uvg266/src/encoder.c
Ari Koivula 93141c7d2e Avoid unnecessary copying of predicted pixels when there are no coeffs.
- These are probably from a time when reconstruction happened in this
  function.
2014-05-09 16:39:58 +03:00

3731 lines
140 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2014 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Kvazaar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
/*
* \file
*/
#include "encoder.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "tables.h"
#include "config.h"
#include "cabac.h"
#include "picture.h"
#include "nal.h"
#include "context.h"
#include "transform.h"
#include "intra.h"
#include "inter.h"
#include "filter.h"
#include "search.h"
#include "sao.h"
#include "rdo.h"
/* Local functions. */
static void add_checksum(encoder_state *encoder);
static void encode_VUI(encoder_state *encoder);
static void encode_sao(encoder_state *encoder,
unsigned x_lcu, uint16_t y_lcu,
sao_info *sao_luma, sao_info *sao_chroma);
static void encoder_state_write_bitstream_leaf(encoder_state * const encoder_state);
/*!
\brief Initializes lambda-value for current QP
Implementation closer to HM (Used HM12 as reference)
- Still missing functionality when GOP and B-pictures are used
*/
void encoder_state_init_lambda(encoder_state * const encoder_state)
{
double qp = encoder_state->global->QP;
double lambda_scale = 1.0;
double qp_temp = qp - 12;
double lambda;
// Default QP-factor from HM config
double qp_factor = 0.4624;
if (encoder_state->global->slicetype == SLICE_I) {
qp_factor=0.57*lambda_scale;
}
lambda = qp_factor*pow( 2.0, qp_temp/3.0 );
if (encoder_state->global->slicetype != SLICE_I ) {
lambda *= 0.95;
}
encoder_state->global->cur_lambda_cost = lambda;
}
static int lcu_at_slice_start(const encoder_control * const encoder, int lcu_addr_in_ts) {
int i;
assert(lcu_addr_in_ts >= 0 && lcu_addr_in_ts < encoder->in.height_in_lcu * encoder->in.width_in_lcu);
if (lcu_addr_in_ts == 0) return 1;
for (i = 0; i < encoder->slice_count; ++i) {
if (encoder->slice_addresses_in_ts[i] == lcu_addr_in_ts) return 1;
}
return 0;
}
static int lcu_at_slice_end(const encoder_control * const encoder, int lcu_addr_in_ts) {
int i;
assert(lcu_addr_in_ts >= 0 && lcu_addr_in_ts < encoder->in.height_in_lcu * encoder->in.width_in_lcu);
if (lcu_addr_in_ts == encoder->in.height_in_lcu * encoder->in.width_in_lcu - 1) return 1;
for (i = 0; i < encoder->slice_count; ++i) {
if (encoder->slice_addresses_in_ts[i] == lcu_addr_in_ts + 1) return 1;
}
return 0;
}
static int lcu_at_tile_start(const encoder_control * const encoder, int lcu_addr_in_ts) {
assert(lcu_addr_in_ts >= 0 && lcu_addr_in_ts < encoder->in.height_in_lcu * encoder->in.width_in_lcu);
if (lcu_addr_in_ts == 0) return 1;
if (encoder->tiles_tile_id[lcu_addr_in_ts - 1] != encoder->tiles_tile_id[lcu_addr_in_ts]) {
return 1;
}
return 0;
}
static int lcu_at_tile_end(const encoder_control * const encoder, int lcu_addr_in_ts) {
assert(lcu_addr_in_ts >= 0 && lcu_addr_in_ts < encoder->in.height_in_lcu * encoder->in.width_in_lcu);
if (lcu_addr_in_ts == encoder->in.height_in_lcu * encoder->in.width_in_lcu - 1) return 1;
if (encoder->tiles_tile_id[lcu_addr_in_ts + 1] != encoder->tiles_tile_id[lcu_addr_in_ts]) {
return 1;
}
return 0;
}
//Return 1 if the LCU is at the first row of a structure (tile or slice)
static int lcu_in_first_row(const encoder_state * const encoder_state, int lcu_addr_in_ts) {
const int lcu_addr_in_rs = encoder_state->encoder_control->tiles_ctb_addr_ts_to_rs[lcu_addr_in_ts];
if (lcu_addr_in_rs / encoder_state->encoder_control->in.width_in_lcu == encoder_state->tile->lcu_offset_y) {
return 1;
}
if (lcu_addr_in_rs / encoder_state->encoder_control->in.width_in_lcu == encoder_state->slice->start_in_rs / encoder_state->encoder_control->in.width_in_lcu) {
return 1;
}
//One row above is before the start of the slice => it's also a boundary
if (lcu_addr_in_rs - encoder_state->encoder_control->in.width_in_lcu < encoder_state->slice->start_in_rs) {
return 1;
}
return 0;
}
//Return 1 if the LCU is at the first row of a structure (tile or slice)
static int lcu_in_last_row(const encoder_state * const encoder_state, int lcu_addr_in_ts) {
const int lcu_addr_in_rs = encoder_state->encoder_control->tiles_ctb_addr_ts_to_rs[lcu_addr_in_ts];
if (lcu_addr_in_rs / encoder_state->encoder_control->in.width_in_lcu == encoder_state->tile->lcu_offset_y + encoder_state->tile->cur_pic->height_in_lcu - 1) {
return 1;
}
if (lcu_addr_in_rs / encoder_state->encoder_control->in.width_in_lcu == encoder_state->slice->end_in_rs / encoder_state->encoder_control->in.width_in_lcu) {
return 1;
}
//One row below is before the end of the slice => it's also a boundary
if (lcu_addr_in_rs + encoder_state->encoder_control->in.width_in_lcu > encoder_state->slice->end_in_rs) {
return 1;
}
return 0;
}
//Return 1 if the LCU is at the first column of a structure (tile or slice)
static int lcu_in_first_column(const encoder_state * const encoder_state, int lcu_addr_in_ts) {
const int lcu_addr_in_rs = encoder_state->encoder_control->tiles_ctb_addr_ts_to_rs[lcu_addr_in_ts];
//First column of tile?
if (lcu_addr_in_rs % encoder_state->encoder_control->in.width_in_lcu == encoder_state->tile->lcu_offset_x) {
return 1;
}
//Slice start may not be aligned with the tile, so we need to allow this
if (lcu_addr_in_rs == encoder_state->slice->start_in_rs) {
return 1;
}
return 0;
}
//Return 1 if the LCU is at the last column of a structure (tile or slice)
static int lcu_in_last_column(const encoder_state * const encoder_state, int lcu_addr_in_ts) {
const int lcu_addr_in_rs = encoder_state->encoder_control->tiles_ctb_addr_ts_to_rs[lcu_addr_in_ts];
//First column of tile?
if (lcu_addr_in_rs % encoder_state->encoder_control->in.width_in_lcu == encoder_state->tile->lcu_offset_x + encoder_state->tile->cur_pic->width_in_lcu - 1) {
return 1;
}
//Slice start may not be aligned with the tile, so we need to allow this
if (lcu_addr_in_rs == encoder_state->slice->end_in_rs) {
return 1;
}
return 0;
}
int encoder_control_init(encoder_control * const encoder, const config * const cfg) {
if (!cfg) {
fprintf(stderr, "Config object must not be null!\n");
return 0;
}
// Config pointer to config struct
encoder->cfg = cfg;
encoder->bitdepth = 8;
// deblocking filter
encoder->deblock_enable = 1;
encoder->beta_offset_div2 = 0;
encoder->tc_offset_div2 = 0;
// SAO
encoder->sao_enable = 1;
// Rate-distortion optimization level
encoder->rdo = 1;
// Initialize the scaling list
scalinglist_init(&encoder->scaling_list);
// CQM
{
FILE* cqmfile;
cqmfile = cfg->cqmfile ? fopen(cfg->cqmfile, "rb") : NULL;
if (cqmfile) {
scalinglist_parse(&encoder->scaling_list, cqmfile);
fclose(cqmfile);
}
}
scalinglist_process(&encoder->scaling_list, encoder->bitdepth);
encoder_control_input_init(encoder, cfg->width, cfg->height);
//Tiles
encoder->tiles_enable = (encoder->cfg->tiles_width_count > 0 || encoder->cfg->tiles_height_count > 0);
{
int i, j; //iteration variables
const int num_ctbs = encoder->in.width_in_lcu * encoder->in.height_in_lcu;
int tileIdx, x, y; //iterations variable for 6-9
//Temporary pointers to allow encoder fields to be const
int32_t *tiles_col_width, *tiles_row_height, *tiles_ctb_addr_rs_to_ts, *tiles_ctb_addr_ts_to_rs, *tiles_tile_id, *tiles_col_bd, *tiles_row_bd;
if (encoder->cfg->tiles_width_count >= encoder->in.width_in_lcu) {
fprintf(stderr, "Too many tiles (width)!\n");
return 0;
} else if (encoder->cfg->tiles_height_count >= encoder->in.height_in_lcu) {
fprintf(stderr, "Too many tiles (height)!\n");
return 0;
}
//Will be (perhaps) changed later
encoder->tiles_uniform_spacing_flag = 1;
//tilesn[x,y] contains the number of _separation_ between tiles, whereas the encoder needs the number of tiles.
encoder->tiles_num_tile_columns = encoder->cfg->tiles_width_count + 1;
encoder->tiles_num_tile_rows = encoder->cfg->tiles_height_count + 1;
tiles_col_width = MALLOC(int32_t, encoder->tiles_num_tile_columns);
tiles_row_height = MALLOC(int32_t, encoder->tiles_num_tile_rows);
tiles_col_bd = MALLOC(int32_t, encoder->tiles_num_tile_columns + 1);
tiles_row_bd = MALLOC(int32_t, encoder->tiles_num_tile_rows + 1);
tiles_ctb_addr_rs_to_ts = MALLOC(int32_t, num_ctbs);
tiles_ctb_addr_ts_to_rs = MALLOC(int32_t, num_ctbs);
tiles_tile_id = MALLOC(int32_t, num_ctbs);
//(6-3) and (6-4) in ITU-T Rec. H.265 (04/2013)
if (!encoder->cfg->tiles_width_split) {
for (i=0; i < encoder->tiles_num_tile_columns; ++i) {
tiles_col_width[i] = ((i+1) * encoder->in.width_in_lcu) / encoder->tiles_num_tile_columns -
i * encoder->in.width_in_lcu / encoder->tiles_num_tile_columns;
}
} else {
int32_t last_pos_in_px = 0;
tiles_col_width[encoder->tiles_num_tile_columns-1] = encoder->in.width_in_lcu;
for (i=0; i < encoder->tiles_num_tile_columns - 1; ++i) {
int32_t column_width_in_lcu = (cfg->tiles_width_split[i] - last_pos_in_px) / LCU_WIDTH;
last_pos_in_px = cfg->tiles_width_split[i];
tiles_col_width[i] = column_width_in_lcu;
tiles_col_width[encoder->tiles_num_tile_columns - 1] -= column_width_in_lcu;
}
encoder->tiles_uniform_spacing_flag = 0;
}
if (!encoder->cfg->tiles_height_split) {
for (i=0; i < encoder->tiles_num_tile_rows; ++i) {
tiles_row_height[i] = ((i+1) * encoder->in.height_in_lcu) / encoder->tiles_num_tile_rows -
i * encoder->in.height_in_lcu / encoder->tiles_num_tile_rows;
}
} else {
int32_t last_pos_in_px = 0;
tiles_row_height[encoder->tiles_num_tile_rows-1] = encoder->in.height_in_lcu;
for (i=0; i < encoder->tiles_num_tile_rows - 1; ++i) {
int32_t row_height_in_lcu = (cfg->tiles_height_split[i] - last_pos_in_px) / LCU_WIDTH;
last_pos_in_px = cfg->tiles_height_split[i];
tiles_row_height[i] = row_height_in_lcu;
tiles_row_height[encoder->tiles_num_tile_rows - 1] -= row_height_in_lcu;
}
encoder->tiles_uniform_spacing_flag = 0;
}
//(6-5) in ITU-T Rec. H.265 (04/2013)
tiles_col_bd[0] = 0;
for (i = 0; i < encoder->tiles_num_tile_columns; ++i) {
tiles_col_bd[i+1] = tiles_col_bd[i] + tiles_col_width[i];
}
//(6-6) in ITU-T Rec. H.265 (04/2013)
tiles_row_bd[0] = 0;
for (i = 0; i < encoder->tiles_num_tile_rows; ++i) {
tiles_row_bd[i+1] = tiles_row_bd[i] + tiles_row_height[i];
}
//(6-7) in ITU-T Rec. H.265 (04/2013)
//j == ctbAddrRs
for (j = 0; j < num_ctbs; ++j) {
int tileX = 0, tileY = 0;
int tbX = j % encoder->in.width_in_lcu;
int tbY = j / encoder->in.width_in_lcu;
for (i = 0; i < encoder->tiles_num_tile_columns; ++i) {
if (tbX >= tiles_col_bd[i]) tileX = i;
}
for (i = 0; i < encoder->tiles_num_tile_rows; ++i) {
if (tbY >= tiles_row_bd[i]) tileY = i;
}
tiles_ctb_addr_rs_to_ts[j] = 0;
for (i = 0; i < tileX; ++i) {
tiles_ctb_addr_rs_to_ts[j] += tiles_row_height[tileY] * tiles_col_width[i];
}
for (i = 0; i < tileY; ++i) {
tiles_ctb_addr_rs_to_ts[j] += encoder->in.width_in_lcu * tiles_row_height[i];
}
tiles_ctb_addr_rs_to_ts[j] += (tbY - tiles_row_bd[tileY]) * tiles_col_width[tileX] +
tbX - tiles_col_bd[tileX];
}
//(6-8) in ITU-T Rec. H.265 (04/2013)
//Make reverse map from tile scan to raster scan
for (j = 0; j < num_ctbs; ++j) {
tiles_ctb_addr_ts_to_rs[tiles_ctb_addr_rs_to_ts[j]] = j;
}
//(6-9) in ITU-T Rec. H.265 (04/2013)
tileIdx = 0;
for (j=0; j < encoder->tiles_num_tile_rows; ++j) {
for (i=0; i < encoder->tiles_num_tile_columns; ++i) {
for (y = tiles_row_bd[j]; y < tiles_row_bd[j+1]; ++y) {
for (x = tiles_col_bd[i]; x < tiles_col_bd[i+1]; ++x) {
tiles_tile_id[tiles_ctb_addr_rs_to_ts[y * encoder->in.width_in_lcu + x]] = tileIdx;
}
}
++tileIdx;
}
}
encoder->tiles_col_width = tiles_col_width;
encoder->tiles_row_height = tiles_row_height;
encoder->tiles_row_bd = tiles_row_bd;
encoder->tiles_col_bd = tiles_col_bd;
encoder->tiles_ctb_addr_rs_to_ts = tiles_ctb_addr_rs_to_ts;
encoder->tiles_ctb_addr_ts_to_rs = tiles_ctb_addr_ts_to_rs;
encoder->tiles_tile_id = tiles_tile_id;
//Slices
{
int *slice_addresses_in_ts;
encoder->slice_count = encoder->cfg->slice_count;
if (encoder->slice_count == 0) {
encoder->slice_count = 1;
slice_addresses_in_ts = MALLOC(int, encoder->slice_count);
slice_addresses_in_ts[0] = 0;
} else {
int i;
slice_addresses_in_ts = MALLOC(int, encoder->slice_count);
if (!encoder->cfg->slice_addresses_in_ts) {
slice_addresses_in_ts[0] = 0;
for (i=1; i < encoder->slice_count; ++i) {
slice_addresses_in_ts[i] = encoder->in.width_in_lcu * encoder->in.height_in_lcu * i / encoder->slice_count;
}
} else {
for (i=0; i < encoder->slice_count; ++i) {
slice_addresses_in_ts[i] = encoder->cfg->slice_addresses_in_ts[i];
}
}
}
encoder->slice_addresses_in_ts = slice_addresses_in_ts;
}
encoder->wpp = encoder->cfg->wpp;
#ifdef _DEBUG
printf("Tiles columns width:");
for (i=0; i < encoder->tiles_num_tile_columns; ++i) {
printf(" %d", encoder->tiles_col_width[i]);
}
printf("\n");
printf("Tiles row height:");
for (i=0; i < encoder->tiles_num_tile_rows; ++i) {
printf(" %d", encoder->tiles_row_height[i]);
}
printf("\n");
//Print tile index map
for (y = 0; y < encoder->in.height_in_lcu; ++y) {
for (x = 0; x < encoder->in.width_in_lcu; ++x) {
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs];
const char slice_start = lcu_at_slice_start(encoder, lcu_id_ts) ? '|' : ' ';
const char slice_end = lcu_at_slice_end(encoder, lcu_id_ts) ? '|' : ' ';
printf("%c%03d%c", slice_start, encoder->tiles_tile_id[lcu_id_ts], slice_end);
}
printf("\n");
}
printf("\n");
if (encoder->wpp) {
printf("Wavefront Parallel Processing: enabled\n");
} else {
printf("Wavefront Parallel Processing: disabled\n");
}
printf("\n");
#endif //_DEBUG
}
return 1;
}
int encoder_control_finalize(encoder_control * const encoder) {
//Slices
FREE_POINTER(encoder->slice_addresses_in_ts);
//Tiles
FREE_POINTER(encoder->tiles_col_width);
FREE_POINTER(encoder->tiles_row_height);
FREE_POINTER(encoder->tiles_col_bd);
FREE_POINTER(encoder->tiles_row_bd);
FREE_POINTER(encoder->tiles_ctb_addr_rs_to_ts);
FREE_POINTER(encoder->tiles_ctb_addr_ts_to_rs);
FREE_POINTER(encoder->tiles_tile_id);
scalinglist_destroy(&encoder->scaling_list);
return 1;
}
void encoder_control_input_init(encoder_control * const encoder,
const int32_t width, const int32_t height)
{
encoder->in.width = width;
encoder->in.height = height;
encoder->in.real_width = width;
encoder->in.real_height = height;
// If input dimensions are not divisible by the smallest block size, add
// pixels to the dimensions, so that they are. These extra pixels will be
// compressed along with the real ones but they will be cropped out before
// rendering.
if (encoder->in.width % CU_MIN_SIZE_PIXELS) {
encoder->in.width += CU_MIN_SIZE_PIXELS - (width % CU_MIN_SIZE_PIXELS);
}
if (encoder->in.height % CU_MIN_SIZE_PIXELS) {
encoder->in.height += CU_MIN_SIZE_PIXELS - (height % CU_MIN_SIZE_PIXELS);
}
encoder->in.height_in_lcu = encoder->in.height / LCU_WIDTH;
encoder->in.width_in_lcu = encoder->in.width / LCU_WIDTH;
// Add one extra LCU when image not divisible by LCU_WIDTH
if (encoder->in.height_in_lcu * LCU_WIDTH < height) {
encoder->in.height_in_lcu++;
}
if (encoder->in.width_in_lcu * LCU_WIDTH < width) {
encoder->in.width_in_lcu++;
}
#ifdef _DEBUG
if (width != encoder->in.width || height != encoder->in.height) {
printf("Picture buffer has been extended to be a multiple of the smallest block size:\r\n");
printf(" Width = %d (%d), Height = %d (%d)\r\n", width, encoder->in.width, height,
encoder->in.height);
}
#endif
}
static int encoder_state_config_global_init(encoder_state * const encoder_state) {
encoder_state->global->ref = picture_list_init(MAX_REF_PIC_COUNT);
if(!encoder_state->global->ref) {
fprintf(stderr, "Failed to allocate the picture list!\n");
return 0;
}
encoder_state->global->ref_list = REF_PIC_LIST_0;
encoder_state->global->frame = 0;
encoder_state->global->poc = 0;
return 1;
}
static void encoder_state_config_global_finalize(encoder_state * const encoder_state) {
picture_list_destroy(encoder_state->global->ref);
}
static int encoder_state_config_tile_init(encoder_state * const encoder_state,
const int lcu_offset_x, const int lcu_offset_y,
const int width, const int height, const int width_in_lcu, const int height_in_lcu) {
const encoder_control * const encoder = encoder_state->encoder_control;
encoder_state->tile->cur_pic = picture_alloc(width, height, width_in_lcu, height_in_lcu);
if (!encoder_state->tile->cur_pic) {
printf("Error allocating picture!\r\n");
return 0;
}
// Init coeff data table
//FIXME: move them
encoder_state->tile->cur_pic->coeff_y = MALLOC(coefficient, width * height);
encoder_state->tile->cur_pic->coeff_u = MALLOC(coefficient, (width * height) >> 2);
encoder_state->tile->cur_pic->coeff_v = MALLOC(coefficient, (width * height) >> 2);
encoder_state->tile->lcu_offset_x = lcu_offset_x;
encoder_state->tile->lcu_offset_y = lcu_offset_y;
encoder_state->tile->lcu_offset_in_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_offset_x + lcu_offset_y * encoder->in.width_in_lcu];
encoder_state->tile->id = encoder->tiles_tile_id[encoder_state->tile->lcu_offset_in_ts];
return 1;
}
static void encoder_state_config_tile_finalize(encoder_state * const encoder_state) {
picture_free(encoder_state->tile->cur_pic);
encoder_state->tile->cur_pic = NULL;
}
static int encoder_state_config_slice_init(encoder_state * const encoder_state,
const int start_address_in_ts, const int end_address_in_ts) {
int i = 0, slice_found=0;
for (i = 0; i < encoder_state->encoder_control->slice_count; ++i) {
if (encoder_state->encoder_control->slice_addresses_in_ts[i] == start_address_in_ts) {
encoder_state->slice->id = i;
slice_found = 1;
break;
}
}
assert(slice_found);
encoder_state->slice->start_in_ts = start_address_in_ts;
encoder_state->slice->end_in_ts = end_address_in_ts;
encoder_state->slice->start_in_rs = encoder_state->encoder_control->tiles_ctb_addr_ts_to_rs[start_address_in_ts];
encoder_state->slice->end_in_rs = encoder_state->encoder_control->tiles_ctb_addr_ts_to_rs[end_address_in_ts];
return 1;
}
static void encoder_state_config_slice_finalize(encoder_state * const encoder_state) {
//Nothing to do (yet?)
}
static int encoder_state_config_wfrow_init(encoder_state * const encoder_state,
const int lcu_offset_y) {
encoder_state->wfrow->lcu_offset_y = lcu_offset_y;
return 1;
}
static void encoder_state_config_wfrow_finalize(encoder_state * const encoder_state) {
//Nothing to do (yet?)
}
#ifdef _DEBUG
static void encoder_state_dump_graphviz(const encoder_state * const encoder_state) {
int i;
if (!encoder_state->parent) {
const encoder_control * const encoder = encoder_state->encoder_control;
int y,x;
//Empty lines (easier to copy-paste)
printf("\n\n\n\n\n");
//Some styling...
printf("digraph EncoderStates {\n");
printf(" fontname = \"Bitstream Vera Sans\"\n");
printf(" fontsize = 8\n\n");
printf(" node [\n");
printf(" fontname = \"Bitstream Vera Sans\"\n");
printf(" fontsize = 8\n");
printf(" shape = \"record\"\n");
printf(" ]\n\n");
printf(" edge [\n");
printf(" arrowtail = \"empty\"\n");
printf(" ]\n\n");
printf(" \"Map\" [\n");
printf(" shape=plaintext\n");
printf(" label = <<table cellborder=\"1\" cellspacing=\"0\" border=\"0\">");
printf("<tr><td colspan=\"%d\" height=\"20\" valign=\"bottom\"><b>RS Map</b></td></tr>", encoder->in.width_in_lcu);
for (y = 0; y < encoder->in.height_in_lcu; ++y) {
printf("<tr>");
for (x = 0; x < encoder->in.width_in_lcu; ++x) {
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
printf("<td>%d</td>", lcu_id_rs);
}
printf("</tr>");
}
printf("<tr><td colspan=\"%d\" height=\"20\" valign=\"bottom\"><b>TS Map</b></td></tr>", encoder->in.width_in_lcu);
for (y = 0; y < encoder->in.height_in_lcu; ++y) {
printf("<tr>");
for (x = 0; x < encoder->in.width_in_lcu; ++x) {
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs];
printf("<td>%d</td>", lcu_id_ts);
}
printf("</tr>");
}
printf("<tr><td colspan=\"%d\" height=\"20\" valign=\"bottom\"><b>Tile map</b></td></tr>", encoder->in.width_in_lcu);
for (y = 0; y < encoder->in.height_in_lcu; ++y) {
printf("<tr>");
for (x = 0; x < encoder->in.width_in_lcu; ++x) {
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs];
printf("<td>%d</td>", encoder->tiles_tile_id[lcu_id_ts]);
}
printf("</tr>");
}
printf("<tr><td colspan=\"%d\" height=\"20\" valign=\"bottom\"><b>Slice map</b></td></tr>", encoder->in.width_in_lcu);
for (y = 0; y < encoder->in.height_in_lcu; ++y) {
printf("<tr>");
for (x = 0; x < encoder->in.width_in_lcu; ++x) {
const int lcu_id_rs = y * encoder->in.width_in_lcu + x;
const int lcu_id_ts = encoder->tiles_ctb_addr_rs_to_ts[lcu_id_rs];
int slice_id = 0;
//Not efficient, but who cares
for (i=0; i < encoder->slice_count; ++i) {
if (encoder->slice_addresses_in_ts[i] <= lcu_id_ts) {
slice_id = i;
}
}
printf("<td>%d</td>", slice_id);
}
printf("</tr>");
}
printf("</table>>\n ]\n");
}
printf(" \"%p\" [\n", encoder_state);
printf(" label = \"{encoder_state|");
printf("+ type=%c\\l", encoder_state->type);
if (!encoder_state->parent || encoder_state->global != encoder_state->parent->global) {
printf("|+ global\\l");
}
if (!encoder_state->parent || encoder_state->tile != encoder_state->parent->tile) {
printf("|+ tile\\l");
printf(" - id = %d\\l", encoder_state->tile->id);
printf(" - lcu_offset_x = %d\\l", encoder_state->tile->lcu_offset_x);
printf(" - lcu_offset_y = %d\\l", encoder_state->tile->lcu_offset_y);
printf(" - lcu_offset_in_ts = %d\\l", encoder_state->tile->lcu_offset_in_ts);
}
if (!encoder_state->parent || encoder_state->slice != encoder_state->parent->slice) {
printf("|+ slice\\l");
printf(" - id = %d\\l", encoder_state->slice->id);
printf(" - start_in_ts = %d\\l", encoder_state->slice->start_in_ts);
printf(" - end_in_ts = %d\\l", encoder_state->slice->end_in_ts);
printf(" - start_in_rs = %d\\l", encoder_state->slice->start_in_rs);
printf(" - end_in_rs = %d\\l", encoder_state->slice->end_in_rs);
}
if (!encoder_state->parent || encoder_state->wfrow != encoder_state->parent->wfrow) {
printf("|+ wfrow\\l");
printf(" - lcu_offset_y = %d\\l", encoder_state->wfrow->lcu_offset_y);
}
printf("}\"\n");
printf(" ]\n");
if (encoder_state->parent) {
printf(" \"%p\" -> \"%p\"\n", encoder_state->parent, encoder_state);
}
for (i = 0; encoder_state->children[i].encoder_control; ++i) {
encoder_state_dump_graphviz(&encoder_state->children[i]);
}
if (!encoder_state->parent) {
printf("}\n");
//Empty lines (easier to copy-paste)
printf("\n\n\n\n\n");
}
}
#endif //_DEBUG
int encoder_state_init(encoder_state * const child_state, encoder_state * const parent_state) {
//We require that, if parent_state is NULL:
//child_state->encoder_control is set
//
//If parent_state is not NULL, the following variable should either be set to NULL,
//in order to inherit from parent, or should point to a valid structure:
//child_state->global
//child_state->tile
//child_state->slice
//child_state->wfrow
child_state->parent = parent_state;
child_state->children = MALLOC(encoder_state, 1);
child_state->children[0].encoder_control = NULL;
if (!parent_state) {
const encoder_control * const encoder = child_state->encoder_control;
child_state->type = ENCODER_STATE_TYPE_MAIN;
assert(child_state->encoder_control);
child_state->global = MALLOC(encoder_state_config_global, 1);
if (!child_state->global || !encoder_state_config_global_init(child_state)) {
fprintf(stderr, "Could not initialize encoder_state->global!\n");
return 0;
}
child_state->tile = MALLOC(encoder_state_config_tile, 1);
if (!child_state->tile || !encoder_state_config_tile_init(child_state, 0, 0, encoder->in.width, encoder->in.height, encoder->in.width_in_lcu, encoder->in.height_in_lcu)) {
fprintf(stderr, "Could not initialize encoder_state->tile!\n");
return 0;
}
child_state->slice = MALLOC(encoder_state_config_slice, 1);
if (!child_state->slice || !encoder_state_config_slice_init(child_state, 0, encoder->in.width_in_lcu * encoder->in.height_in_lcu - 1)) {
fprintf(stderr, "Could not initialize encoder_state->slice!\n");
return 0;
}
child_state->wfrow = MALLOC(encoder_state_config_wfrow, 1);
if (!child_state->wfrow || !encoder_state_config_wfrow_init(child_state, 0)) {
fprintf(stderr, "Could not initialize encoder_state->wfrow!\n");
return 0;
}
} else {
child_state->encoder_control = parent_state->encoder_control;
if (!child_state->global) child_state->global = parent_state->global;
if (!child_state->tile) child_state->tile = parent_state->tile;
if (!child_state->slice) child_state->slice = parent_state->slice;
if (!child_state->wfrow) child_state->wfrow = parent_state->wfrow;
}
//Allocate bitstream
if (child_state->type == ENCODER_STATE_TYPE_MAIN) {
//Main encoder outputs to file
if (!bitstream_init(&child_state->stream, BITSTREAM_TYPE_FILE)) {
fprintf(stderr, "Could not initialize stream!\n");
return 0;
}
child_state->stream.file.output = child_state->encoder_control->out.file;
} else {
//Other encoders use a memory bitstream
if (!bitstream_init(&child_state->stream, BITSTREAM_TYPE_MEMORY)) {
fprintf(stderr, "Could not initialize stream!\n");
return 0;
}
}
// Set CABAC output bitstream
child_state->cabac.stream = &child_state->stream;
//Create sub-encoders
{
const encoder_control * const encoder = child_state->encoder_control;
int child_count = 0;
//We first check the type of this element.
//If it's a MAIN, it can allow both slices or tiles as child
//If it's a TILE, it can allow slices as child, if its parent is not a slice, or wavefront rows if there is no other children
//If it's a SLICE, it can allow tiles as child, if its parent is not a tile, or wavefront rows if there is no other children
//If it's a WAVEFRONT_ROW, it doesn't allow any children
int children_allow_wavefront_row = 0;
int children_allow_slice = 0;
int children_allow_tile = 0;
int range_start;
int start_in_ts, end_in_ts;
switch(child_state->type) {
case ENCODER_STATE_TYPE_MAIN:
children_allow_slice = 1;
children_allow_tile = 1;
start_in_ts = 0;
end_in_ts = child_state->tile->cur_pic->width_in_lcu * child_state->tile->cur_pic->height_in_lcu;
break;
case ENCODER_STATE_TYPE_SLICE:
assert(child_state->parent);
if (child_state->parent->type != ENCODER_STATE_TYPE_TILE) children_allow_tile = 1;
children_allow_wavefront_row = encoder->wpp;
start_in_ts = child_state->slice->start_in_ts;
end_in_ts = child_state->slice->end_in_ts;
break;
case ENCODER_STATE_TYPE_TILE:
assert(child_state->parent);
if (child_state->parent->type != ENCODER_STATE_TYPE_SLICE) children_allow_slice = 1;
children_allow_wavefront_row = encoder->wpp;
start_in_ts = child_state->tile->lcu_offset_in_ts;
end_in_ts = child_state->tile->lcu_offset_in_ts + child_state->tile->cur_pic->width_in_lcu * child_state->tile->cur_pic->height_in_lcu;
break;
case ENCODER_STATE_TYPE_WAVEFRONT_ROW:
//GCC tries to be too clever...
start_in_ts = -1;
end_in_ts = -1;
break;
default:
fprintf(stderr, "Invalid encoder_state->type %d!\n", child_state->type);
assert(0);
return 0;
}
range_start = start_in_ts;
//printf("%c-%p: start_in_ts=%d, end_in_ts=%d\n",child_state->type, child_state, start_in_ts, end_in_ts);
while (range_start < end_in_ts && (children_allow_slice || children_allow_tile)) {
encoder_state *new_child = NULL;
int range_end_slice = range_start; //Will be incremented to get the range of the "thing"
int range_end_tile = range_start; //Will be incremented to get the range of the "thing"
int tile_allowed = lcu_at_tile_start(encoder, range_start) && children_allow_tile;
int slice_allowed = lcu_at_slice_start(encoder, range_start) && children_allow_slice;
//Find the smallest structure following the cursor
if (slice_allowed) {
while(!lcu_at_slice_end(encoder, range_end_slice)) {
++range_end_slice;
}
}
if (tile_allowed) {
while(!lcu_at_tile_end(encoder, range_end_tile)) {
++range_end_tile;
}
}
//printf("range_start=%d, range_end_slice=%d, range_end_tile=%d, tile_allowed=%d, slice_allowed=%d end_in_ts=%d\n",range_start,range_end_slice,range_end_tile,tile_allowed,slice_allowed,end_in_ts);
if ((!tile_allowed || (range_end_slice >= range_end_tile)) && !new_child && slice_allowed) {
//Create a slice
new_child = &child_state->children[child_count];
new_child->encoder_control = encoder;
new_child->type = ENCODER_STATE_TYPE_SLICE;
new_child->global = child_state->global;
new_child->tile = child_state->tile;
new_child->wfrow = child_state->wfrow;
new_child->slice = MALLOC(encoder_state_config_slice, 1);
if (!new_child->slice || !encoder_state_config_slice_init(new_child, range_start, range_end_slice)) {
fprintf(stderr, "Could not initialize encoder_state->slice!\n");
return 0;
}
}
if ((!slice_allowed || (range_end_slice < range_end_tile)) && !new_child && tile_allowed) {
//Create a tile
int tile_id = encoder->tiles_tile_id[range_start];
int tile_x = tile_id % encoder->tiles_num_tile_columns;
int tile_y = tile_id / encoder->tiles_num_tile_columns;
int lcu_offset_x = encoder->tiles_col_bd[tile_x];
int lcu_offset_y = encoder->tiles_row_bd[tile_y];
int width_in_lcu = encoder->tiles_col_bd[tile_x+1]-encoder->tiles_col_bd[tile_x];
int height_in_lcu = encoder->tiles_row_bd[tile_y+1]-encoder->tiles_row_bd[tile_y];
int width = MIN(width_in_lcu * LCU_WIDTH, encoder->in.width - lcu_offset_x * LCU_WIDTH);
int height = MIN(height_in_lcu * LCU_WIDTH, encoder->in.height - lcu_offset_y * LCU_WIDTH);
new_child = &child_state->children[child_count];
new_child->encoder_control = encoder;
new_child->type = ENCODER_STATE_TYPE_TILE;
new_child->global = child_state->global;
new_child->tile = MALLOC(encoder_state_config_tile, 1);
new_child->slice = child_state->slice;
new_child->wfrow = child_state->wfrow;
if (!new_child->tile || !encoder_state_config_tile_init(new_child, lcu_offset_x, lcu_offset_y, width, height, width_in_lcu, height_in_lcu)) {
fprintf(stderr, "Could not initialize encoder_state->tile!\n");
return 0;
}
}
if (new_child) {
child_state->children = realloc(child_state->children, sizeof(encoder_state) * (2+child_count));
child_state->children[1+child_count].encoder_control = NULL;
if (!child_state->children) {
fprintf(stderr, "Failed to allocate memory for children...\n");
return 0;
}
//Fix children parent (since we changed the address), except for the last one which is not ready yet
{
int i, j;
for (i = 0; child_state->children[i].encoder_control && i < child_count; ++i) {
for (j = 0; child_state->children[i].children[j].encoder_control; ++j) {
child_state->children[i].children[j].parent = &child_state->children[i];
}
child_state->children[i].cabac.stream = &child_state->children[i].stream;
}
}
if (!encoder_state_init(&child_state->children[child_count], child_state)) {
fprintf(stderr, "Unable to init child...\n");
return 0;
}
child_count += 1;
}
range_start = MAX(range_end_slice, range_end_tile) + 1;
}
//We create wavefronts only if we have no children
if (children_allow_wavefront_row && child_count == 0) {
int first_row = encoder->tiles_ctb_addr_ts_to_rs[start_in_ts] / encoder->in.width_in_lcu;
int last_row = encoder->tiles_ctb_addr_ts_to_rs[start_in_ts] / encoder->in.width_in_lcu;
int num_rows;
int i;
assert(!(children_allow_slice || children_allow_tile));
assert(child_count == 0);
for (i=start_in_ts; i<end_in_ts; ++i) {
const int row = encoder->tiles_ctb_addr_ts_to_rs[i] / encoder->in.width_in_lcu;
if (row < first_row) first_row = row;
if (row > last_row) last_row = row;
}
num_rows = last_row - first_row + 1;
//When entropy_coding_sync_enabled_flag is equal to 1 and the first coding tree block in a slice is not the first coding
//tree block of a row of coding tree blocks in a tile, it is a requirement of bitstream conformance that the last coding tree
//block in the slice shall belong to the same row of coding tree blocks as the first coding tree block in the slice.
if (encoder->tiles_ctb_addr_ts_to_rs[start_in_ts] % encoder->in.width_in_lcu != child_state->tile->lcu_offset_x) {
if (num_rows > 1) {
fprintf(stderr, "Invalid: first CTB in slice %d is not at the tile %d edge, and the slice spans on more than one row.\n", child_state->slice->id, child_state->tile->id);
return 0;
}
}
//FIXME Do the same kind of check if we implement slice segments
child_count = num_rows;
child_state->children = realloc(child_state->children, sizeof(encoder_state) * (num_rows + 1));
child_state->children[num_rows].encoder_control = NULL;
for (i=0; i < num_rows; ++i) {
encoder_state *new_child = &child_state->children[i];
new_child->encoder_control = encoder;
new_child->type = ENCODER_STATE_TYPE_WAVEFRONT_ROW;
new_child->global = child_state->global;
new_child->tile = child_state->tile;
new_child->slice = child_state->slice;
new_child->wfrow = MALLOC(encoder_state_config_wfrow, 1);
if (!new_child->wfrow || !encoder_state_config_wfrow_init(new_child, i + first_row)) {
fprintf(stderr, "Could not initialize encoder_state->wfrow!\n");
return 0;
}
if (!encoder_state_init(new_child, child_state)) {
fprintf(stderr, "Unable to init child...\n");
return 0;
}
}
}
child_state->is_leaf = (child_count == 0);
//This node is a leaf, compute LCU-order
if (child_state->is_leaf) {
//All LCU computations are relative to the tile
//Remark: this could be optimized, but since it's run only once, it's better to do it in a understandable way.
//By default, the full tile
int i;
int lcu_id;
int lcu_start = 0;
//End is the element AFTER the end (iterate < lcu_end)
int lcu_end = child_state->tile->cur_pic->width_in_lcu * child_state->tile->cur_pic->height_in_lcu;
//Restrict to the current slice if needed
lcu_start = MAX(lcu_start, child_state->slice->start_in_ts - child_state->tile->lcu_offset_in_ts);
lcu_end = MIN(lcu_end, child_state->slice->end_in_ts - child_state->tile->lcu_offset_in_ts + 1);
//Restrict to the current wavefront row if needed
if (child_state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW) {
lcu_start = MAX(lcu_start, (child_state->wfrow->lcu_offset_y - child_state->tile->lcu_offset_y) * child_state->tile->cur_pic->width_in_lcu);
lcu_end = MIN(lcu_end, (child_state->wfrow->lcu_offset_y - child_state->tile->lcu_offset_y + 1) * child_state->tile->cur_pic->width_in_lcu);
}
child_state->lcu_order_count = lcu_end - lcu_start;
child_state->lcu_order = MALLOC(lcu_order_element, child_state->lcu_order_count);
for (i = 0; i < child_state->lcu_order_count; ++i) {
lcu_id = lcu_start + i;
child_state->lcu_order[i].id = lcu_id;
child_state->lcu_order[i].position.x = lcu_id % child_state->tile->cur_pic->width_in_lcu;
child_state->lcu_order[i].position.y = lcu_id / child_state->tile->cur_pic->width_in_lcu;
child_state->lcu_order[i].position_px.x = child_state->lcu_order[i].position.x * LCU_WIDTH;
child_state->lcu_order[i].position_px.y = child_state->lcu_order[i].position.y * LCU_WIDTH;
child_state->lcu_order[i].size.x = MIN(LCU_WIDTH, encoder->in.width - (child_state->tile->lcu_offset_x * LCU_WIDTH + child_state->lcu_order[i].position_px.x));
child_state->lcu_order[i].size.y = MIN(LCU_WIDTH, encoder->in.height - (child_state->tile->lcu_offset_y * LCU_WIDTH + child_state->lcu_order[i].position_px.y));
child_state->lcu_order[i].position_next_px.x = child_state->lcu_order[i].position_px.x + child_state->lcu_order[i].size.x;
child_state->lcu_order[i].position_next_px.y = child_state->lcu_order[i].position_px.y + child_state->lcu_order[i].size.y;
child_state->lcu_order[i].first_row = lcu_in_first_row(child_state, child_state->tile->lcu_offset_in_ts + lcu_id);
child_state->lcu_order[i].last_row = lcu_in_last_row(child_state, child_state->tile->lcu_offset_in_ts + lcu_id);
child_state->lcu_order[i].first_column = lcu_in_first_column(child_state, child_state->tile->lcu_offset_in_ts + lcu_id);
child_state->lcu_order[i].last_column = lcu_in_last_column(child_state, child_state->tile->lcu_offset_in_ts + lcu_id);
}
} else {
child_state->lcu_order_count = 0;
child_state->lcu_order = NULL;
}
}
//Validate the structure
if (child_state->type == ENCODER_STATE_TYPE_TILE) {
if (child_state->tile->lcu_offset_in_ts < child_state->slice->start_in_ts) {
fprintf(stderr, "Tile %d starts before slice %d, in which it should be included!\n", child_state->tile->id, child_state->slice->id);
return 0;
}
if (child_state->tile->lcu_offset_in_ts + child_state->tile->cur_pic->width_in_lcu * child_state->tile->cur_pic->height_in_lcu - 1 > child_state->slice->end_in_ts) {
fprintf(stderr, "Tile %d ends after slice %d, in which it should be included!\n", child_state->tile->id, child_state->slice->id);
return 0;
}
}
if (child_state->type == ENCODER_STATE_TYPE_SLICE) {
if (child_state->slice->start_in_ts < child_state->tile->lcu_offset_in_ts) {
fprintf(stderr, "Slice %d starts before tile %d, in which it should be included!\n", child_state->slice->id, child_state->tile->id);
return 0;
}
if (child_state->slice->end_in_ts > child_state->tile->lcu_offset_in_ts + child_state->tile->cur_pic->width_in_lcu * child_state->tile->cur_pic->height_in_lcu - 1) {
fprintf(stderr, "Slice %d ends after tile %d, in which it should be included!\n", child_state->slice->id, child_state->tile->id);
return 0;
}
}
#ifdef _DEBUG
if (!parent_state) encoder_state_dump_graphviz(child_state);
#endif //_DEBUG
return 1;
}
void encoder_state_finalize(encoder_state * const encoder_state) {
if (encoder_state->children) {
int i=0;
for (i = 0; encoder_state->children[i].encoder_control; ++i) {
encoder_state_finalize(&encoder_state->children[i]);
}
FREE_POINTER(encoder_state->children);
}
FREE_POINTER(encoder_state->lcu_order);
encoder_state->lcu_order_count = 0;
if (!encoder_state->parent || (encoder_state->parent->wfrow != encoder_state->wfrow)) {
encoder_state_config_wfrow_finalize(encoder_state);
FREE_POINTER(encoder_state->wfrow);
}
if (!encoder_state->parent || (encoder_state->parent->slice != encoder_state->slice)) {
encoder_state_config_slice_finalize(encoder_state);
FREE_POINTER(encoder_state->slice);
}
if (!encoder_state->parent || (encoder_state->parent->tile != encoder_state->tile)) {
encoder_state_config_tile_finalize(encoder_state);
FREE_POINTER(encoder_state->tile);
}
if (!encoder_state->parent || (encoder_state->parent->global != encoder_state->global)) {
encoder_state_config_global_finalize(encoder_state);
FREE_POINTER(encoder_state->global);
}
bitstream_finalize(&encoder_state->stream);
}
static void encoder_state_clear_refs(encoder_state *encoder_state) {
//FIXME: Do we need to handle children? At present they all share the same global
while (encoder_state->global->ref->used_size) {
picture_list_rem(encoder_state->global->ref, encoder_state->global->ref->used_size - 1);
}
encoder_state->global->poc = 0;
}
static void encoder_state_blit_pixels(const encoder_state * const target_enc, pixel * const target, const encoder_state * const source_enc, const pixel * const source, const int is_y_channel) {
const int source_offset_x = source_enc->tile->lcu_offset_x * LCU_WIDTH;
const int source_offset_y = source_enc->tile->lcu_offset_y * LCU_WIDTH;
const int target_offset_x = target_enc->tile->lcu_offset_x * LCU_WIDTH;
const int target_offset_y = target_enc->tile->lcu_offset_y * LCU_WIDTH;
int source_stride = source_enc->tile->cur_pic->width;
int target_stride = target_enc->tile->cur_pic->width;
int width;
int height;
int source_offset;
int target_offset;
//Do nothing if the source and the destination is the same!
if (source_enc->tile == target_enc->tile) return;
if (is_y_channel) {
target_offset = source_offset_x + source_offset_y * target_enc->tile->cur_pic->width;
source_offset = target_offset_x + target_offset_y * source_enc->tile->cur_pic->width;
} else {
target_offset = source_offset_x/2 + source_offset_y/2 * target_enc->tile->cur_pic->width/2;
source_offset = target_offset_x/2 + target_offset_y/2 * source_enc->tile->cur_pic->width/2;
}
if (target_enc->children) {
//Use information from the source
width = MIN(source_enc->tile->cur_pic->width_in_lcu * LCU_WIDTH, target_enc->tile->cur_pic->width - source_offset_x);
height = MIN(source_enc->tile->cur_pic->height_in_lcu * LCU_WIDTH, target_enc->tile->cur_pic->height - source_offset_y);
} else {
//Use information from the target
width = MIN(target_enc->tile->cur_pic->width_in_lcu * LCU_WIDTH, source_enc->tile->cur_pic->width - target_offset_x);
height = MIN(target_enc->tile->cur_pic->height_in_lcu * LCU_WIDTH, source_enc->tile->cur_pic->height - target_offset_y);
}
if (!is_y_channel) {
width /= 2;
height /= 2;
source_stride /= 2;
target_stride /= 2;
}
//picture_blit_pixels(source + source_offset, target + target_offset, width, height, source_enc->cur_pic->width, target_enc->cur_pic->width);
picture_blit_pixels(source + source_offset, target + target_offset, width, height, source_stride, target_stride);
}
static void write_aud(encoder_state * const encoder_state)
{
bitstream * const stream = &encoder_state->stream;
encode_access_unit_delimiter(encoder_state);
nal_write(stream, AUD_NUT, 0, 1);
bitstream_align(stream);
}
static void encoder_state_encode_leaf(encoder_state * const encoder_state) {
const encoder_control * const encoder = encoder_state->encoder_control;
#ifndef NDEBUG
const unsigned long long int debug_bitstream_position = bitstream_tell(&(encoder_state->stream));
#endif
yuv_t *hor_buf = yuv_t_alloc(encoder_state->tile->cur_pic->width);
// Allocate 2 extra luma pixels so we get 1 extra chroma pixel for the
// for the extra pixel on the top right.
yuv_t *ver_buf = yuv_t_alloc(LCU_WIDTH + 2);
//Picture
picture* const cur_pic = encoder_state->tile->cur_pic;
int i = 0;
assert(encoder_state->is_leaf);
assert(encoder_state->lcu_order_count > 0);
//For wavefronts, we need to get initial data from the row above
if (encoder_state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW && !encoder_state->lcu_order[0].first_row) {
const lcu_order_element * const lcu = &encoder_state->lcu_order[0];
picture_blit_pixels(&cur_pic->y_recdata[(lcu->position_px.y - 1) * cur_pic->width + lcu->position_px.x],
&hor_buf->y[lcu->position_px.x],
lcu->size.x, 1, cur_pic->width, cur_pic->width);
picture_blit_pixels(&cur_pic->u_recdata[(lcu->position_px.y / 2 - 1) * cur_pic->width / 2 + lcu->position_px.x / 2],
&hor_buf->u[lcu->position_px.x / 2],
lcu->size.x / 2, 1, cur_pic->width / 2, cur_pic->width / 2);
picture_blit_pixels(&cur_pic->v_recdata[(lcu->position_px.y / 2 - 1) * cur_pic->width / 2 + lcu->position_px.x / 2],
&hor_buf->v[lcu->position_px.x / 2],
lcu->size.x / 2, 1, cur_pic->width / 2, cur_pic->width / 2);
ver_buf->y[0] = hor_buf->y[lcu->position_next_px.x - 1];
ver_buf->u[0] = hor_buf->u[lcu->position_next_px.x / 2 - 1];
ver_buf->v[0] = hor_buf->v[lcu->position_next_px.x / 2 - 1];
/*picture_blit_pixels(&cur_pic->y_recdata[lcu->position_px.y * cur_pic->width + lcu->position_next_px.x - 1],
&ver_buf->y[1],
1, lcu->size.y, cur_pic->width, 1);
picture_blit_pixels(&cur_pic->u_recdata[lcu->position_px.y * cur_pic->width / 4 + (lcu->position_next_px.x / 2) - 1],
&ver_buf->u[1],
1, lcu->size.y / 2, cur_pic->width / 2, 1);
picture_blit_pixels(&cur_pic->v_recdata[lcu->position_px.y * cur_pic->width / 4 + (lcu->position_next_px.x / 2) - 1],
&ver_buf->v[1],
1, lcu->size.y / 2, cur_pic->width / 2, 1);*/
}
for (i = 0; i < encoder_state->lcu_order_count; ++i) {
const lcu_order_element * const lcu = &encoder_state->lcu_order[i];
search_lcu(encoder_state, lcu->position_px.x, lcu->position_px.y, hor_buf, ver_buf);
// Take the bottom right pixel from the LCU above and put it as the
// first pixel in this LCUs rightmost pixels.
if (lcu->position.y > 0) {
ver_buf->y[0] = hor_buf->y[lcu->position_next_px.x - 1];
ver_buf->u[0] = hor_buf->u[lcu->position_next_px.x / 2 - 1];
ver_buf->v[0] = hor_buf->v[lcu->position_next_px.x / 2 - 1];
}
// Take bottom and right pixels from this LCU to be used on the search of next LCU.
picture_blit_pixels(&cur_pic->y_recdata[(lcu->position_next_px.y - 1) * cur_pic->width + lcu->position_px.x],
&hor_buf->y[lcu->position_px.x],
lcu->size.x, 1, cur_pic->width, cur_pic->width);
picture_blit_pixels(&cur_pic->u_recdata[(lcu->position_next_px.y / 2 - 1) * cur_pic->width / 2 + lcu->position_px.x / 2],
&hor_buf->u[lcu->position_px.x / 2],
lcu->size.x / 2, 1, cur_pic->width / 2, cur_pic->width / 2);
picture_blit_pixels(&cur_pic->v_recdata[(lcu->position_next_px.y / 2 - 1) * cur_pic->width / 2 + lcu->position_px.x / 2],
&hor_buf->v[lcu->position_px.x / 2],
lcu->size.x / 2, 1, cur_pic->width / 2, cur_pic->width / 2);
picture_blit_pixels(&cur_pic->y_recdata[lcu->position_px.y * cur_pic->width + lcu->position_next_px.x - 1],
&ver_buf->y[1],
1, lcu->size.y, cur_pic->width, 1);
picture_blit_pixels(&cur_pic->u_recdata[lcu->position_px.y * cur_pic->width / 4 + (lcu->position_next_px.x / 2) - 1],
&ver_buf->u[1],
1, lcu->size.y / 2, cur_pic->width / 2, 1);
picture_blit_pixels(&cur_pic->v_recdata[lcu->position_px.y * cur_pic->width / 4 + (lcu->position_next_px.x / 2) - 1],
&ver_buf->v[1],
1, lcu->size.y / 2, cur_pic->width / 2, 1);
if (encoder->deblock_enable) {
filter_deblock_lcu(encoder_state, lcu->position_px.x, lcu->position_px.y);
}
if (encoder->sao_enable) {
const int stride = cur_pic->width_in_lcu;
sao_info *sao_luma = &cur_pic->sao_luma[lcu->position.y * stride + lcu->position.x];
sao_info *sao_chroma = &cur_pic->sao_chroma[lcu->position.y * stride + lcu->position.x];
init_sao_info(sao_luma);
init_sao_info(sao_chroma);
{
sao_info *sao_top = lcu->position.y != 0 ? &cur_pic->sao_luma[(lcu->position.y - 1) * stride + lcu->position.x] : NULL;
sao_info *sao_left = lcu->position.x != 0 ? &cur_pic->sao_luma[lcu->position.y * stride + lcu->position.x -1] : NULL;
sao_search_luma(encoder_state, cur_pic, lcu->position.x, lcu->position.y, sao_luma, sao_top, sao_left);
}
{
sao_info *sao_top = lcu->position.y != 0 ? &cur_pic->sao_chroma[(lcu->position.y - 1) * stride + lcu->position.x] : NULL;
sao_info *sao_left = lcu->position.x != 0 ? &cur_pic->sao_chroma[lcu->position.y * stride + lcu->position.x - 1] : NULL;
sao_search_chroma(encoder_state, cur_pic, lcu->position.x, lcu->position.y, sao_chroma, sao_top, sao_left);
}
// Merge only if both luma and chroma can be merged
sao_luma->merge_left_flag = sao_luma->merge_left_flag & sao_chroma->merge_left_flag;
sao_luma->merge_up_flag = sao_luma->merge_up_flag & sao_chroma->merge_up_flag;
}
}
if (encoder->sao_enable) {
sao_reconstruct_frame(encoder_state);
}
//We should not have written to bitstream!
assert(debug_bitstream_position == bitstream_tell(&(encoder_state->stream)));
yuv_t_free(hor_buf);
yuv_t_free(ver_buf);
}
static void encoder_state_encode(encoder_state * const main_state) {
//If we have children, encode at child level
if (main_state->children[0].encoder_control) {
int i=0, max_i=0;
//OpenMP doesn't like aving a stop condition like main_state->children[i].encoder_control.
//We compute max_i to avoid this.
for (i=0; main_state->children[i].encoder_control; ++i);
max_i = i;
if (max_i > 1) {
#pragma omp parallel for
for (i=0; i < max_i; ++i) {
encoder_state *sub_state = &(main_state->children[i]);
if (sub_state->tile != main_state->tile) {
encoder_state_blit_pixels(sub_state, sub_state->tile->cur_pic->y_data, main_state, main_state->tile->cur_pic->y_data, 1);
encoder_state_blit_pixels(sub_state, sub_state->tile->cur_pic->u_data, main_state, main_state->tile->cur_pic->u_data, 0);
encoder_state_blit_pixels(sub_state, sub_state->tile->cur_pic->v_data, main_state, main_state->tile->cur_pic->v_data, 0);
}
encoder_state_encode(&main_state->children[i]);
if (main_state->children[i].is_leaf) {
encoder_state_write_bitstream_leaf(&main_state->children[i]);
}
if (sub_state->tile != main_state->tile) {
encoder_state_blit_pixels(main_state, main_state->tile->cur_pic->y_recdata, sub_state, sub_state->tile->cur_pic->y_recdata, 1);
encoder_state_blit_pixels(main_state, main_state->tile->cur_pic->u_recdata, sub_state, sub_state->tile->cur_pic->u_recdata, 0);
encoder_state_blit_pixels(main_state, main_state->tile->cur_pic->v_recdata, sub_state, sub_state->tile->cur_pic->v_recdata, 0);
}
}
} else {
encoder_state *sub_state;
i=0;
sub_state = &(main_state->children[i]);
if (sub_state->tile != main_state->tile) {
encoder_state_blit_pixels(sub_state, sub_state->tile->cur_pic->y_data, main_state, main_state->tile->cur_pic->y_data, 1);
encoder_state_blit_pixels(sub_state, sub_state->tile->cur_pic->u_data, main_state, main_state->tile->cur_pic->u_data, 0);
encoder_state_blit_pixels(sub_state, sub_state->tile->cur_pic->v_data, main_state, main_state->tile->cur_pic->v_data, 0);
}
encoder_state_encode(&main_state->children[i]);
if (main_state->children[i].is_leaf) {
encoder_state_write_bitstream_leaf(&main_state->children[i]);
}
if (sub_state->tile != main_state->tile) {
encoder_state_blit_pixels(main_state, main_state->tile->cur_pic->y_recdata, sub_state, sub_state->tile->cur_pic->y_recdata, 1);
encoder_state_blit_pixels(main_state, main_state->tile->cur_pic->u_recdata, sub_state, sub_state->tile->cur_pic->u_recdata, 0);
encoder_state_blit_pixels(main_state, main_state->tile->cur_pic->v_recdata, sub_state, sub_state->tile->cur_pic->v_recdata, 0);
}
}
} else {
switch (main_state->type) {
case ENCODER_STATE_TYPE_TILE:
case ENCODER_STATE_TYPE_SLICE:
case ENCODER_STATE_TYPE_WAVEFRONT_ROW:
encoder_state_encode_leaf(main_state);
break;
default:
fprintf(stderr, "Unsupported leaf type %c!\n", main_state->type);
assert(0);
}
}
}
static void encoder_state_new_frame(encoder_state * const main_state) {
int i;
//FIXME Move this somewhere else!
if (main_state->type == ENCODER_STATE_TYPE_MAIN) {
const encoder_control * const encoder = main_state->encoder_control;
const int is_first_frame = (main_state->global->frame == 0);
const int is_i_radl = (encoder->cfg->intra_period == 1 && main_state->global->frame % 2 == 0);
const int is_p_radl = (encoder->cfg->intra_period > 1 && (main_state->global->frame % encoder->cfg->intra_period) == 0);
main_state->global->is_radl_frame = is_first_frame || is_i_radl || is_p_radl;
if (main_state->global->is_radl_frame) {
// Clear the reference list
encoder_state_clear_refs(main_state);
main_state->global->slicetype = SLICE_I;
main_state->global->pictype = NAL_IDR_W_RADL;
} else {
main_state->global->slicetype = encoder->cfg->intra_period==1 ? SLICE_I : SLICE_P;
main_state->global->pictype = NAL_TRAIL_R;
}
} else {
//Clear the bitstream if it's not the main encoder
bitstream_clear(&main_state->stream);
}
if (main_state->is_leaf) {
//Leaf states have cabac and context
cabac_start(&main_state->cabac);
init_contexts(main_state, main_state->global->QP, main_state->global->slicetype);
// Initialize lambda value(s) to use in search
encoder_state_init_lambda(main_state);
}
for (i = 0; main_state->children[i].encoder_control; ++i) {
encoder_state_new_frame(&main_state->children[i]);
}
}
static void encoder_state_write_bitstream_main(encoder_state * const main_state) {
const encoder_control * const encoder = main_state->encoder_control;
bitstream * const stream = &main_state->stream;
int i;
if (main_state->global->is_radl_frame) {
// Access Unit Delimiter (AUD)
if (encoder->aud_enable)
write_aud(main_state);
// Video Parameter Set (VPS)
nal_write(stream, NAL_VPS_NUT, 0, 1);
encode_vid_parameter_set(main_state);
bitstream_align(stream);
// Sequence Parameter Set (SPS)
nal_write(stream, NAL_SPS_NUT, 0, 1);
encode_seq_parameter_set(main_state);
bitstream_align(stream);
// Picture Parameter Set (PPS)
nal_write(stream, NAL_PPS_NUT, 0, 1);
encode_pic_parameter_set(main_state);
bitstream_align(stream);
if (main_state->global->frame == 0) {
// Prefix SEI
nal_write(stream, PREFIX_SEI_NUT, 0, 0);
encode_prefix_sei_version(main_state);
bitstream_align(stream);
}
} else {
// Access Unit Delimiter (AUD)
if (encoder->aud_enable)
write_aud(main_state);
}
{
// Not quite sure if this is correct, but it seems to have worked so far
// so I tried to not change it's behavior.
int long_start_code = main_state->global->is_radl_frame || encoder->aud_enable ? 0 : 1;
nal_write(stream,
main_state->global->is_radl_frame ? NAL_IDR_W_RADL : NAL_TRAIL_R, 0, long_start_code);
}
for (i = 0; main_state->children[i].encoder_control; ++i) {
//Append bitstream to main stream
bitstream_append(&main_state->stream, &main_state->children[i].stream);
//FIXME: Move this...
bitstream_clear(&main_state->children[i].stream);
}
// Calculate checksum
add_checksum(main_state);
//FIXME: Why is this needed?
main_state->tile->cur_pic->poc = main_state->global->poc;
}
static void encoder_state_write_bitstream_leaf(encoder_state * const encoder_state) {
const encoder_control * const encoder = encoder_state->encoder_control;
const picture* const cur_pic = encoder_state->tile->cur_pic;
int i = 0;
assert(encoder_state->is_leaf);
if (encoder_state->type == ENCODER_STATE_TYPE_SLICE) {
encode_slice_header(encoder_state);
bitstream_align(&encoder_state->stream);
}
for (i = 0; i < encoder_state->lcu_order_count; ++i) {
const lcu_order_element * const lcu = &encoder_state->lcu_order[i];
if (encoder->sao_enable) {
encode_sao(encoder_state, lcu->position.x, lcu->position.y, &cur_pic->sao_luma[lcu->position.y * cur_pic->width_in_lcu + lcu->position.x], &cur_pic->sao_chroma[lcu->position.y * cur_pic->width_in_lcu + lcu->position.x]);
}
encode_coding_tree(encoder_state, lcu->position.x << MAX_DEPTH, lcu->position.y << MAX_DEPTH, 0);
if (i < encoder_state->lcu_order_count - 1) {
//Since we don't handle slice segments, end of slice segment == end of slice
//Always 0 since otherwise it would be split
cabac_encode_bin_trm(&encoder_state->cabac, 0); // end_of_slice_segment_flag
}
if (encoder_state->type == ENCODER_STATE_TYPE_WAVEFRONT_ROW && i == 1) {
int j;
//Find next encoder (next row)
for (j=0; encoder_state->parent->children[j].encoder_control; ++j) {
if (encoder_state->parent->children[j].wfrow->lcu_offset_y == encoder_state->wfrow->lcu_offset_y + 1) {
context_copy(&encoder_state->parent->children[j], encoder_state);
}
}
}
}
//Last LCU
{
const lcu_order_element * const lcu = &encoder_state->lcu_order[encoder_state->lcu_order_count - 1];
const int lcu_addr_in_ts = lcu->id + encoder_state->tile->lcu_offset_in_ts;
const int end_of_slice_segment_flag = lcu_at_slice_end(encoder, lcu_addr_in_ts);
cabac_encode_bin_trm(&encoder_state->cabac, end_of_slice_segment_flag); // end_of_slice_segment_flag
if (!end_of_slice_segment_flag) {
assert(lcu_at_tile_end(encoder, lcu_addr_in_ts) || lcu->position.x == (encoder_state->tile->cur_pic->width_in_lcu - 1));
cabac_encode_bin_trm(&encoder_state->cabac, 1); // end_of_sub_stream_one_bit == 1
cabac_flush(&encoder_state->cabac);
} else {
cabac_flush(&encoder_state->cabac);
bitstream_align(&encoder_state->stream);
}
}
}
static void encoder_state_write_bitstream_tile(encoder_state * const main_state) {
//If it's not a leaf, a tile is "nothing". We only have to write sub elements
int i;
for (i = 0; main_state->children[i].encoder_control; ++i) {
//Append bitstream to main stream
bitstream_append(&main_state->stream, &main_state->children[i].stream);
}
}
static void encoder_state_write_bitstream_slice(encoder_state * const main_state) {
int i;
encode_slice_header(main_state);
bitstream_align(&main_state->stream);
for (i = 0; main_state->children[i].encoder_control; ++i) {
//Append bitstream to main stream
bitstream_append(&main_state->stream, &main_state->children[i].stream);
}
}
static void encoder_state_write_bitstream(encoder_state * const main_state) {
int i;
if (!main_state->is_leaf) {
for (i=0; main_state->children[i].encoder_control; ++i) {
encoder_state *sub_state = &(main_state->children[i]);
encoder_state_write_bitstream(sub_state);
}
switch (main_state->type) {
case ENCODER_STATE_TYPE_MAIN:
encoder_state_write_bitstream_main(main_state);
break;
case ENCODER_STATE_TYPE_TILE:
encoder_state_write_bitstream_tile(main_state);
break;
case ENCODER_STATE_TYPE_SLICE:
encoder_state_write_bitstream_slice(main_state);
break;
default:
fprintf(stderr, "Unsupported node type %c!\n", main_state->type);
assert(0);
}
}
}
void encode_one_frame(encoder_state * const main_state)
{
encoder_state_new_frame(main_state);
encoder_state_encode(main_state);
encoder_state_write_bitstream(main_state);
}
static void fill_after_frame(unsigned height, unsigned array_width,
unsigned array_height, pixel *data)
{
pixel* p = data + height * array_width;
pixel* end = data + array_width * array_height;
while (p < end) {
// Fill the line by copying the line above.
memcpy(p, p - array_width, array_width);
p += array_width;
}
}
static int read_and_fill_frame_data(FILE *file,
unsigned width, unsigned height,
unsigned array_width, pixel *data)
{
pixel* p = data;
pixel* end = data + array_width * height;
pixel fill_char;
unsigned i;
while (p < end) {
// Read the beginning of the line from input.
if (width != fread(p, sizeof(unsigned char), width, file))
return 0;
// Fill the rest with the last pixel value.
fill_char = p[width - 1];
for (i = width; i < array_width; ++i) {
p[i] = fill_char;
}
p += array_width;
}
return 1;
}
int read_one_frame(FILE* file, const encoder_state * const encoder_state)
{
unsigned width = encoder_state->encoder_control->in.real_width;
unsigned height = encoder_state->encoder_control->in.real_height;
unsigned array_width = encoder_state->tile->cur_pic->width;
unsigned array_height = encoder_state->tile->cur_pic->height;
if (width != array_width) {
// In the case of frames not being aligned on 8 bit borders, bits need to be copied to fill them in.
if (!read_and_fill_frame_data(file, width, height, array_width,
encoder_state->tile->cur_pic->y_data) ||
!read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1,
encoder_state->tile->cur_pic->u_data) ||
!read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1,
encoder_state->tile->cur_pic->v_data))
return 0;
} else {
// Otherwise the data can be read directly to the array.
unsigned y_size = width * height;
unsigned uv_size = (width >> 1) * (height >> 1);
if (y_size != fread(encoder_state->tile->cur_pic->y_data, sizeof(unsigned char),
y_size, file) ||
uv_size != fread(encoder_state->tile->cur_pic->u_data, sizeof(unsigned char),
uv_size, file) ||
uv_size != fread(encoder_state->tile->cur_pic->v_data, sizeof(unsigned char),
uv_size, file))
return 0;
}
if (height != array_height) {
fill_after_frame(height, array_width, array_height,
encoder_state->tile->cur_pic->y_data);
fill_after_frame(height >> 1, array_width >> 1, array_height >> 1,
encoder_state->tile->cur_pic->u_data);
fill_after_frame(height >> 1, array_width >> 1, array_height >> 1,
encoder_state->tile->cur_pic->v_data);
}
return 1;
}
/**
* \brief Add a checksum SEI message to the bitstream.
* \param encoder The encoder.
* \returns Void
*/
static void add_checksum(encoder_state * const encoder_state)
{
bitstream * const stream = &encoder_state->stream;
const picture * const cur_pic = encoder_state->tile->cur_pic;
unsigned char checksum[3][SEI_HASH_MAX_LENGTH];
uint32_t checksum_val;
unsigned int i;
nal_write(stream, NAL_SUFFIT_SEI_NUT, 0, 0);
picture_checksum(cur_pic, checksum);
WRITE_U(stream, 132, 8, "sei_type");
WRITE_U(stream, 13, 8, "size");
WRITE_U(stream, 2, 8, "hash_type"); // 2 = checksum
for (i = 0; i < 3; ++i) {
// Pack bits into a single 32 bit uint instead of pushing them one byte
// at a time.
checksum_val = (checksum[i][0] << 24) + (checksum[i][1] << 16) +
(checksum[i][2] << 8) + (checksum[i][3]);
WRITE_U(stream, checksum_val, 32, "picture_checksum");
}
bitstream_align(stream);
}
void encode_access_unit_delimiter(encoder_state * const encoder_state)
{
bitstream * const stream = &encoder_state->stream;
uint8_t pic_type = encoder_state->global->slicetype == SLICE_I ? 0
: encoder_state->global->slicetype == SLICE_P ? 1
: 2;
WRITE_U(stream, pic_type, 3, "pic_type");
}
void encode_prefix_sei_version(encoder_state * const encoder_state)
{
#define STR_BUF_LEN 1000
bitstream * const stream = &encoder_state->stream;
int i, length;
char buf[STR_BUF_LEN] = { 0 };
char *s = buf + 16;
const config * const cfg = encoder_state->encoder_control->cfg;
// random uuid_iso_iec_11578 generated with www.famkruithof.net/uuid/uuidgen
static const uint8_t uuid[16] = {
0x32, 0xfe, 0x46, 0x6c, 0x98, 0x41, 0x42, 0x69,
0xae, 0x35, 0x6a, 0x91, 0x54, 0x9e, 0xf3, 0xf1
};
memcpy(buf, uuid, 16);
// user_data_payload_byte
s += sprintf(s, "Kvazaar HEVC Encoder v. " VERSION_STRING " - "
"Copyleft 2012-2014 - http://ultravideo.cs.tut.fi/ - options:");
s += sprintf(s, " %dx%d", cfg->width, cfg->height);
s += sprintf(s, " deblock=%d:%d:%d", cfg->deblock_enable,
cfg->deblock_beta, cfg->deblock_tc);
s += sprintf(s, " sao=%d", cfg->sao_enable);
s += sprintf(s, " intra_period=%d", cfg->intra_period);
s += sprintf(s, " qp=%d", cfg->qp);
s += sprintf(s, " ref=%d", cfg->ref_frames);
length = (int)(s - buf + 1); // length, +1 for \0
// Assert this so that in the future if the message gets longer, we remember
// to increase the buf len. Divide by 2 for margin.
assert(length < STR_BUF_LEN / 2);
// payloadType = 5 -> user_data_unregistered
WRITE_U(stream, 5, 8, "last_payload_type_byte");
// payloadSize
for (i = 0; i <= length - 255; i += 255)
WRITE_U(stream, 255, 8, "ff_byte");
WRITE_U(stream, length - i, 8, "last_payload_size_byte");
for (i = 0; i < length; i++)
WRITE_U(stream, ((uint8_t *)buf)[i], 8, "sei_payload");
#undef STR_BUF_LEN
}
void encode_pic_parameter_set(encoder_state * const encoder_state)
{
const encoder_control * const encoder = encoder_state->encoder_control;
bitstream * const stream = &encoder_state->stream;
#ifdef _DEBUG
printf("=========== Picture Parameter Set ID: 0 ===========\n");
#endif
WRITE_UE(stream, 0, "pic_parameter_set_id");
WRITE_UE(stream, 0, "seq_parameter_set_id");
WRITE_U(stream, 0, 1, "dependent_slice_segments_enabled_flag");
WRITE_U(stream, 0, 1, "output_flag_present_flag");
WRITE_U(stream, 0, 3, "num_extra_slice_header_bits");
WRITE_U(stream, ENABLE_SIGN_HIDING, 1, "sign_data_hiding_flag");
WRITE_U(stream, 0, 1, "cabac_init_present_flag");
WRITE_UE(stream, 0, "num_ref_idx_l0_default_active_minus1");
WRITE_UE(stream, 0, "num_ref_idx_l1_default_active_minus1");
WRITE_SE(stream, ((int8_t)encoder_state->global->QP)-26, "pic_init_qp_minus26");
WRITE_U(stream, 0, 1, "constrained_intra_pred_flag");
WRITE_U(stream, encoder_state->encoder_control->trskip_enable, 1, "transform_skip_enabled_flag");
WRITE_U(stream, 0, 1, "cu_qp_delta_enabled_flag");
//if cu_qp_delta_enabled_flag
//WRITE_UE(stream, 0, "diff_cu_qp_delta_depth");
//TODO: add QP offsets
WRITE_SE(stream, 0, "pps_cb_qp_offset");
WRITE_SE(stream, 0, "pps_cr_qp_offset");
WRITE_U(stream, 0, 1, "pps_slice_chroma_qp_offsets_present_flag");
WRITE_U(stream, 0, 1, "weighted_pred_flag");
WRITE_U(stream, 0, 1, "weighted_bipred_idc");
//WRITE_U(stream, 0, 1, "dependent_slices_enabled_flag");
WRITE_U(stream, 0, 1, "transquant_bypass_enable_flag");
WRITE_U(stream, encoder->tiles_enable, 1, "tiles_enabled_flag");
//wavefronts
WRITE_U(stream, encoder->wpp, 1, "entropy_coding_sync_enabled_flag");
if (encoder->tiles_enable) {
WRITE_UE(stream, encoder->tiles_num_tile_columns - 1, "num_tile_columns_minus1");
WRITE_UE(stream, encoder->tiles_num_tile_rows - 1, "num_tile_rows_minus1");
WRITE_U(stream, encoder->tiles_uniform_spacing_flag, 1, "uniform_spacing_flag");
if (!encoder->tiles_uniform_spacing_flag) {
int i;
for (i = 0; i < encoder->tiles_num_tile_columns - 1; ++i) {
WRITE_UE(stream, encoder->tiles_col_width[i] - 1, "column_width_minus1[...]");
}
for (i = 0; i < encoder->tiles_num_tile_rows - 1; ++i) {
WRITE_UE(stream, encoder->tiles_row_height[i] - 1, "row_height_minus1[...]");
}
}
WRITE_U(stream, 0, 1, "loop_filter_across_tiles_enabled_flag");
}
WRITE_U(stream, 0, 1, "loop_filter_across_slice_flag");
WRITE_U(stream, 1, 1, "deblocking_filter_control_present_flag");
//IF deblocking_filter
WRITE_U(stream, 0, 1, "deblocking_filter_override_enabled_flag");
WRITE_U(stream, encoder_state->encoder_control->deblock_enable ? 0 : 1, 1,
"pps_disable_deblocking_filter_flag");
//IF !disabled
if (encoder_state->encoder_control->deblock_enable) {
WRITE_SE(stream, encoder_state->encoder_control->beta_offset_div2, "beta_offset_div2");
WRITE_SE(stream, encoder_state->encoder_control->tc_offset_div2, "tc_offset_div2");
}
//ENDIF
//ENDIF
WRITE_U(stream, 0, 1, "pps_scaling_list_data_present_flag");
//IF scaling_list
//ENDIF
WRITE_U(stream, 0, 1, "lists_modification_present_flag");
WRITE_UE(stream, 0, "log2_parallel_merge_level_minus2");
WRITE_U(stream, 0, 1, "slice_segment_header_extension_present_flag");
WRITE_U(stream, 0, 1, "pps_extension_flag");
}
static void encode_PTL(encoder_state * const encoder_state)
{
bitstream * const stream = &encoder_state->stream;
int i;
// PTL
// Profile Tier
WRITE_U(stream, 0, 2, "general_profile_space");
WRITE_U(stream, 0, 1, "general_tier_flag");
// Main Profile == 1
WRITE_U(stream, 1, 5, "general_profile_idc");
/* Compatibility flags should be set at general_profile_idc
* (so with general_profile_idc = 1, compatibility_flag[1] should be 1)
* According to specification, when compatibility_flag[1] is set,
* compatibility_flag[2] should be set too.
*/
WRITE_U(stream, 3<<29, 32, "general_profile_compatibility_flag[]");
WRITE_U(stream, 1, 1, "general_progressive_source_flag");
WRITE_U(stream, 0, 1, "general_interlaced_source_flag");
WRITE_U(stream, 0, 1, "general_non_packed_constraint_flag");
WRITE_U(stream, 0, 1, "general_frame_only_constraint_flag");
WRITE_U(stream, 0, 32, "XXX_reserved_zero_44bits[0..31]");
WRITE_U(stream, 0, 12, "XXX_reserved_zero_44bits[32..43]");
// end Profile Tier
// Level 6.2 (general_level_idc is 30 * 6.2)
WRITE_U(stream, 186, 8, "general_level_idc");
WRITE_U(stream, 0, 1, "sub_layer_profile_present_flag");
WRITE_U(stream, 0, 1, "sub_layer_level_present_flag");
for (i = 1; i < 8; i++) {
WRITE_U(stream, 0, 2, "reserved_zero_2bits");
}
// end PTL
}
static void encode_scaling_list(encoder_state * const encoder_state)
{
const encoder_control * const encoder = encoder_state->encoder_control;
bitstream * const stream = &encoder_state->stream;
uint32_t size_id;
for (size_id = 0; size_id < SCALING_LIST_SIZE_NUM; size_id++) {
int32_t list_id;
for (list_id = 0; list_id < g_scaling_list_num[size_id]; list_id++) {
uint8_t scaling_list_pred_mode_flag = 1;
int32_t pred_list_idx;
int32_t i;
uint32_t ref_matrix_id = UINT32_MAX;
for (pred_list_idx = list_id; pred_list_idx >= 0; pred_list_idx--) {
const int32_t * const pred_list = (list_id == pred_list_idx) ?
scalinglist_get_default(size_id, pred_list_idx) :
encoder->scaling_list.scaling_list_coeff[size_id][pred_list_idx];
if (!memcmp(encoder->scaling_list.scaling_list_coeff[size_id][list_id], pred_list, sizeof(int32_t) * MIN(8, g_scaling_list_size[size_id])) &&
((size_id < SCALING_LIST_16x16) ||
(encoder->scaling_list.scaling_list_dc[size_id][list_id] == encoder->scaling_list.scaling_list_dc[size_id][pred_list_idx]))) {
ref_matrix_id = pred_list_idx;
scaling_list_pred_mode_flag = 0;
break;
}
}
WRITE_U(stream, scaling_list_pred_mode_flag, 1, "scaling_list_pred_mode_flag" );
if (!scaling_list_pred_mode_flag) {
WRITE_UE(stream, list_id - ref_matrix_id, "scaling_list_pred_matrix_id_delta");
} else {
int32_t delta;
const int32_t coef_num = MIN(MAX_MATRIX_COEF_NUM, g_scaling_list_size[size_id]);
const uint32_t * const scan_cg = (size_id == 0) ? g_sig_last_scan_16x16 : g_sig_last_scan_32x32;
int32_t next_coef = 8;
const int32_t * const coef_list = encoder->scaling_list.scaling_list_coeff[size_id][list_id];
if (size_id >= SCALING_LIST_16x16) {
WRITE_SE(stream, encoder->scaling_list.scaling_list_dc[size_id][list_id] - 8, "scaling_list_dc_coef_minus8");
next_coef = encoder->scaling_list.scaling_list_dc[size_id][list_id];
}
for (i = 0; i < coef_num; i++) {
delta = coef_list[scan_cg[i]] - next_coef;
next_coef = coef_list[scan_cg[i]];
if (delta > 127)
delta -= 256;
if (delta < -128)
delta += 256;
WRITE_SE(stream, delta, "scaling_list_delta_coef");
}
}
}
}
}
void encode_seq_parameter_set(encoder_state * const encoder_state)
{
bitstream * const stream = &encoder_state->stream;
//FIXME: use encoder_control instead of cur_pic
const picture * const cur_pic = encoder_state->tile->cur_pic;
#ifdef _DEBUG
printf("=========== Sequence Parameter Set ID: 0 ===========\n");
#endif
// TODO: profile IDC and level IDC should be defined later on
WRITE_U(stream, 0, 4, "sps_video_parameter_set_id");
WRITE_U(stream, 1, 3, "sps_max_sub_layers_minus1");
WRITE_U(stream, 0, 1, "sps_temporal_id_nesting_flag");
encode_PTL(encoder_state);
WRITE_UE(stream, 0, "sps_seq_parameter_set_id");
WRITE_UE(stream, encoder_state->encoder_control->in.video_format,
"chroma_format_idc");
if (encoder_state->encoder_control->in.video_format == 3) {
WRITE_U(stream, 0, 1, "separate_colour_plane_flag");
}
WRITE_UE(stream, cur_pic->width, "pic_width_in_luma_samples");
WRITE_UE(stream, cur_pic->height, "pic_height_in_luma_samples");
if (cur_pic->width != encoder_state->encoder_control->in.real_width || cur_pic->height != encoder_state->encoder_control->in.real_height) {
// The standard does not seem to allow setting conf_win values such that
// the number of luma samples is not a multiple of 2. Options are to either
// hide one line or show an extra line of non-video. Neither seems like a
// very good option, so let's not even try.
assert(!(cur_pic->width % 2));
WRITE_U(stream, 1, 1, "conformance_window_flag");
WRITE_UE(stream, 0, "conf_win_left_offset");
WRITE_UE(stream, (cur_pic->width - encoder_state->encoder_control->in.real_width) >> 1,
"conf_win_right_offset");
WRITE_UE(stream, 0, "conf_win_top_offset");
WRITE_UE(stream, (cur_pic->height - encoder_state->encoder_control->in.real_height) >> 1,
"conf_win_bottom_offset");
} else {
WRITE_U(stream, 0, 1, "conformance_window_flag");
}
//IF window flag
//END IF
WRITE_UE(stream, encoder_state->encoder_control->bitdepth-8, "bit_depth_luma_minus8");
WRITE_UE(stream, encoder_state->encoder_control->bitdepth-8, "bit_depth_chroma_minus8");
WRITE_UE(stream, 0, "log2_max_pic_order_cnt_lsb_minus4");
WRITE_U(stream, 0, 1, "sps_sub_layer_ordering_info_present_flag");
//for each layer
WRITE_UE(stream, 0, "sps_max_dec_pic_buffering");
WRITE_UE(stream, 0, "sps_num_reorder_pics");
WRITE_UE(stream, 0, "sps_max_latency_increase");
//end for
WRITE_UE(stream, MIN_SIZE-3, "log2_min_coding_block_size_minus3");
WRITE_UE(stream, MAX_DEPTH, "log2_diff_max_min_coding_block_size");
WRITE_UE(stream, 0, "log2_min_transform_block_size_minus2"); // 4x4
WRITE_UE(stream, 3, "log2_diff_max_min_transform_block_size"); // 4x4...32x32
WRITE_UE(stream, TR_DEPTH_INTER, "max_transform_hierarchy_depth_inter");
WRITE_UE(stream, TR_DEPTH_INTRA, "max_transform_hierarchy_depth_intra");
// scaling list
WRITE_U(stream, encoder_state->encoder_control->scaling_list.enable, 1, "scaling_list_enable_flag");
if (encoder_state->encoder_control->scaling_list.enable) {
WRITE_U(stream, 1, 1, "sps_scaling_list_data_present_flag");
encode_scaling_list(encoder_state);
}
WRITE_U(stream, 0, 1, "amp_enabled_flag");
WRITE_U(stream, encoder_state->encoder_control->sao_enable ? 1 : 0, 1,
"sample_adaptive_offset_enabled_flag");
WRITE_U(stream, ENABLE_PCM, 1, "pcm_enabled_flag");
#if ENABLE_PCM == 1
WRITE_U(stream, 7, 4, "pcm_sample_bit_depth_luma_minus1");
WRITE_U(stream, 7, 4, "pcm_sample_bit_depth_chroma_minus1");
WRITE_UE(stream, 0, "log2_min_pcm_coding_block_size_minus3");
WRITE_UE(stream, 2, "log2_diff_max_min_pcm_coding_block_size");
WRITE_U(stream, 1, 1, "pcm_loop_filter_disable_flag");
#endif
WRITE_UE(stream, 0, "num_short_term_ref_pic_sets");
//IF num short term ref pic sets
//ENDIF
WRITE_U(stream, 0, 1, "long_term_ref_pics_present_flag");
//IF long_term_ref_pics_present
//ENDIF
WRITE_U(stream, ENABLE_TEMPORAL_MVP, 1,
"sps_temporal_mvp_enable_flag");
WRITE_U(stream, 0, 1, "sps_strong_intra_smoothing_enable_flag");
WRITE_U(stream, 1, 1, "vui_parameters_present_flag");
encode_VUI(encoder_state);
WRITE_U(stream, 0, 1, "sps_extension_flag");
}
void encode_vid_parameter_set(encoder_state * const encoder_state)
{
bitstream * const stream = &encoder_state->stream;
int i;
#ifdef _DEBUG
printf("=========== Video Parameter Set ID: 0 ===========\n");
#endif
WRITE_U(stream, 0, 4, "vps_video_parameter_set_id");
WRITE_U(stream, 3, 2, "vps_reserved_three_2bits" );
WRITE_U(stream, 0, 6, "vps_reserved_zero_6bits" );
WRITE_U(stream, 1, 3, "vps_max_sub_layers_minus1");
WRITE_U(stream, 0, 1, "vps_temporal_id_nesting_flag");
WRITE_U(stream, 0xffff, 16, "vps_reserved_ffff_16bits");
encode_PTL(encoder_state);
WRITE_U(stream, 0, 1, "vps_sub_layer_ordering_info_present_flag");
//for each layer
for (i = 0; i < 1; i++) {
WRITE_UE(stream, 1, "vps_max_dec_pic_buffering");
WRITE_UE(stream, 0, "vps_num_reorder_pics");
WRITE_UE(stream, 0, "vps_max_latency_increase");
}
WRITE_U(stream, 0, 6, "vps_max_nuh_reserved_zero_layer_id");
WRITE_UE(stream, 0, "vps_max_op_sets_minus1");
WRITE_U(stream, 0, 1, "vps_timing_info_present_flag");
//IF timing info
//END IF
WRITE_U(stream, 0, 1, "vps_extension_flag");
}
static void encode_VUI(encoder_state * const encoder_state)
{
bitstream * const stream = &encoder_state->stream;
const encoder_control * const encoder = encoder_state->encoder_control;
#ifdef _DEBUG
printf("=========== VUI Set ID: 0 ===========\n");
#endif
if (encoder->vui.sar_width > 0 && encoder->vui.sar_height > 0) {
int i;
static const struct
{
uint8_t width;
uint8_t height;
uint8_t idc;
} sar[] = {
// aspect_ratio_idc = 0 -> unspecified
{ 1, 1, 1 }, { 12, 11, 2 }, { 10, 11, 3 }, { 16, 11, 4 },
{ 40, 33, 5 }, { 24, 11, 6 }, { 20, 11, 7 }, { 32, 11, 8 },
{ 80, 33, 9 }, { 18, 11, 10}, { 15, 11, 11}, { 64, 33, 12},
{160, 99, 13}, { 4, 3, 14}, { 3, 2, 15}, { 2, 1, 16},
// aspect_ratio_idc = [17..254] -> reserved
{ 0, 0, 255 }
};
for (i = 0; sar[i].idc != 255; i++)
if (sar[i].width == encoder->vui.sar_width &&
sar[i].height == encoder->vui.sar_height)
break;
WRITE_U(stream, 1, 1, "aspect_ratio_info_present_flag");
WRITE_U(stream, sar[i].idc, 8, "aspect_ratio_idc");
if (sar[i].idc == 255) {
// EXTENDED_SAR
WRITE_U(stream, encoder->vui.sar_width, 16, "sar_width");
WRITE_U(stream, encoder->vui.sar_height, 16, "sar_height");
}
} else
WRITE_U(stream, 0, 1, "aspect_ratio_info_present_flag");
//IF aspect ratio info
//ENDIF
if (encoder->vui.overscan > 0) {
WRITE_U(stream, 1, 1, "overscan_info_present_flag");
WRITE_U(stream, encoder->vui.overscan - 1, 1, "overscan_appropriate_flag");
} else
WRITE_U(stream, 0, 1, "overscan_info_present_flag");
//IF overscan info
//ENDIF
if (encoder->vui.videoformat != 5 || encoder->vui.fullrange ||
encoder->vui.colorprim != 2 || encoder->vui.transfer != 2 ||
encoder->vui.colormatrix != 2) {
WRITE_U(stream, 1, 1, "video_signal_type_present_flag");
WRITE_U(stream, encoder->vui.videoformat, 3, "video_format");
WRITE_U(stream, encoder->vui.fullrange, 1, "video_full_range_flag");
if (encoder->vui.colorprim != 2 || encoder->vui.transfer != 2 ||
encoder->vui.colormatrix != 2) {
WRITE_U(stream, 1, 1, "colour_description_present_flag");
WRITE_U(stream, encoder->vui.colorprim, 8, "colour_primaries");
WRITE_U(stream, encoder->vui.transfer, 8, "transfer_characteristics");
WRITE_U(stream, encoder->vui.colormatrix, 8, "matrix_coeffs");
} else
WRITE_U(stream, 0, 1, "colour_description_present_flag");
} else
WRITE_U(stream, 0, 1, "video_signal_type_present_flag");
//IF video type
//ENDIF
if (encoder->vui.chroma_loc > 0) {
WRITE_U(stream, 1, 1, "chroma_loc_info_present_flag");
WRITE_UE(stream, encoder->vui.chroma_loc, "chroma_sample_loc_type_top_field");
WRITE_UE(stream, encoder->vui.chroma_loc, "chroma_sample_loc_type_bottom_field");
} else
WRITE_U(stream, 0, 1, "chroma_loc_info_present_flag");
//IF chroma loc info
//ENDIF
WRITE_U(stream, 0, 1, "neutral_chroma_indication_flag");
WRITE_U(stream, 0, 1, "field_seq_flag");
WRITE_U(stream, 0, 1, "frame_field_info_present_flag");
WRITE_U(stream, 0, 1, "default_display_window_flag");
//IF default display window
//ENDIF
WRITE_U(stream, 0, 1, "vui_timing_info_present_flag");
//IF timing info
//ENDIF
WRITE_U(stream, 0, 1, "bitstream_restriction_flag");
//IF bitstream restriction
//ENDIF
}
void encoder_next_frame(encoder_state *encoder_state) {
const encoder_control * const encoder = encoder_state->encoder_control;
picture *old_pic;
// Remove the ref pic (if present)
if (encoder_state->global->ref->used_size == (uint32_t)encoder->cfg->ref_frames) {
picture_list_rem(encoder_state->global->ref, encoder_state->global->ref->used_size-1);
}
// Add current picture as reference
picture_list_add(encoder_state->global->ref, encoder_state->tile->cur_pic);
// Allocate new memory to current picture
old_pic = encoder_state->tile->cur_pic;
// TODO: reuse memory from old reference
encoder_state->tile->cur_pic = picture_alloc(encoder_state->tile->cur_pic->width, encoder_state->tile->cur_pic->height, encoder_state->tile->cur_pic->width_in_lcu, encoder_state->tile->cur_pic->height_in_lcu);
//FIXME: does the coeff_* really belongs to cur_pic?
// Copy pointer from the last cur_pic because we don't want to reallocate it
MOVE_POINTER(encoder_state->tile->cur_pic->coeff_y,old_pic->coeff_y);
MOVE_POINTER(encoder_state->tile->cur_pic->coeff_u,old_pic->coeff_u);
MOVE_POINTER(encoder_state->tile->cur_pic->coeff_v,old_pic->coeff_v);
picture_free(old_pic);
encoder_state->global->frame++;
encoder_state->global->poc++;
}
static void encoder_state_entry_points_explore(const encoder_state * const encoder_state, int * const r_count, int * const r_max_length) {
int i;
for (i = 0; encoder_state->children[i].encoder_control; ++i) {
if (encoder_state->children[i].is_leaf) {
const int my_length = bitstream_tell(&encoder_state->children[i].stream)/8;
++(*r_count);
if (my_length > *r_max_length) {
*r_max_length = my_length;
}
} else {
encoder_state_entry_points_explore(&encoder_state->children[i], r_count, r_max_length);
}
}
}
static void encoder_state_entry_points_write(bitstream * const stream, const encoder_state * const encoder_state, const int num_entry_points, const int write_length, int * const r_count) {
int i;
for (i = 0; encoder_state->children[i].encoder_control; ++i) {
if (encoder_state->children[i].is_leaf) {
const int my_length = bitstream_tell(&encoder_state->children[i].stream)/8;
++(*r_count);
//Don't write the last one
if (*r_count < num_entry_points) {
WRITE_U(stream, my_length - 1, write_length, "entry_point_offset-minus1")
}
} else {
encoder_state_entry_points_write(stream, &encoder_state->children[i], num_entry_points, write_length, r_count);
}
}
}
static int num_bitcount(unsigned int n) {
int pos = 0;
if (n >= 1<<16) { n >>= 16; pos += 16; }
if (n >= 1<< 8) { n >>= 8; pos += 8; }
if (n >= 1<< 4) { n >>= 4; pos += 4; }
if (n >= 1<< 2) { n >>= 2; pos += 2; }
if (n >= 1<< 1) { pos += 1; }
return ((n == 0) ? (-1) : pos);
}
void encode_slice_header(encoder_state * const encoder_state)
{
const encoder_control * const encoder = encoder_state->encoder_control;
bitstream * const stream = &encoder_state->stream;
#ifdef _DEBUG
printf("=========== Slice ===========\n");
#endif
WRITE_U(stream, (encoder_state->slice->start_in_rs == 0), 1, "first_slice_segment_in_pic_flag");
if (encoder_state->global->pictype >= NAL_BLA_W_LP
&& encoder_state->global->pictype <= NAL_RSV_IRAP_VCL23) {
WRITE_U(stream, 1, 1, "no_output_of_prior_pics_flag");
}
WRITE_UE(stream, 0, "slice_pic_parameter_set_id");
if (encoder_state->slice->start_in_rs > 0) {
//For now, we don't support dependent slice segments
//WRITE_U(stream, 0, 1, "dependent_slice_segment_flag");
WRITE_UE(stream, encoder_state->slice->start_in_rs, "slice_segment_address");
}
WRITE_UE(stream, encoder_state->global->slicetype, "slice_type");
// if !entropy_slice_flag
//if output_flag_present_flag
//WRITE_U(stream, 1, 1, "pic_output_flag");
//end if
//if( IdrPicFlag ) <- nal_unit_type == 5
if (encoder_state->global->pictype != NAL_IDR_W_RADL
&& encoder_state->global->pictype != NAL_IDR_N_LP) {
int j;
int ref_negative = encoder_state->global->ref->used_size;
int ref_positive = 0;
WRITE_U(stream, encoder_state->global->poc&0xf, 4, "pic_order_cnt_lsb");
WRITE_U(stream, 0, 1, "short_term_ref_pic_set_sps_flag");
WRITE_UE(stream, ref_negative, "num_negative_pics");
WRITE_UE(stream, ref_positive, "num_positive_pics");
for (j = 0; j < ref_negative; j++) {
int32_t delta_poc_minus1 = 0;
WRITE_UE(stream, delta_poc_minus1, "delta_poc_s0_minus1");
WRITE_U(stream,1,1, "used_by_curr_pic_s0_flag");
}
//WRITE_UE(stream, 0, "short_term_ref_pic_set_idx");
}
//end if
//end if
if (encoder->sao_enable) {
WRITE_U(stream, 1, 1, "slice_sao_luma_flag");
WRITE_U(stream, 1, 1, "slice_sao_chroma_flag");
}
if (encoder_state->global->slicetype != SLICE_I) {
WRITE_U(stream, 1, 1, "num_ref_idx_active_override_flag");
WRITE_UE(stream, encoder_state->global->ref->used_size-1, "num_ref_idx_l0_active_minus1");
WRITE_UE(stream, 5-MRG_MAX_NUM_CANDS, "five_minus_max_num_merge_cand");
}
if (encoder_state->global->slicetype == SLICE_B) {
WRITE_U(stream, 0, 1, "mvd_l1_zero_flag");
}
// Skip flags that are not present
// if !entropy_slice_flag
WRITE_SE(stream, 0, "slice_qp_delta");
//WRITE_U(stream, 1, 1, "alignment");
if (encoder->tiles_enable || encoder->wpp) {
int num_entry_points = 0;
int max_length_seen = 0;
encoder_state_entry_points_explore(encoder_state, &num_entry_points, &max_length_seen);
WRITE_UE(stream, num_entry_points - 1, "num_entry_point_offsets");
if (num_entry_points > 0) {
int entry_points_written = 0;
int offset_len = num_bitcount(max_length_seen) + 1;
WRITE_UE(stream, offset_len - 1, "offset_len_minus1");
encoder_state_entry_points_write(stream, encoder_state, num_entry_points, offset_len, &entry_points_written);
}
}
}
static void encode_sao_color(encoder_state * const encoder_state, sao_info *sao,
color_index color_i)
{
cabac_data * const cabac = &encoder_state->cabac;
sao_eo_cat i;
// Skip colors with no SAO.
//FIXME: for now, we always have SAO for all channels
if (color_i == COLOR_Y && 0) return;
if (color_i != COLOR_Y && 0) return;
/// sao_type_idx_luma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass}
/// sao_type_idx_chroma: TR, cMax = 2, cRiceParam = 0, bins = {0, bypass}
// Encode sao_type_idx for Y and U+V.
if (color_i != COLOR_V) {
cabac->ctx = &(cabac->ctx_sao_type_idx_model);;
CABAC_BIN(cabac, sao->type != SAO_TYPE_NONE, "sao_type_idx");
if (sao->type == SAO_TYPE_BAND) {
CABAC_BIN_EP(cabac, 0, "sao_type_idx_ep");
} else if (sao->type == SAO_TYPE_EDGE) {
CABAC_BIN_EP(cabac, 1, "sao_type_idx_ep");
}
}
if (sao->type == SAO_TYPE_NONE) return;
/// sao_offset_abs[][][][]: TR, cMax = (1 << (Min(bitDepth, 10) - 5)) - 1,
/// cRiceParam = 0, bins = {bypass x N}
for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) {
cabac_write_unary_max_symbol_ep(cabac, abs(sao->offsets[i]), SAO_ABS_OFFSET_MAX);
}
/// sao_offset_sign[][][][]: FL, cMax = 1, bins = {bypass}
/// sao_band_position[][][]: FL, cMax = 31, bins = {bypass x N}
/// sao_eo_class_luma: FL, cMax = 3, bins = {bypass x 3}
/// sao_eo_class_chroma: FL, cMax = 3, bins = {bypass x 3}
if (sao->type == SAO_TYPE_BAND) {
for (i = SAO_EO_CAT1; i <= SAO_EO_CAT4; ++i) {
// Positive sign is coded as 0.
if(sao->offsets[i] != 0) {
CABAC_BIN_EP(cabac, sao->offsets[i] < 0 ? 1 : 0, "sao_offset_sign");
}
}
// TODO: sao_band_position
// FL cMax=31 (5 bits)
CABAC_BINS_EP(cabac, sao->band_position, 5, "sao_band_position");
} else if (color_i != COLOR_V) {
CABAC_BINS_EP(cabac, sao->eo_class, 2, "sao_eo_class");
}
}
static void encode_sao_merge_flags(encoder_state * const encoder_state, sao_info *sao, unsigned x_ctb, unsigned y_ctb)
{
cabac_data * const cabac = &encoder_state->cabac;
// SAO merge flags are not present for the first row and column.
if (x_ctb > 0) {
cabac->ctx = &(cabac->ctx_sao_merge_flag_model);
CABAC_BIN(cabac, sao->merge_left_flag, "sao_merge_left_flag");
}
if (y_ctb > 0 && !sao->merge_left_flag) {
cabac->ctx = &(cabac->ctx_sao_merge_flag_model);
CABAC_BIN(cabac, sao->merge_up_flag, "sao_merge_up_flag");
}
}
/**
* \brief Encode SAO information.
*/
static void encode_sao(encoder_state * const encoder_state,
unsigned x_lcu, uint16_t y_lcu,
sao_info *sao_luma, sao_info *sao_chroma)
{
// TODO: transmit merge flags outside sao_info
encode_sao_merge_flags(encoder_state, sao_luma, x_lcu, y_lcu);
// If SAO is merged, nothing else needs to be coded.
if (!sao_luma->merge_left_flag && !sao_luma->merge_up_flag) {
encode_sao_color(encoder_state, sao_luma, COLOR_Y);
encode_sao_color(encoder_state, sao_chroma, COLOR_U);
encode_sao_color(encoder_state, sao_chroma, COLOR_V);
}
}
void encode_coding_tree(encoder_state * const encoder_state,
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
{
cabac_data * const cabac = &encoder_state->cabac;
const picture * const cur_pic = encoder_state->tile->cur_pic;
cu_info *cur_cu = &cur_pic->cu_array[x_ctb + y_ctb * (cur_pic->width_in_lcu << MAX_DEPTH)];
uint8_t split_flag = GET_SPLITDATA(cur_cu, depth);
uint8_t split_model = 0;
//Absolute ctb
uint16_t abs_x_ctb = x_ctb + (encoder_state->tile->lcu_offset_x * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH);
uint16_t abs_y_ctb = y_ctb + (encoder_state->tile->lcu_offset_y * LCU_WIDTH) / (LCU_WIDTH >> MAX_DEPTH);
// Check for slice border FIXME
uint8_t border_x = ((encoder_state->encoder_control->in.width) < (abs_x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_y = ((encoder_state->encoder_control->in.height) < (abs_y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_split_x = ((encoder_state->encoder_control->in.width) < ((abs_x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border_split_y = ((encoder_state->encoder_control->in.height) < ((abs_y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border = border_x | border_y; /*!< are we in any border CU */
// When not in MAX_DEPTH, insert split flag and split the blocks if needed
if (depth != MAX_DEPTH) {
// Implisit split flag when on border
if (!border) {
// Get left and top block split_flags and if they are present and true, increase model number
if (x_ctb > 0 && GET_SPLITDATA(&(cur_pic->cu_array[x_ctb - 1 + y_ctb * (cur_pic->width_in_lcu << MAX_DEPTH)]), depth) == 1) {
split_model++;
}
if (y_ctb > 0 && GET_SPLITDATA(&(cur_pic->cu_array[x_ctb + (y_ctb - 1) * (cur_pic->width_in_lcu << MAX_DEPTH)]), depth) == 1) {
split_model++;
}
cabac->ctx = &(cabac->ctx_split_flag_model[split_model]);
CABAC_BIN(cabac, split_flag, "SplitFlag");
}
if (split_flag || border) {
// Split blocks and remember to change x and y block positions
uint8_t change = 1<<(MAX_DEPTH-1-depth);
encode_coding_tree(encoder_state, x_ctb, y_ctb, depth + 1); // x,y
// TODO: fix when other half of the block would not be completely over the border
if (!border_x || border_split_x) {
encode_coding_tree(encoder_state, x_ctb + change, y_ctb, depth + 1);
}
if (!border_y || border_split_y) {
encode_coding_tree(encoder_state, x_ctb, y_ctb + change, depth + 1);
}
if (!border || (border_split_x && border_split_y)) {
encode_coding_tree(encoder_state, x_ctb + change, y_ctb + change, depth + 1);
}
return;
}
}
// Encode skip flag
if (encoder_state->global->slicetype != SLICE_I) {
int8_t ctx_skip = 0; // uiCtxSkip = aboveskipped + leftskipped;
int ui;
int16_t num_cand = MRG_MAX_NUM_CANDS;
// Get left and top skipped flags and if they are present and true, increase context number
if (x_ctb > 0 && (&cur_pic->cu_array[x_ctb - 1 + y_ctb * (cur_pic->width_in_lcu << MAX_DEPTH)])->skipped) {
ctx_skip++;
}
if (y_ctb > 0 && (&cur_pic->cu_array[x_ctb + (y_ctb - 1) * (cur_pic->width_in_lcu << MAX_DEPTH)])->skipped) {
ctx_skip++;
}
cabac->ctx = &(cabac->ctx_cu_skip_flag_model[ctx_skip]);
CABAC_BIN(cabac, cur_cu->skipped, "SkipFlag");
// IF SKIP
if (cur_cu->skipped) {
if (num_cand > 1) {
for (ui = 0; ui < num_cand - 1; ui++) {
int32_t symbol = (ui != cur_cu->merge_idx);
if (ui == 0) {
cabac->ctx = &(cabac->ctx_cu_merge_idx_ext_model);
CABAC_BIN(cabac, symbol, "MergeIndex");
} else {
CABAC_BIN_EP(cabac,symbol,"MergeIndex");
}
if (symbol == 0) {
break;
}
}
}
return;
}
}
// ENDIF SKIP
// Prediction mode
if (encoder_state->global->slicetype != SLICE_I) {
cabac->ctx = &(cabac->ctx_cu_pred_mode_model);
CABAC_BIN(cabac, (cur_cu->type == CU_INTRA), "PredMode");
}
// part_mode
if (cur_cu->type == CU_INTRA) {
if (depth == MAX_DEPTH) {
cabac->ctx = &(cabac->ctx_part_size_model[0]);
if (cur_cu->part_size == SIZE_2Nx2N) {
CABAC_BIN(cabac, 1, "part_mode 2Nx2N");
} else {
CABAC_BIN(cabac, 0, "part_mode NxN");
}
}
} else {
// TODO: Handle inter sizes other than 2Nx2N
cabac->ctx = &(cabac->ctx_part_size_model[0]);
CABAC_BIN(cabac, 1, "part_mode 2Nx2N");
}
//end partsize
if (cur_cu->type == CU_INTER) {
// FOR each part
// Mergeflag
int16_t num_cand = 0;
cabac->ctx = &(cabac->ctx_cu_merge_flag_ext_model);
CABAC_BIN(cabac, cur_cu->merged, "MergeFlag");
num_cand = MRG_MAX_NUM_CANDS;
if (cur_cu->merged) { //merge
if (num_cand > 1) {
int32_t ui;
for (ui = 0; ui < num_cand - 1; ui++) {
int32_t symbol = (ui != cur_cu->merge_idx);
if (ui == 0) {
cabac->ctx = &(cabac->ctx_cu_merge_idx_ext_model);
CABAC_BIN(cabac, symbol, "MergeIndex");
} else {
CABAC_BIN_EP(cabac,symbol,"MergeIndex");
}
if (symbol == 0) break;
}
}
} else {
uint32_t ref_list_idx;
/*
// Void TEncSbac::codeInterDir( TComDataCU* pcCU, UInt uiAbsPartIdx )
if(cur_pic->slicetype == SLICE_B)
{
// Code Inter Dir
const UInt uiInterDir = pcCU->getInterDir( uiAbsPartIdx ) - 1;
const UInt uiCtx = pcCU->getCtxInterDir( uiAbsPartIdx );
ContextModel *pCtx = m_cCUInterDirSCModel.get( 0 );
if (pcCU->getPartitionSize(uiAbsPartIdx) == SIZE_2Nx2N || pcCU->getHeight(uiAbsPartIdx) != 8 )
{
m_pcBinIf->encodeBin( uiInterDir == 2 ? 1 : 0, *( pCtx + uiCtx ) );
}
if (uiInterDir < 2)
{
m_pcBinIf->encodeBin( uiInterDir, *( pCtx + 4 ) );
}
}
*/
for (ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) {
//if(encoder_state->ref_idx_num[uiRefListIdx] > 0)
{
if (cur_cu->inter.mv_dir & (1 << ref_list_idx)) {
if (encoder_state->global->ref->used_size != 1) { //encoder_state->ref_idx_num[uiRefListIdx] != 1)//NumRefIdx != 1)
// parseRefFrmIdx
int32_t ref_frame = cur_cu->inter.mv_ref;
cabac->ctx = &(cabac->ctx_cu_ref_pic_model[0]);
CABAC_BIN(cabac, (ref_frame != 0), "ref_frame_flag");
if (ref_frame > 0) {
int32_t i;
int32_t ref_num = encoder_state->global->ref->used_size - 2;
cabac->ctx = &(cabac->ctx_cu_ref_pic_model[1]);
ref_frame--;
for (i = 0; i < ref_num; ++i) {
const uint32_t symbol = (i == ref_frame) ? 0 : 1;
if (i == 0) {
CABAC_BIN(cabac, symbol, "ref_frame_flag2");
} else {
CABAC_BIN_EP(cabac, symbol, "ref_frame_flag2");
}
if (symbol == 0) break;
}
}
}
if (!(/*pcCU->getSlice()->getMvdL1ZeroFlag() &&*/ encoder_state->global->ref_list == REF_PIC_LIST_1 && cur_cu->inter.mv_dir == 3)) {
const int32_t mvd_hor = cur_cu->inter.mvd[0];
const int32_t mvd_ver = cur_cu->inter.mvd[1];
const int8_t hor_abs_gr0 = mvd_hor != 0;
const int8_t ver_abs_gr0 = mvd_ver != 0;
const uint32_t mvd_hor_abs = abs(mvd_hor);
const uint32_t mvd_ver_abs = abs(mvd_ver);
cabac->ctx = &(cabac->ctx_cu_mvd_model[0]);
CABAC_BIN(cabac, (mvd_hor != 0), "abs_mvd_greater0_flag_hor");
CABAC_BIN(cabac, (mvd_ver != 0), "abs_mvd_greater0_flag_ver");
cabac->ctx = &(cabac->ctx_cu_mvd_model[1]);
if (hor_abs_gr0) {
CABAC_BIN(cabac, (mvd_hor_abs>1), "abs_mvd_greater1_flag_hor");
}
if (ver_abs_gr0) {
CABAC_BIN(cabac, (mvd_ver_abs>1), "abs_mvd_greater1_flag_ver");
}
if (hor_abs_gr0) {
if (mvd_hor_abs > 1) {
cabac_write_ep_ex_golomb(cabac,mvd_hor_abs-2, 1);
}
CABAC_BIN_EP(cabac, (mvd_hor>0)?0:1, "mvd_sign_flag_hor");
}
if (ver_abs_gr0) {
if (mvd_ver_abs > 1) {
cabac_write_ep_ex_golomb(cabac,mvd_ver_abs-2, 1);
}
CABAC_BIN_EP(cabac, (mvd_ver>0)?0:1, "mvd_sign_flag_ver");
}
}
// Signal which candidate MV to use
cabac_write_unary_max_symbol(cabac, cabac->ctx_mvp_idx_model, cur_cu->inter.mv_cand, 1,
AMVP_MAX_NUM_CANDS - 1);
}
}
} // for ref_list
} // if !merge
{
int cbf = (cbf_is_set(cur_cu->cbf.y, depth) ||
cbf_is_set(cur_cu->cbf.u, depth) ||
cbf_is_set(cur_cu->cbf.v, depth));
// Only need to signal coded block flag if not skipped or merged
// skip = no coded residual, merge = coded residual
if (!cur_cu->merged) {
cabac->ctx = &(cabac->ctx_cu_qt_root_cbf_model);
CABAC_BIN(cabac, cbf, "rqt_root_cbf");
}
// Code (possible) coeffs to bitstream
if (cbf) {
encode_transform_coeff(encoder_state, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0);
}
}
// END for each part
} else if (cur_cu->type == CU_INTRA) {
uint8_t intra_pred_mode[4] = {
cur_cu->intra[0].mode, cur_cu->intra[1].mode,
cur_cu->intra[2].mode, cur_cu->intra[3].mode };
uint8_t intra_pred_mode_chroma = 36; // 36 = Chroma derived from luma
int8_t intra_preds[4][3] = {{-1, -1, -1},{-1, -1, -1},{-1, -1, -1},{-1, -1, -1}};
int8_t mpm_preds[4] = {-1, -1, -1, -1};
int i, j;
uint32_t flag[4];
int num_pred_units = (cur_cu->part_size == SIZE_2Nx2N ? 1 : 4);
#if ENABLE_PCM == 1
// Code must start after variable initialization
cabac_encode_bin_trm(cabac, 0); // IPCMFlag == 0
#endif
// PREDINFO CODING
// If intra prediction mode is found from the predictors,
// it can be signaled with two EP's. Otherwise we can send
// 5 EP bins with the full predmode
for (j = 0; j < num_pred_units; ++j) {
static const vector2d offset[4] = {{0,0},{1,0},{0,1},{1,1}};
cu_info *left_cu = 0;
cu_info *above_cu = 0;
if (x_ctb > 0) {
left_cu = &cur_pic->cu_array[x_ctb - 1 + y_ctb * (cur_pic->width_in_lcu << MAX_DEPTH)];
}
// Don't take the above CU across the LCU boundary.
if (y_ctb > 0 && (y_ctb & 7) != 0) {
above_cu = &cur_pic->cu_array[x_ctb + (y_ctb - 1) * (cur_pic->width_in_lcu << MAX_DEPTH)];
}
intra_get_dir_luma_predictor((x_ctb<<3) + (offset[j].x<<2),
(y_ctb<<3) + (offset[j].y<<2),
intra_preds[j], cur_cu,
left_cu, above_cu);
for (i = 0; i < 3; i++) {
if (intra_preds[j][i] == intra_pred_mode[j]) {
mpm_preds[j] = (int8_t)i;
break;
}
}
flag[j] = (mpm_preds[j] == -1) ? 0 : 1;
}
cabac->ctx = &(cabac->ctx_intra_mode_model);
for (j = 0; j < num_pred_units; ++j) {
CABAC_BIN(cabac, flag[j], "prev_intra_luma_pred_flag");
}
for (j = 0; j < num_pred_units; ++j) {
// Signal index of the prediction mode in the prediction list.
if (flag[j]) {
CABAC_BIN_EP(cabac, (mpm_preds[j] == 0 ? 0 : 1), "mpm_idx");
if (mpm_preds[j] != 0) {
CABAC_BIN_EP(cabac, (mpm_preds[j] == 1 ? 0 : 1), "mpm_idx");
}
} else {
// Signal the actual prediction mode.
int32_t tmp_pred = intra_pred_mode[j];
// Sort prediction list from lowest to highest.
if (intra_preds[j][0] > intra_preds[j][1]) SWAP(intra_preds[j][0], intra_preds[j][1], int8_t);
if (intra_preds[j][0] > intra_preds[j][2]) SWAP(intra_preds[j][0], intra_preds[j][2], int8_t);
if (intra_preds[j][1] > intra_preds[j][2]) SWAP(intra_preds[j][1], intra_preds[j][2], int8_t);
// Reduce the index of the signaled prediction mode according to the
// prediction list, as it has been already signaled that it's not one
// of the prediction modes.
for (i = 2; i >= 0; i--) {
tmp_pred = (tmp_pred > intra_preds[j][i] ? tmp_pred - 1 : tmp_pred);
}
CABAC_BINS_EP(cabac, tmp_pred, 5, "rem_intra_luma_pred_mode");
}
}
{ // start intra chroma pred mode coding
unsigned pred_mode = 5;
unsigned chroma_pred_modes[4] = {0, 26, 10, 1};
if (intra_pred_mode_chroma == 36) {
pred_mode = 4;
} else if (intra_pred_mode_chroma == 34) {
// Angular 34 mode is possible only if intra pred mode is one of the
// possible chroma pred modes, in which case it is signaled with that
// duplicate mode.
for (i = 0; i < 4; ++i) {
if (intra_pred_mode[0] == chroma_pred_modes[i]) pred_mode = i;
}
} else {
for (i = 0; i < 4; ++i) {
if (intra_pred_mode_chroma == chroma_pred_modes[i]) pred_mode = i;
}
}
/**
* Table 9-35 - Binarization for intra_chroma_pred_mode
* intra_chroma_pred_mode bin_string
* 4 0
* 0 100
* 1 101
* 2 110
* 3 111
* Table 9-37 - Assignment of ctxInc to syntax elements with context coded bins
* intra_chroma_pred_mode[][] = 0, bypass, bypass
*/
cabac->ctx = &(cabac->ctx_chroma_pred_model[0]);
if (pred_mode == 4) {
CABAC_BIN(cabac, 0, "intra_chroma_pred_mode");
} else {
CABAC_BIN(cabac, 1, "intra_chroma_pred_mode");
CABAC_BINS_EP(cabac, pred_mode, 2, "intra_chroma_pred_mode");
}
} // end intra chroma pred mode coding
encode_transform_coeff(encoder_state, x_ctb * 2, y_ctb * 2, depth, 0, 0, 0);
}
#if ENABLE_PCM == 1
// Code IPCM block
if (cur_cu->type == CU_PCM) {
cabac_encode_bin_trm(cabac, 1); // IPCMFlag == 1
cabac_finish(cabac);
bitstream_align(cabac.stream);
// PCM sample
{
unsigned y, x;
pixel *base_y = &cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
pixel *base_u = &cur_pic->u_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)];
pixel *base_v = &cur_pic->v_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)];
// Luma
for (y = 0; y < LCU_WIDTH >> depth; y++) {
for (x = 0; x < LCU_WIDTH >> depth; x++) {
bitstream_put(cabac.stream, base_y[x + y * encoder->in.width], 8);
}
}
// Chroma
if (encoder->in.video_format != FORMAT_400) {
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
bitstream_put(cabac.stream, base_u[x + y * (encoder->in.width >> 1)], 8);
}
}
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
bitstream_put(cabac.stream, base_v[x + y * (encoder->in.width >> 1)], 8);
}
}
}
}
// end PCM sample
cabac_start(cabac);
} // end Code IPCM block
#endif /* END ENABLE_PCM */
else { /* Should not happend */
printf("UNHANDLED TYPE!\r\n");
assert(0);
exit(1);
}
/* end prediction unit */
/* end coding_unit */
}
static void transform_chroma(encoder_state * const encoder_state, cu_info *cur_cu,
int depth, const pixel *base_u, pixel *pred_u,
coefficient *coeff_u, int8_t scan_idx_chroma,
coefficient *pre_quant_coeff, coefficient *block)
{
const encoder_control * const encoder = encoder_state->encoder_control;
int base_stride = LCU_WIDTH;
int pred_stride = LCU_WIDTH;
int8_t width_c = LCU_WIDTH >> (depth + 1);
int i = 0;
unsigned ac_sum = 0;
int y, x;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
block[i] = ((int16_t)base_u[x + y * (base_stride >> 1)]) -
pred_u[x + y * (pred_stride >> 1)];
i++;
}
}
transform2d(encoder, block, pre_quant_coeff, width_c, 65535);
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, coeff_u, width_c, width_c, &ac_sum, 2,
scan_idx_chroma, cur_cu->type, cur_cu->tr_depth-cur_cu->depth);
} else {
quant(encoder_state, pre_quant_coeff, coeff_u, width_c, width_c, &ac_sum, 2,
scan_idx_chroma, cur_cu->type);
}
}
static void reconstruct_chroma(const encoder_state * const encoder_state, cu_info *cur_cu,
int depth, coefficient *coeff_u,
pixel *recbase_u, pixel *pred_u, int color_type,
coefficient *pre_quant_coeff, coefficient *block)
{
int8_t width_c = LCU_WIDTH >> (depth + 1);
const int pred_stride = LCU_WIDTH;
const int recbase_stride = LCU_WIDTH;
int i, y, x;
dequant(encoder_state, coeff_u, pre_quant_coeff, width_c, width_c, (int8_t)color_type, cur_cu->type);
itransform2d(encoder_state->encoder_control, block, pre_quant_coeff, width_c, 65535);
i = 0;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
int16_t val = block[i++] + pred_u[x + y * (pred_stride >> 1)];
//TODO: support 10+bits
recbase_u[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255, val);
}
}
}
/**
* This function calculates the residual coefficients for a region of the LCU
* (defined by x, y and depth) and updates the reconstruction with the
* kvantized residual.
*
* It handles recursion for transform split, but that is currently only work
* for 64x64 inter to 32x32 transform blocks.
*
* Inputs are:
* - lcu->rec pixels after prediction for the area
* - lcu->ref reference pixels for the area
* - lcu->cu for the area
*
* Outputs are:
* - lcu->rec reconstruction after quantized residual
* - lcu->coeff quantized coefficients for the area
* - lcu->cbf coded block flags for the area
* - lcu->cu.intra[].tr_skip for the area
*/
void encode_transform_tree(encoder_state * const encoder_state, int32_t x, int32_t y, const uint8_t depth, lcu_t* lcu)
{
const encoder_control * const encoder = encoder_state->encoder_control;
// we have 64>>depth transform size
int x_local = (x&0x3f), y_local = (y&0x3f);
cu_info *cur_cu = &lcu->cu[LCU_CU_OFFSET + (x_local>>3) + (y_local>>3)*LCU_T_CU_WIDTH];
int i;
const int8_t width = LCU_WIDTH>>depth;
const int8_t width_c = (depth == MAX_DEPTH + 1 ? width : width / 2);
// Tell clang-analyzer what is up. For some reason it can't figure out from
// asserting just depth.
assert(width == 4 || width == 8 || width == 16 || width == 32 || width == 64);
// Split transform and increase depth
if (depth == 0 || cur_cu->tr_depth > depth) {
int offset = width_c;
encode_transform_tree(encoder_state, x, y, depth+1, lcu);
encode_transform_tree(encoder_state, x + offset, y, depth+1, lcu);
encode_transform_tree(encoder_state, x, y + offset, depth+1, lcu);
encode_transform_tree(encoder_state, x + offset, y + offset, depth+1, lcu);
// Propagate coded block flags from child CUs to parent CU.
if (depth < MAX_DEPTH) {
cu_info *cu_a = &lcu->cu[LCU_CU_OFFSET + ((x_local + offset)>>3) + (y_local>>3) *LCU_T_CU_WIDTH];
cu_info *cu_b = &lcu->cu[LCU_CU_OFFSET + (x_local>>3) + ((y_local+offset)>>3)*LCU_T_CU_WIDTH];
cu_info *cu_c = &lcu->cu[LCU_CU_OFFSET + ((x_local + offset)>>3) + ((y_local+offset)>>3)*LCU_T_CU_WIDTH];
if (cbf_is_set(cu_a->cbf.y, depth+1) || cbf_is_set(cu_b->cbf.y, depth+1) || cbf_is_set(cu_c->cbf.y, depth+1)) {
cbf_set(&cur_cu->cbf.y, depth);
}
if (cbf_is_set(cu_a->cbf.u, depth+1) || cbf_is_set(cu_b->cbf.u, depth+1) || cbf_is_set(cu_c->cbf.u, depth+1)) {
cbf_set(&cur_cu->cbf.u, depth);
}
if (cbf_is_set(cu_a->cbf.v, depth+1) || cbf_is_set(cu_b->cbf.v, depth+1) || cbf_is_set(cu_c->cbf.v, depth+1)) {
cbf_set(&cur_cu->cbf.v, depth);
}
}
return;
}
{
// Pointers to current location in arrays with prediction.
pixel *recbase_y = &lcu->rec.y[x_local + y_local * LCU_WIDTH];
pixel *recbase_u = &lcu->rec.u[x_local/2 + (y_local * LCU_WIDTH)/4];
pixel *recbase_v = &lcu->rec.v[x_local/2 + (y_local * LCU_WIDTH)/4];
const int32_t recbase_stride = LCU_WIDTH;
// Pointers to current location in arrays with reference.
const pixel *base_y = &lcu->ref.y[x_local + y_local * LCU_WIDTH];
const pixel *base_u = &lcu->ref.u[x_local/2 + (y_local * LCU_WIDTH)/4];
const pixel *base_v = &lcu->ref.v[x_local/2 + (y_local * LCU_WIDTH)/4];
const int32_t base_stride = LCU_WIDTH;
// Temporary buffers. Not really used for much. Possibly unnecessary.
pixel pred_y[LCU_WIDTH*LCU_WIDTH];
pixel pred_u[LCU_WIDTH*LCU_WIDTH>>2];
pixel pred_v[LCU_WIDTH*LCU_WIDTH>>2];
const int32_t pred_stride = LCU_WIDTH;
// Buffers for coefficients.
coefficient coeff_y[LCU_WIDTH*LCU_WIDTH];
coefficient coeff_u[LCU_WIDTH*LCU_WIDTH>>2];
coefficient coeff_v[LCU_WIDTH*LCU_WIDTH>>2];
// Pointers to current location in arrays with kvantized coefficients.
coefficient *orig_coeff_y = &lcu->coeff.y[x_local + y_local * LCU_WIDTH];
coefficient *orig_coeff_u = &lcu->coeff.u[x_local/2 + (y_local * LCU_WIDTH)/4];
coefficient *orig_coeff_v = &lcu->coeff.v[x_local/2 + (y_local * LCU_WIDTH)/4];
const int32_t coeff_stride = LCU_WIDTH;
// Temporary buffers for kvantization and transformation.
int16_t block[LCU_WIDTH*LCU_WIDTH>>2];
int16_t pre_quant_coeff[LCU_WIDTH*LCU_WIDTH>>2];
uint32_t ac_sum = 0;
uint8_t scan_idx_luma = SCAN_DIAG;
uint8_t scan_idx_chroma = SCAN_DIAG;
int32_t x_pu = x_local >> 2;
int32_t y_pu = y_local >> 2;
#if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD
uint32_t residual_sum = 0;
#endif
// Clear coded block flag structures for depths lower than current depth.
// This should ensure that the CBF data doesn't get corrupted if this function
// is called more than once.
cbf_clear(&cur_cu->cbf.y, depth + PU_INDEX(x >> 2, y >> 2));
if (PU_INDEX(x >> 2, y >> 2) == 0) {
cbf_clear(&cur_cu->cbf.u, depth);
cbf_clear(&cur_cu->cbf.v, depth);
}
// Pick coeff scan mode according to intra prediction mode.
if (cur_cu->type == CU_INTRA) {
int pu_index = PU_INDEX(x_pu, y_pu);
int luma_mode = cur_cu->intra[pu_index].mode;
int chroma_mode = cur_cu->intra[0].mode_chroma;
if (chroma_mode == 36) {
chroma_mode = luma_mode;
}
scan_idx_luma = SCAN_DIAG;
scan_idx_chroma = SCAN_DIAG;
// Scan mode is diagonal, except for 4x4+8x8 luma and 4x4 chroma, where:
// - angular 6-14 = vertical
// - angular 22-30 = horizontal
if (width <= 8) {
if (luma_mode >= 6 && luma_mode <= 14) {
scan_idx_luma = SCAN_VER;
} else if (luma_mode >= 22 && luma_mode <= 30) {
scan_idx_luma = SCAN_HOR;
}
if (chroma_mode >= 6 && chroma_mode <= 14) {
scan_idx_chroma = SCAN_VER;
} else if (chroma_mode >= 22 && chroma_mode <= 30) {
scan_idx_chroma = SCAN_HOR;
}
}
}
// Copy Luma and Chroma to the pred-block
for(y = 0; y < width; y++) {
for(x = 0; x < width; x++) {
pred_y[x+y*pred_stride]=recbase_y[x+y*recbase_stride];
}
}
// Get residual by subtracting prediction
i = 0;
ac_sum = 0;
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
block[i] = ((int16_t)base_y[x + y * base_stride]) -
pred_y[x + y * pred_stride];
#if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD
residual_sum += block[i];
#endif
i++;
}
}
#if OPTIMIZATION_SKIP_RESIDUAL_ON_THRESHOLD
#define RESIDUAL_THRESHOLD 500
if(residual_sum < RESIDUAL_THRESHOLD/(width)) {
memset(block, 0, sizeof(int16_t)*(width)*(width));
}
#endif
// For 4x4 blocks, check for transform skip
if(width == 4 && encoder->trskip_enable) {
int i;
coefficient temp_block[16]; coefficient temp_coeff[16];
coefficient temp_block2[16]; coefficient temp_coeff2[16];
uint32_t cost = 0,cost2 = 0;
uint32_t coeffcost = 0,coeffcost2 = 0;
// Test for transform skip
transformskip(encoder, block,pre_quant_coeff,width);
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, temp_coeff, 4, 4, &ac_sum, 0, scan_idx_luma, cur_cu->type,0);
} else {
quant(encoder_state, pre_quant_coeff, temp_coeff, 4, 4, &ac_sum, 0, scan_idx_luma, cur_cu->type);
}
dequant(encoder_state, temp_coeff, pre_quant_coeff, 4, 4, 0, cur_cu->type);
itransformskip(encoder, temp_block,pre_quant_coeff,width);
transform2d(encoder, block,pre_quant_coeff,width,0);
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, temp_coeff2, 4, 4, &ac_sum, 0, scan_idx_luma, cur_cu->type,0);
} else {
quant(encoder_state, pre_quant_coeff, temp_coeff2, 4, 4, &ac_sum, 0, scan_idx_luma, cur_cu->type);
}
dequant(encoder_state, temp_coeff2, pre_quant_coeff, 4, 4, 0, cur_cu->type);
itransform2d(encoder, temp_block2,pre_quant_coeff,width,0);
// SSD between original and reconstructed
for (i = 0; i < 16; i++) {
int diff = temp_block[i]-block[i];
cost += diff*diff;
diff = temp_block2[i] - block[i];
cost2 += diff*diff;
}
// Simple RDO
if(encoder->rdo == 1) {
// SSD between reconstruction and original + sum of coeffs
for (i = 0; i < 16; i++) {
coeffcost += abs((int)temp_coeff[i]);
coeffcost2 += abs((int)temp_coeff2[i]);
}
cost += (1 + coeffcost + (coeffcost>>1))*((int)encoder_state->global->cur_lambda_cost+0.5);
cost2 += (coeffcost2 + (coeffcost2>>1))*((int)encoder_state->global->cur_lambda_cost+0.5);
// Full RDO
} else if(encoder->rdo == 2) {
coeffcost = get_coeff_cost(encoder_state, temp_coeff, 4, 0, scan_idx_luma);
coeffcost2 = get_coeff_cost(encoder_state, temp_coeff2, 4, 0, scan_idx_luma);
cost += coeffcost*((int)encoder_state->global->cur_lambda_cost+0.5);
cost2 += coeffcost2*((int)encoder_state->global->cur_lambda_cost+0.5);
}
cur_cu->intra[PU_INDEX(x_pu, y_pu)].tr_skip = (cost < cost2);
}
// Transform and quant residual to coeffs
if(width == 4 && cur_cu->intra[PU_INDEX(x_pu, y_pu)].tr_skip) {
transformskip(encoder, block,pre_quant_coeff,width);
} else {
transform2d(encoder, block,pre_quant_coeff,width,0);
}
if (encoder->rdoq_enable) {
rdoq(encoder_state, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0,
scan_idx_luma, cur_cu->type, cur_cu->tr_depth-cur_cu->depth);
} else {
quant(encoder_state, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0, scan_idx_luma, cur_cu->type);
}
// Check for non-zero coeffs
for (i = 0; i < width * width; i++) {
if (coeff_y[i] != 0) {
// Found one, we can break here
cbf_set(&cur_cu->cbf.y, depth + PU_INDEX(x_pu, y_pu));
break;
}
}
// Copy coefficients, even if they are all zeroes. This takes care of the
// case where the original coefficients aren't already zeroed.
{
int i = 0;
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
orig_coeff_y[x + y * coeff_stride] = coeff_y[i];
i++;
}
}
}
if (cbf_is_set(cur_cu->cbf.y, depth + PU_INDEX(x_pu, y_pu))) {
// Combine inverese quantized coefficients with the prediction to get
// reconstructed image.
//picture_set_block_residual(cur_pic,x_cu,y_cu,depth,1);
int i;
dequant(encoder_state, coeff_y, pre_quant_coeff, width, width, 0, cur_cu->type);
if(width == 4 && cur_cu->intra[PU_INDEX(x_pu, y_pu)].tr_skip) {
itransformskip(encoder, block,pre_quant_coeff,width);
} else {
itransform2d(encoder, block,pre_quant_coeff,width,0);
}
i = 0;
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
int val = block[i++] + pred_y[x + y * pred_stride];
//TODO: support 10+bits
recbase_y[x + y * recbase_stride] = (pixel)CLIP(0, 255, val);
}
}
}
// If luma is 4x4, do chroma for the 8x8 luma area when handling the top
// left PU because the coordinates are correct.
if (depth <= MAX_DEPTH || (x_pu % 2 == 0 && y_pu % 2 == 0)) {
int chroma_depth = (depth == MAX_PU_DEPTH ? depth - 1 : depth);
// These are some weird indices for quant and dequant and should be
// replaced later with color_index.
int color_type_u = 2;
int color_type_v = 3;
for(y = 0; y < width_c; y++) {
for(x = 0; x < width_c; x++) {
pred_u[x+y*(pred_stride>>1)]=recbase_u[x+y*(recbase_stride>>1)];
pred_v[x+y*(pred_stride>>1)]=recbase_v[x+y*(recbase_stride>>1)];
}
}
transform_chroma(encoder_state, cur_cu, chroma_depth, base_u, pred_u, coeff_u, scan_idx_chroma, pre_quant_coeff, block);
for (i = 0; i < width_c * width_c; i++) {
if (coeff_u[i] != 0) {
cbf_set(&cur_cu->cbf.u, depth);
break;
}
}
transform_chroma(encoder_state, cur_cu, chroma_depth, base_v, pred_v, coeff_v, scan_idx_chroma, pre_quant_coeff, block);
for (i = 0; i < width_c * width_c; i++) {
if (coeff_v[i] != 0) {
cbf_set(&cur_cu->cbf.v, depth);
break;
}
}
// Copy coefficients, even if they are all zeroes.
{
int i = 0;
for (y = 0; y < width_c; y++) {
for (x = 0; x < width_c; x++) {
orig_coeff_u[x + y * (coeff_stride>>1)] = coeff_u[i];
orig_coeff_v[x + y * (coeff_stride>>1)] = coeff_v[i];
i++;
}
}
}
if (cbf_is_set(cur_cu->cbf.u, depth)) {
reconstruct_chroma(encoder_state, cur_cu, chroma_depth,
coeff_u, recbase_u, pred_u, color_type_u,
pre_quant_coeff, block);
}
if (cbf_is_set(cur_cu->cbf.v, depth)) {
reconstruct_chroma(encoder_state, cur_cu, chroma_depth,
coeff_v, recbase_v, pred_v, color_type_v,
pre_quant_coeff, block);
}
}
return;
}
}
static void encode_transform_unit(encoder_state * const encoder_state,
int x_pu, int y_pu, int depth, int tr_depth)
{
const picture * const cur_pic = encoder_state->tile->cur_pic;
uint8_t width = LCU_WIDTH >> depth;
uint8_t width_c = (depth == MAX_PU_DEPTH ? width : width / 2);
int x_cu = x_pu / 2;
int y_cu = y_pu / 2;
cu_info *cur_cu = &cur_pic->cu_array[x_cu + y_cu * (cur_pic->width_in_lcu << MAX_DEPTH)];
coefficient coeff_y[LCU_WIDTH*LCU_WIDTH+1];
coefficient coeff_u[LCU_WIDTH*LCU_WIDTH>>2];
coefficient coeff_v[LCU_WIDTH*LCU_WIDTH>>2];
int32_t coeff_stride = cur_pic->width;
uint32_t ctx_idx;
int8_t scan_idx = SCAN_DIAG;
uint32_t dir_mode;
int cbf_y = cbf_is_set(cur_cu->cbf.y, depth + PU_INDEX(x_pu, y_pu));
if (cbf_y) {
int x = x_pu * (LCU_WIDTH >> MAX_PU_DEPTH);
int y = y_pu * (LCU_WIDTH >> MAX_PU_DEPTH);
coefficient *orig_pos = &cur_pic->coeff_y[x + y * cur_pic->width];
for (y = 0; y < width; y++) {
for (x = 0; x < width; x++) {
coeff_y[x+y*width] = orig_pos[x];
}
orig_pos += coeff_stride;
}
}
switch (width) {
case 2: ctx_idx = 6; break;
case 4: ctx_idx = 5; break;
case 8: ctx_idx = 4; break;
case 16: ctx_idx = 3; break;
case 32: ctx_idx = 2; break;
case 64: ctx_idx = 1; break;
default: ctx_idx = 0; break;
}
ctx_idx -= tr_depth;
// CoeffNxN
// Residual Coding
if (cbf_y) {
scan_idx = SCAN_DIAG;
if (cur_cu->type == CU_INTRA) {
// Luma (Intra) scanmode
if (depth <= MAX_DEPTH) {
dir_mode = cur_cu->intra[0].mode;
} else {
int pu_index = x_pu % 2 + 2 * (y_pu % 2);
dir_mode = cur_cu->intra[pu_index].mode;
}
// Scan mode is diagonal, except for 4x4 and 8x8, where:
// - angular 6-14 = vertical
// - angular 22-30 = horizontal
if (width <= 8) {
if (dir_mode >= 6 && dir_mode <= 14) {
scan_idx = SCAN_VER;
} else if (dir_mode >= 22 && dir_mode <= 30) {
scan_idx = SCAN_HOR;
}
}
}
encode_coeff_nxn(encoder_state, coeff_y, width, 0, scan_idx, cur_cu->intra[PU_INDEX(x_pu, y_pu)].tr_skip);
}
if (depth == MAX_DEPTH + 1 && !(x_pu % 2 && y_pu % 2)) {
// For size 4x4 luma transform the corresponding chroma transforms are
// also of size 4x4 covering 8x8 luma pixels. The residual is coded
// in the last transform unit so for the other ones, don't do anything.
return;
}
if (cbf_is_set(cur_cu->cbf.u, depth) || cbf_is_set(cur_cu->cbf.v, depth)) {
int x, y;
coefficient *orig_pos_u, *orig_pos_v;
if (depth <= MAX_DEPTH) {
x = x_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1));
y = y_pu * (LCU_WIDTH >> (MAX_PU_DEPTH + 1));
} else {
// for 4x4 select top left pixel of the CU.
x = x_cu * (LCU_WIDTH >> (MAX_DEPTH + 1));
y = y_cu * (LCU_WIDTH >> (MAX_DEPTH + 1));
}
orig_pos_u = &cur_pic->coeff_u[x + y * (cur_pic->width >> 1)];
orig_pos_v = &cur_pic->coeff_v[x + y * (cur_pic->width >> 1)];
for (y = 0; y < (width_c); y++) {
for (x = 0; x < (width_c); x++) {
coeff_u[x+y*(width_c)] = orig_pos_u[x];
coeff_v[x+y*(width_c)] = orig_pos_v[x];
}
orig_pos_u += coeff_stride>>1;
orig_pos_v += coeff_stride>>1;
}
if(cur_cu->type == CU_INTER) {
scan_idx = SCAN_DIAG;
} else {
// Chroma scanmode
ctx_idx++;
dir_mode = cur_cu->intra[0].mode_chroma;
if (dir_mode == 36) {
// TODO: support NxN
dir_mode = cur_cu->intra[0].mode;
}
scan_idx = SCAN_DIAG;
if (ctx_idx > 4 && ctx_idx < 7) { // if multiple scans supported for transform size
// mode is diagonal, except for 4x4 and 8x8, where:
// - angular 6-14 = vertical
// - angular 22-30 = horizontal
scan_idx = abs((int32_t) dir_mode - 26) < 5 ? 1 : (abs((int32_t)dir_mode - 10) < 5 ? 2 : 0);
}
}
if (cbf_is_set(cur_cu->cbf.u, depth)) {
encode_coeff_nxn(encoder_state, coeff_u, width_c, 2, scan_idx, 0);
}
if (cbf_is_set(cur_cu->cbf.v, depth)) {
encode_coeff_nxn(encoder_state, coeff_v, width_c, 2, scan_idx, 0);
}
}
}
/**
* \param encoder
* \param x_pu Prediction units' x coordinate.
* \param y_pu Prediction units' y coordinate.
* \param depth Depth from LCU.
* \param tr_depth Depth from last CU.
* \param parent_coeff_u What was signaled at previous level for cbf_cb.
* \param parent_coeff_v What was signlaed at previous level for cbf_cr.
*/
void encode_transform_coeff(encoder_state * const encoder_state, int32_t x_pu,int32_t y_pu,
int8_t depth, int8_t tr_depth, uint8_t parent_coeff_u, uint8_t parent_coeff_v)
{
cabac_data * const cabac = &encoder_state->cabac;
int32_t x_cu = x_pu / 2;
int32_t y_cu = y_pu / 2;
const picture * const cur_pic = encoder_state->tile->cur_pic;
cu_info *cur_cu = &cur_pic->cu_array[x_cu + y_cu * (cur_pic->width_in_lcu << MAX_DEPTH)];
// NxN signifies implicit transform split at the first transform level.
// There is a similar implicit split for inter, but it is only used when
// transform hierarchy is not in use.
int intra_split_flag = (cur_cu->type == CU_INTRA && cur_cu->part_size == SIZE_NxN);
// The implicit split by intra NxN is not counted towards max_tr_depth.
int max_tr_depth = (cur_cu->type == CU_INTRA ? TR_DEPTH_INTRA + intra_split_flag : TR_DEPTH_INTER);
int8_t split = (cur_cu->tr_depth > depth);
const int cb_flag_y = cbf_is_set(cur_cu->cbf.y, depth + PU_INDEX(x_pu, y_pu));
const int cb_flag_u = cbf_is_set(cur_cu->cbf.u, depth);
const int cb_flag_v = cbf_is_set(cur_cu->cbf.v, depth);
// The split_transform_flag is not signaled when:
// - transform size is greater than 32 (depth == 0)
// - transform size is 4 (depth == MAX_PU_DEPTH)
// - transform depth is max
// - cu is intra NxN and it's the first split
if (depth > 0 &&
depth < MAX_PU_DEPTH &&
tr_depth < max_tr_depth &&
!(intra_split_flag && tr_depth == 0))
{
cabac->ctx = &(cabac->ctx_trans_subdiv_model[5 - ((g_convert_to_bit[LCU_WIDTH] + 2) - depth)]);
CABAC_BIN(cabac, split, "split_transform_flag");
}
// Chroma cb flags are not signaled when one of the following:
// - transform size is 4 (2x2 chroma transform doesn't exist)
// - they have already been signaled to 0 previously
// When they are not present they are inferred to be 0, except for size 4
// when the flags from previous level are used.
if (depth < MAX_PU_DEPTH) {
cabac->ctx = &(cabac->ctx_qt_cbf_model_chroma[tr_depth]);
if (tr_depth == 0 || parent_coeff_u) {
CABAC_BIN(cabac, cb_flag_u, "cbf_cb");
}
if (tr_depth == 0 || parent_coeff_v) {
CABAC_BIN(cabac, cb_flag_v, "cbf_cr");
}
}
if (split) {
uint8_t pu_offset = 1 << (MAX_PU_DEPTH - (depth + 1));
encode_transform_coeff(encoder_state, x_pu, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v);
encode_transform_coeff(encoder_state, x_pu + pu_offset, y_pu, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v);
encode_transform_coeff(encoder_state, x_pu, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v);
encode_transform_coeff(encoder_state, x_pu + pu_offset, y_pu + pu_offset, depth + 1, tr_depth + 1, cb_flag_u, cb_flag_v);
return;
}
// Luma coded block flag is signaled when one of the following:
// - prediction mode is intra
// - transform depth > 0
// - we have chroma coefficients at this level
// When it is not present, it is inferred to be 1.
if(cur_cu->type == CU_INTRA || tr_depth > 0 || cb_flag_u || cb_flag_v) {
cabac->ctx = &(cabac->ctx_qt_cbf_model_luma[!tr_depth]);
CABAC_BIN(cabac, cb_flag_y, "cbf_luma");
}
if (cb_flag_y | cb_flag_u | cb_flag_v) {
encode_transform_unit(encoder_state, x_pu, y_pu, depth, tr_depth);
}
}
void encode_coeff_nxn(encoder_state * const encoder_state, coefficient *coeff, uint8_t width,
uint8_t type, int8_t scan_mode, int8_t tr_skip)
{
const encoder_control * const encoder = encoder_state->encoder_control;
cabac_data * const cabac = &encoder_state->cabac;
int c1 = 1;
uint8_t last_coeff_x = 0;
uint8_t last_coeff_y = 0;
int32_t i;
uint32_t sig_coeffgroup_flag[64];
uint32_t num_nonzero = 0;
int32_t scan_pos_last = -1;
int32_t pos_last = 0;
int32_t shift = 4>>1;
int8_t be_valid = ENABLE_SIGN_HIDING;
int32_t scan_pos_sig;
int32_t last_scan_set;
uint32_t go_rice_param = 0;
uint32_t blk_pos, pos_y, pos_x, sig, ctx_sig;
// CONSTANTS
const uint32_t num_blk_side = width >> shift;
const uint32_t log2_block_size = g_convert_to_bit[width] + 2;
const uint32_t *scan =
g_sig_last_scan[scan_mode][log2_block_size - 1];
const uint32_t *scan_cg = g_sig_last_scan_cg[log2_block_size - 2][scan_mode];
// Init base contexts according to block type
cabac_ctx *base_coeff_group_ctx = &(cabac->ctx_cu_sig_coeff_group_model[type]);
cabac_ctx *baseCtx = (type == 0) ? &(cabac->ctx_cu_sig_model_luma[0]) :
&(cabac->ctx_cu_sig_model_chroma[0]);
memset(sig_coeffgroup_flag,0,sizeof(uint32_t)*64);
// transform skip flag
if(width == 4 && encoder->trskip_enable) {
cabac->ctx = (type == 0) ? &(cabac->ctx_transform_skip_model_luma) : &(cabac->ctx_transform_skip_model_chroma);
CABAC_BIN(cabac, tr_skip, "transform_skip_flag");
}
// Count non-zero coeffs
for (i = 0; i < width * width; i++) {
if (coeff[i] != 0) {
num_nonzero++;
}
}
scan_pos_last = -1;
// Significance mapping
while (num_nonzero > 0) {
pos_last = scan[++scan_pos_last];
#define POSY (pos_last >> log2_block_size)
#define POSX (pos_last - ( POSY << log2_block_size ))
if (coeff[pos_last] != 0) {
sig_coeffgroup_flag[(num_blk_side * (POSY >> shift) + (POSX >> shift))] = 1;
}
num_nonzero -= (coeff[pos_last] != 0) ? 1 : 0;
#undef POSY
#undef POSX
}
last_coeff_x = pos_last & (width - 1);
last_coeff_y = (uint8_t)(pos_last >> log2_block_size);
// Code last_coeff_x and last_coeff_y
encode_last_significant_xy(encoder_state, last_coeff_x, last_coeff_y, width, width,
type, scan_mode);
scan_pos_sig = scan_pos_last;
last_scan_set = (scan_pos_last >> 4);
// significant_coeff_flag
for (i = last_scan_set; i >= 0; i--) {
int32_t sub_pos = i << 4; // LOG2_SCAN_SET_SIZE;
int32_t abs_coeff[16];
int32_t cg_blk_pos = scan_cg[i];
int32_t cg_pos_y = cg_blk_pos / num_blk_side;
int32_t cg_pos_x = cg_blk_pos - (cg_pos_y * num_blk_side);
uint32_t coeff_signs = 0;
int32_t last_nz_pos_in_cg = -1;
int32_t first_nz_pos_in_cg = 16;
int32_t num_non_zero = 0;
go_rice_param = 0;
if (scan_pos_sig == scan_pos_last) {
abs_coeff[0] = abs(coeff[pos_last]);
coeff_signs = (coeff[pos_last] < 0);
num_non_zero = 1;
last_nz_pos_in_cg = scan_pos_sig;
first_nz_pos_in_cg = scan_pos_sig;
scan_pos_sig--;
}
if (i == last_scan_set || i == 0) {
sig_coeffgroup_flag[cg_blk_pos] = 1;
} else {
uint32_t sig_coeff_group = (sig_coeffgroup_flag[cg_blk_pos] != 0);
uint32_t ctx_sig = context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x,
cg_pos_y, width);
cabac->ctx = &base_coeff_group_ctx[ctx_sig];
CABAC_BIN(cabac, sig_coeff_group, "significant_coeff_group");
}
if (sig_coeffgroup_flag[cg_blk_pos]) {
int32_t pattern_sig_ctx = context_calc_pattern_sig_ctx(sig_coeffgroup_flag,
cg_pos_x, cg_pos_y, width);
for (; scan_pos_sig >= sub_pos; scan_pos_sig--) {
blk_pos = scan[scan_pos_sig];
pos_y = blk_pos >> log2_block_size;
pos_x = blk_pos - (pos_y << log2_block_size);
sig = (coeff[blk_pos] != 0) ? 1 : 0;
if (scan_pos_sig > sub_pos || i == 0 || num_non_zero) {
ctx_sig = context_get_sig_ctx_inc(pattern_sig_ctx, scan_mode, pos_x, pos_y,
log2_block_size, type);
cabac->ctx = &baseCtx[ctx_sig];
CABAC_BIN(cabac, sig, "significant_coeff_flag");
}
if (sig) {
abs_coeff[num_non_zero] = abs(coeff[blk_pos]);
coeff_signs = 2 * coeff_signs + (coeff[blk_pos] < 0);
num_non_zero++;
if (last_nz_pos_in_cg == -1) {
last_nz_pos_in_cg = scan_pos_sig;
}
first_nz_pos_in_cg = scan_pos_sig;
}
}
} else {
scan_pos_sig = sub_pos - 1;
}
if (num_non_zero > 0) {
int8_t sign_hidden = (last_nz_pos_in_cg - first_nz_pos_in_cg >=
4 /*SBH_THRESHOLD*/) ? 1 : 0;
uint32_t ctx_set = (i > 0 && type == 0) ? 2 : 0;
cabac_ctx *base_ctx_mod;
int32_t num_c1_flag, first_c2_flag_idx, idx, first_coeff2;
if (c1 == 0) {
ctx_set++;
}
c1 = 1;
base_ctx_mod = (type == 0) ? &(cabac->ctx_cu_one_model_luma[4 * ctx_set]) :
&(cabac->ctx_cu_one_model_chroma[4 * ctx_set]);
num_c1_flag = MIN(num_non_zero, C1FLAG_NUMBER);
first_c2_flag_idx = -1;
for (idx = 0; idx < num_c1_flag; idx++) {
uint32_t symbol = (abs_coeff[idx] > 1) ? 1 : 0;
cabac->ctx = &base_ctx_mod[c1];
CABAC_BIN(cabac, symbol, "significant_coeff2_flag");
if (symbol) {
c1 = 0;
if (first_c2_flag_idx == -1) {
first_c2_flag_idx = idx;
}
} else if ((c1 < 3) && (c1 > 0)) {
c1++;
}
}
if (c1 == 0) {
base_ctx_mod = (type == 0) ? &(cabac->ctx_cu_abs_model_luma[ctx_set]) :
&(cabac->ctx_cu_abs_model_chroma[ctx_set]);
if (first_c2_flag_idx != -1) {
uint8_t symbol = (abs_coeff[first_c2_flag_idx] > 2) ? 1 : 0;
cabac->ctx = &base_ctx_mod[0];
CABAC_BIN(cabac,symbol,"first_c2_flag");
}
}
if (be_valid && sign_hidden) {
CABAC_BINS_EP(cabac, (coeff_signs >> 1), (num_non_zero - 1), "");
} else {
CABAC_BINS_EP(cabac, coeff_signs, num_non_zero, "");
}
if (c1 == 0 || num_non_zero > C1FLAG_NUMBER) {
first_coeff2 = 1;
for (idx = 0; idx < num_non_zero; idx++) {
int32_t base_level = (idx < C1FLAG_NUMBER) ? (2 + first_coeff2) : 1;
if (abs_coeff[idx] >= base_level) {
cabac_write_coeff_remain(cabac, abs_coeff[idx] - base_level, go_rice_param);
if (abs_coeff[idx] > 3 * (1 << go_rice_param)) {
go_rice_param = MIN(go_rice_param + 1, 4);
}
}
if (abs_coeff[idx] >= 2) {
first_coeff2 = 0;
}
}
}
}
}
}
/*!
\brief Encode (X,Y) position of the last significant coefficient
\param lastpos_x X component of last coefficient
\param lastpos_y Y component of last coefficient
\param width Block width
\param height Block height
\param type plane type / luminance or chrominance
\param scan scan type (diag, hor, ver)
This method encodes the X and Y component within a block of the last significant coefficient.
*/
void encode_last_significant_xy(encoder_state * const encoder_state,
uint8_t lastpos_x, uint8_t lastpos_y,
uint8_t width, uint8_t height,
uint8_t type, uint8_t scan)
{
cabac_data * const cabac = &encoder_state->cabac;
uint8_t offset_x = type?0:((TOBITS(width)*3) + ((TOBITS(width)+1)>>2)),offset_y = offset_x;
uint8_t shift_x = type?(TOBITS(width)):((TOBITS(width)+3)>>2), shift_y = shift_x;
int group_idx_x;
int group_idx_y;
int last_x,last_y,i;
cabac_ctx *base_ctx_x = (type ? cabac->ctx_cu_ctx_last_x_chroma : cabac->ctx_cu_ctx_last_x_luma);
cabac_ctx *base_ctx_y = (type ? cabac->ctx_cu_ctx_last_y_chroma : cabac->ctx_cu_ctx_last_y_luma);
if (scan == SCAN_VER) {
SWAP( lastpos_x, lastpos_y,uint8_t );
}
group_idx_x = g_group_idx[lastpos_x];
group_idx_y = g_group_idx[lastpos_y];
// Last X binarization
for (last_x = 0; last_x < group_idx_x ; last_x++) {
cabac->ctx = &base_ctx_x[offset_x + (last_x >> shift_x)];
CABAC_BIN(cabac,1,"LastSignificantX");
}
if (group_idx_x < g_group_idx[width - 1]) {
cabac->ctx = &base_ctx_x[offset_x + (last_x >> shift_x)];
CABAC_BIN(cabac,0,"LastSignificantX");
}
// Last Y binarization
for (last_y = 0; last_y < group_idx_y ; last_y++) {
cabac->ctx = &base_ctx_y[offset_y + (last_y >> shift_y)];
CABAC_BIN(cabac,1,"LastSignificantY");
}
if (group_idx_y < g_group_idx[height - 1]) {
cabac->ctx = &base_ctx_y[offset_y + (last_y >> shift_y)];
CABAC_BIN(cabac,0,"LastSignificantY");
}
// Last X
if (group_idx_x > 3) {
lastpos_x -= g_min_in_group[group_idx_x];
for (i = ((group_idx_x - 2) >> 1) - 1; i >= 0; i--) {
CABAC_BIN_EP(cabac,(lastpos_x>>i) & 1,"LastSignificantX");
}
}
// Last Y
if (group_idx_y > 3) {
lastpos_y -= g_min_in_group[group_idx_y];
for (i = ((group_idx_y - 2) >> 1) - 1; i >= 0; i--) {
CABAC_BIN_EP(cabac,(lastpos_y>>i) & 1,"LastSignificantY");
}
}
// end LastSignificantXY
}