state->tile->lcu_offset_in_ts + lcu_id);
|
|
child_state->lcu_order[i].last_row = kvz_lcu_in_last_row(child_state, child_state->tile->lcu_offset_in_ts + lcu_id);
|
|
child_state->lcu_order[i].first_column = kvz_lcu_in_first_column(child_state, child_state->tile->lcu_offset_in_ts + lcu_id);
|
|
child_state->lcu_order[i].last_column = kvz_lcu_in_last_column(child_state, child_state->tile->lcu_offset_in_ts + lcu_id);
|
|
|
|
child_state->lcu_order[i].above = NULL;
|
|
child_state->lcu_order[i].below = NULL;
|
|
child_state->lcu_order[i].left = NULL;
|
|
child_state->lcu_order[i].right = NULL;
|
|
|
|
if (!child_state->lcu_order[i].first_row) {
|
|
//Find LCU above
|
|
if (child_state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
|
|
int j;
|
|
//For all previous wavefront rows
|
|
for (j=0; &child_state->parent->children[j] != child_state && child_state->parent->children[j].encoder_control; ++j) {
|
|
if (child_state->parent->children[j].wfrow->lcu_offset_y == child_state->wfrow->lcu_offset_y - 1) {
|
|
int k;
|
|
for (k=0; k < child_state->parent->children[j].lcu_order_count; ++k) {
|
|
if (child_state->parent->children[j].lcu_order[k].position.x == child_state->lcu_order[i].position.x) {
|
|
assert(child_state->parent->children[j].lcu_order[k].position.y == child_state->lcu_order[i].position.y - 1);
|
|
child_state->lcu_order[i].above = &child_state->parent->children[j].lcu_order[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
child_state->lcu_order[i].above = &child_state->lcu_order[i-child_state->tile->frame->width_in_lcu];
|
|
}
|
|
assert(child_state->lcu_order[i].above);
|
|
child_state->lcu_order[i].above->below = &child_state->lcu_order[i];
|
|
}
|
|
if (!child_state->lcu_order[i].first_column) {
|
|
child_state->lcu_order[i].left = &child_state->lcu_order[i-1];
|
|
assert(child_state->lcu_order[i].left->position.x == child_state->lcu_order[i].position.x - 1);
|
|
child_state->lcu_order[i].left->right = &child_state->lcu_order[i];
|
|
}
|
|
}
|
|
} else {
|
|
child_state->lcu_order_count = 0;
|
|
child_state->lcu_order = NULL;
|
|
}
|
|
}
|
|
|
|
//Validate the structure
|
|
if (child_state->type == ENCODER_STATE_TYPE_TILE) {
|
|
if (child_state->tile->lcu_offset_in_ts < child_state->slice->start_in_ts) {
|
|
fprintf(stderr, "Tile %d starts before slice %d, in which it should be included!\n", child_state->tile->id, child_state->slice->id);
|
|
return 0;
|
|
}
|
|
if (child_state->tile->lcu_offset_in_ts + child_state->tile->frame->width_in_lcu * child_state->tile->frame->height_in_lcu - 1 > child_state->slice->end_in_ts) {
|
|
fprintf(stderr, "Tile %d ends after slice %d, in which it should be included!\n", child_state->tile->id, child_state->slice->id);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (child_state->type == ENCODER_STATE_TYPE_SLICE) {
|
|
if (child_state->slice->start_in_ts < child_state->tile->lcu_offset_in_ts) {
|
|
fprintf(stderr, "Slice %d starts before tile %d, in which it should be included!\n", child_state->slice->id, child_state->tile->id);
|
|
return 0;
|
|
}
|
|
if (child_state->slice->end_in_ts > child_state->tile->lcu_offset_in_ts + child_state->tile->frame->width_in_lcu * child_state->tile->frame->height_in_lcu - 1) {
|
|
fprintf(stderr, "Slice %d ends after tile %d, in which it should be included!\n", child_state->slice->id, child_state->tile->id);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifdef KVZ_DEBUG_PRINT_THREADING_INFO
|
|
if (!parent_state) encoder_state_dump_graphviz(child_state);
|
|
#endif //KVZ_DEBUG_PRINT_THREADING_INFO
|
|
return 1;
|
|
}
|
|
|
|
void kvz_encoder_state_finalize(encoder_state_t * const state) {
|
|
if (state->children) {
|
|
int i=0;
|
|
for (i = 0; state->children[i].encoder_control; ++i) {
|
|
kvz_encoder_state_finalize(&state->children[i]);
|
|
}
|
|
|
|
FREE_POINTER(state->children);
|
|
}
|
|
|
|
FREE_POINTER(state->lcu_order);
|
|
state->lcu_order_count = 0;
|
|
|
|
if (!state->parent || (state->parent->wfrow != state->wfrow)) {
|
|
encoder_state_config_wfrow_finalize(state);
|
|
FREE_POINTER(state->wfrow);
|
|
}
|
|
|
|
if (!state->parent || (state->parent->slice != state->slice)) {
|
|
encoder_state_config_slice_finalize(state);
|
|
FREE_POINTER(state->slice);
|
|
}
|
|
|
|
if (!state->parent || (state->parent->tile != state->tile)) {
|
|
encoder_state_config_tile_finalize(state);
|
|
FREE_POINTER(state->tile);
|
|
}
|
|
|
|
if (!state->parent || (state->parent->global != state->global)) {
|
|
encoder_state_config_global_finalize(state);
|
|
FREE_POINTER(state->global);
|
|
}
|
|
|
|
kvz_bitstream_finalize(&state->stream);
|
|
}
|