uvg266/src/inter.c
Joose Sainio 1668b65f3f [mtt] fix
2023-08-15 13:01:53 +03:00

2071 lines
70 KiB
C
Raw Blame History

/*****************************************************************************
* This file is part of uvg266 VVC encoder.
*
* Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
****************************************************************************/
#include "inter.h"
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "encoder.h"
#include "imagelist.h"
#include "uvg_math.h"
#include "strategies/generic/picture-generic.h"
#include "strategies/strategies-ipol.h"
#include "videoframe.h"
#include "strategies/strategies-picture.h"
const int8_t uvg_g_imv_to_prec[4] = { 2, 0, -2, 1 }; // Convert AMVR imv to precision
typedef struct {
const cu_info_t *a[2];
const cu_info_t *b[3];
const cu_info_t *c0;
const cu_info_t *c1;
} merge_candidates_t;
static void inter_recon_frac_luma(const encoder_state_t * const state,
const uvg_picture * const ref,
int32_t xpos,
int32_t ypos,
int32_t block_width,
int32_t block_height,
const mv_t mv_param[2],
yuv_t *out,
unsigned out_stride)
{
int mv_frac_x = (mv_param[0] & 15);
int mv_frac_y = (mv_param[1] & 15);
// Space for extrapolated pixels and the part from the picture.
// Some extra for AVX2.
// The extrapolation function will set the pointers and stride.
uvg_pixel ext_buffer[UVG_IPOL_MAX_INPUT_SIZE_LUMA_SIMD];
uvg_pixel *ext = NULL;
uvg_pixel *ext_origin = NULL;
int ext_s = 0;
uvg_epol_args epol_args = {
.src = ref->y,
.src_w = ref->width,
.src_h = ref->height,
.src_s = ref->stride,
.blk_x = state->tile->offset_x + xpos + (mv_param[0] >> INTERNAL_MV_PREC),
.blk_y = state->tile->offset_y + ypos + (mv_param[1] >> INTERNAL_MV_PREC),
.blk_w = block_width,
.blk_h = block_height,
.pad_l = UVG_LUMA_FILTER_OFFSET,
.pad_r = UVG_EXT_PADDING_LUMA - UVG_LUMA_FILTER_OFFSET,
.pad_t = UVG_LUMA_FILTER_OFFSET,
.pad_b = UVG_EXT_PADDING_LUMA - UVG_LUMA_FILTER_OFFSET,
.pad_b_simd = 1 // One row for AVX2
};
// Initialize separately. Gets rid of warning
// about using nonstandard extension.
epol_args.buf = ext_buffer;
epol_args.ext = &ext;
epol_args.ext_origin = &ext_origin;
epol_args.ext_s = &ext_s;
uvg_get_extended_block(&epol_args);
uvg_sample_quarterpel_luma(state->encoder_control,
ext_origin,
ext_s,
block_width,
block_height,
out->y,
out_stride,
mv_frac_x,
mv_frac_y,
mv_param);
}
static void inter_recon_frac_luma_hi(const encoder_state_t *const state,
const uvg_picture *const ref,
int32_t xpos,
int32_t ypos,
int32_t block_width,
int32_t block_height,
const mv_t mv_param[2],
yuv_im_t *out,
const unsigned out_stride)
{
int mv_frac_x = (mv_param[0] & 15);
int mv_frac_y = (mv_param[1] & 15);
// Space for extrapolated pixels and the part from the picture.
// Some extra for AVX2.
// The extrapolation function will set the pointers and stride.
uvg_pixel ext_buffer[UVG_IPOL_MAX_INPUT_SIZE_LUMA_SIMD];
uvg_pixel *ext = NULL;
uvg_pixel *ext_origin = NULL;
int ext_s = 0;
uvg_epol_args epol_args = {
.src = ref->y,
.src_w = ref->width,
.src_h = ref->height,
.src_s = ref->stride,
.blk_x = state->tile->offset_x + xpos + (mv_param[0] >> INTERNAL_MV_PREC),
.blk_y = state->tile->offset_y + ypos + (mv_param[1] >> INTERNAL_MV_PREC),
.blk_w = block_width,
.blk_h = block_height,
.pad_l = UVG_LUMA_FILTER_OFFSET,
.pad_r = UVG_EXT_PADDING_LUMA - UVG_LUMA_FILTER_OFFSET,
.pad_t = UVG_LUMA_FILTER_OFFSET,
.pad_b = UVG_EXT_PADDING_LUMA - UVG_LUMA_FILTER_OFFSET,
.pad_b_simd = 1 // One row for AVX2
};
// Initialize separately. Gets rid of warning
// about using nonstandard extension.
epol_args.buf = ext_buffer;
epol_args.ext = &ext;
epol_args.ext_origin = &ext_origin;
epol_args.ext_s = &ext_s;
uvg_get_extended_block(&epol_args);
uvg_sample_quarterpel_luma_hi(state->encoder_control,
ext_origin,
ext_s,
block_width,
block_height,
out->y,
out_stride,
mv_frac_x,
mv_frac_y,
mv_param);
}
static void inter_recon_frac_chroma(const encoder_state_t *const state,
const uvg_picture *const ref,
int32_t pu_x,
int32_t pu_y,
int32_t pu_w,
int32_t pu_h,
const mv_t mv_param[2],
yuv_t *out,
const unsigned out_stride)
{
int mv_frac_x = (mv_param[0] & 31);
int mv_frac_y = (mv_param[1] & 31);
// Take into account chroma subsampling
unsigned pb_w = pu_w / 2;
unsigned pb_h = pu_h / 2;
// Space for extrapolated pixels and the part from the picture.
// Some extra for AVX2.
// The extrapolation function will set the pointers and stride.
uvg_pixel ext_buffer[UVG_IPOL_MAX_INPUT_SIZE_CHROMA_SIMD];
uvg_pixel *ext = NULL;
uvg_pixel *ext_origin = NULL;
int ext_s = 0;
// Chroma U
// Divisions by 2 due to 4:2:0 chroma subsampling
uvg_epol_args epol_args = {
.src = ref->u,
.src_w = ref->width / 2,
.src_h = ref->height / 2,
.src_s = ref->stride / 2,
.blk_x = (state->tile->offset_x + pu_x) / 2 + (mv_param[0] >> (INTERNAL_MV_PREC + 1) ),
.blk_y = (state->tile->offset_y + pu_y) / 2 + (mv_param[1] >> (INTERNAL_MV_PREC + 1) ),
.blk_w = pb_w,
.blk_h = pb_h,
.pad_l = UVG_CHROMA_FILTER_OFFSET,
.pad_r = UVG_EXT_PADDING_CHROMA - UVG_CHROMA_FILTER_OFFSET,
.pad_t = UVG_CHROMA_FILTER_OFFSET,
.pad_b = UVG_EXT_PADDING_CHROMA - UVG_CHROMA_FILTER_OFFSET,
.pad_b_simd = 3 // Three rows for AVX2
};
// Initialize separately. Gets rid of warning
// about using nonstandard extension.
epol_args.buf = ext_buffer;
epol_args.ext = &ext;
epol_args.ext_origin = &ext_origin;
epol_args.ext_s = &ext_s;
uvg_get_extended_block(&epol_args);
uvg_sample_octpel_chroma(state->encoder_control,
ext_origin,
ext_s,
pb_w,
pb_h,
out->u,
out_stride,
mv_frac_x,
mv_frac_y,
mv_param);
// Chroma V
epol_args.src = ref->v;
uvg_get_extended_block(&epol_args);
uvg_sample_octpel_chroma(state->encoder_control,
ext_origin,
ext_s,
pb_w,
pb_h,
out->v,
out_stride,
mv_frac_x,
mv_frac_y,
mv_param);
}
static void inter_recon_frac_chroma_hi(const encoder_state_t *const state,
const uvg_picture *const ref,
int32_t pu_x,
int32_t pu_y,
int32_t pu_w,
int32_t pu_h,
const mv_t mv_param[2],
yuv_im_t *out,
const unsigned out_stride)
{
int mv_frac_x = (mv_param[0] & 31);
int mv_frac_y = (mv_param[1] & 31);
// Take into account chroma subsampling
unsigned pb_w = pu_w / 2;
unsigned pb_h = pu_h / 2;
// Space for extrapolated pixels and the part from the picture.
// Some extra for AVX2.
// The extrapolation function will set the pointers and stride.
uvg_pixel ext_buffer[UVG_IPOL_MAX_INPUT_SIZE_CHROMA_SIMD];
uvg_pixel *ext = NULL;
uvg_pixel *ext_origin = NULL;
int ext_s = 0;
// Chroma U
// Divisions by 2 due to 4:2:0 chroma subsampling
uvg_epol_args epol_args = {
.src = ref->u,
.src_w = ref->width / 2,
.src_h = ref->height / 2,
.src_s = ref->stride / 2,
.blk_x = (state->tile->offset_x + pu_x) / 2 + (mv_param[0] >> (INTERNAL_MV_PREC + 1) ),
.blk_y = (state->tile->offset_y + pu_y) / 2 + (mv_param[1] >> (INTERNAL_MV_PREC + 1) ),
.blk_w = pb_w,
.blk_h = pb_h,
.pad_l = UVG_CHROMA_FILTER_OFFSET,
.pad_r = UVG_EXT_PADDING_CHROMA - UVG_CHROMA_FILTER_OFFSET,
.pad_t = UVG_CHROMA_FILTER_OFFSET,
.pad_b = UVG_EXT_PADDING_CHROMA - UVG_CHROMA_FILTER_OFFSET,
.pad_b_simd = 3 // Three rows for AVX2
};
// Initialize separately. Gets rid of warning
// about using nonstandard extension.
epol_args.buf = ext_buffer;
epol_args.ext = &ext;
epol_args.ext_origin = &ext_origin;
epol_args.ext_s = &ext_s;
uvg_get_extended_block(&epol_args);
uvg_sample_octpel_chroma_hi(state->encoder_control,
ext_origin,
ext_s,
pb_w,
pb_h,
out->u,
out_stride,
mv_frac_x,
mv_frac_y,
mv_param);
// Chroma V
epol_args.src = ref->v;
uvg_get_extended_block(&epol_args);
uvg_sample_octpel_chroma_hi(state->encoder_control,
ext_origin,
ext_s,
pb_w,
pb_h,
out->v,
out_stride,
mv_frac_x,
mv_frac_y,
mv_param);
}
/**
* \brief Copy from frame with extended border.
*
* \param ref_buf pointer to the start of ref buffer
* \param ref_stride stride of ref buffer
* \param ref_width width of frame
* \param ref_height height of frame
* \param rec_buf pointer to the start of pu in rec buffer
* \param rec_stride stride of rec buffer
* \param width width of copied block
* \param height height of copied block
* \param mv_in_frame coordinates of copied block in frame coordinates
*/
static void inter_cp_with_ext_border(const uvg_pixel *ref_buf, int ref_stride,
int ref_width, int ref_height,
uvg_pixel *rec_buf, int rec_stride,
int width, int height,
const vector2d_t *mv_in_frame)
{
for (int y = mv_in_frame->y; y < mv_in_frame->y + height; ++y) {
for (int x = mv_in_frame->x; x < mv_in_frame->x + width; ++x) {
vector2d_t in_frame = {
CLIP(0, ref_width - 1, x),
CLIP(0, ref_height - 1, y),
};
vector2d_t in_pu = {
x - mv_in_frame->x,
y - mv_in_frame->y,
};
int pu_index = in_pu.y * rec_stride + in_pu.x;
int frame_index = in_frame.y * ref_stride + in_frame.x;
rec_buf[pu_index] = ref_buf[frame_index];
}
}
}
/**
* \brief Reconstruct an inter PU using uniprediction.
*
* \param state encoder state
* \param ref picture to copy the data from
* \param pu_x PU x position
* \param pu_y PU y position
* \param width PU width
* \param height PU height
* \param mv_param motion vector
* \param yuv_px destination buffer for pixel precision
* \param yuv_im destination buffer for high-precision, or NULL if not needed
* \param predict_luma Enable or disable luma prediction for this call.
* \param predict_chroma Enable or disable chroma prediction for this call.
*/
static unsigned inter_recon_unipred(
const encoder_state_t * const state,
const uvg_picture * const ref,
int32_t out_stride_luma,
const mv_t mv_param[2],
yuv_t *yuv_px,
yuv_im_t *yuv_im,
bool predict_luma,
bool predict_chroma,
const cu_loc_t* const cu_loc)
{
vector2d_t int_mv = { mv_param[0], mv_param[1] };
uvg_change_precision_vector2d(INTERNAL_MV_PREC, 0, &int_mv);
const int pu_x = cu_loc->x;
const int pu_y = cu_loc->y;
const int pu_w = cu_loc->width;
const int pu_h = cu_loc->height;
const vector2d_t int_mv_in_frame = {
int_mv.x + pu_x + state->tile->offset_x,
int_mv.y + pu_y + state->tile->offset_y
};
const bool int_mv_outside_frame = int_mv_in_frame.x < 0 ||
int_mv_in_frame.y < 0 ||
int_mv_in_frame.x + pu_w > ref->width ||
int_mv_in_frame.y + pu_h > ref->height;
// With 420, odd coordinates need interpolation.
const bool fractional_chroma = (int_mv.x & 1) || (int_mv.y & 1);
const bool fractional_luma = ((mv_param[0] & 15) || (mv_param[1] & 15));
// Generate prediction for luma.
if (predict_luma) {
if (fractional_luma) {
// With a fractional MV, do interpolation.
if (state->encoder_control->cfg.bipred && yuv_im) {
inter_recon_frac_luma_hi(state, ref,
pu_x, pu_y,
pu_w, pu_h,
mv_param, yuv_im, out_stride_luma);
}
else {
inter_recon_frac_luma(state, ref,
pu_x, pu_y,
pu_w, pu_h,
mv_param, yuv_px, out_stride_luma);
}
} else {
// With an integer MV, copy pixels directly from the reference.
if (int_mv_outside_frame) {
inter_cp_with_ext_border(ref->y, ref->stride,
ref->width, ref->height,
yuv_px->y, out_stride_luma,
pu_w, pu_h,
&int_mv_in_frame);
}
else {
const int frame_mv_index = int_mv_in_frame.y * ref->stride + int_mv_in_frame.x;
uvg_pixels_blit(&ref->y[frame_mv_index],
yuv_px->y,
pu_w, pu_h,
ref->stride, out_stride_luma);
}
}
}
if (!predict_chroma) {
return fractional_luma;
}
const unsigned out_stride_c = out_stride_luma / 2;
// Generate prediction for chroma.
if (fractional_luma || fractional_chroma) {
// With a fractional MV, do interpolation.
if (state->encoder_control->cfg.bipred && yuv_im) {
inter_recon_frac_chroma_hi(state, ref,
pu_x, pu_y,
pu_w, pu_h,
mv_param, yuv_im, out_stride_c);
} else {
inter_recon_frac_chroma(state, ref,
pu_x, pu_y,
pu_w, pu_h,
mv_param, yuv_px, out_stride_c);
}
} else {
// With an integer MV, copy pixels directly from the reference.
const vector2d_t int_mv_in_frame_c = { int_mv_in_frame.x / 2, int_mv_in_frame.y / 2 };
if (int_mv_outside_frame) {
inter_cp_with_ext_border(ref->u, ref->stride / 2,
ref->width / 2, ref->height / 2,
yuv_px->u, out_stride_c,
pu_w / 2, pu_h / 2,
&int_mv_in_frame_c);
inter_cp_with_ext_border(ref->v, ref->stride / 2,
ref->width / 2, ref->height / 2,
yuv_px->v, out_stride_c,
pu_w / 2, pu_h / 2,
&int_mv_in_frame_c);
} else {
const int frame_mv_index = int_mv_in_frame_c.y * ref->stride / 2 + int_mv_in_frame_c.x;
uvg_pixels_blit(&ref->u[frame_mv_index],
yuv_px->u,
pu_w / 2, pu_h / 2,
ref->stride / 2, out_stride_c);
uvg_pixels_blit(&ref->v[frame_mv_index],
yuv_px->v,
pu_w / 2, pu_h / 2,
ref->stride / 2, out_stride_c);
}
}
return fractional_luma | ((fractional_luma || fractional_chroma) << 1);
}
/**
* \brief Reconstruct bi-pred inter PU
*
* \param state encoder state
* \param ref1 reference picture to copy the data from
* \param ref2 other reference picture to copy the data from
* \param pu_x PU x position
* \param pu_y PU y position
* \param width PU width
* \param height PU height
* \param mv_param motion vectors
* \param lcu destination lcu
* \param predict_luma Enable or disable luma prediction for this call.
* \param predict_chroma Enable or disable chroma prediction for this call.
*/
void uvg_inter_recon_bipred(
const encoder_state_t *const state,
const uvg_picture *ref1,
const uvg_picture *ref2,
mv_t mv_param[2][2],
lcu_t *lcu,
bool predict_luma,
bool predict_chroma,
const cu_loc_t* const cu_loc)
{
// Allocate maximum size arrays for interpolated and copied samples
ALIGNED(64) uvg_pixel px_buf_L0[LCU_LUMA_SIZE + 2 * LCU_CHROMA_SIZE];
ALIGNED(64) uvg_pixel px_buf_L1[LCU_LUMA_SIZE + 2 * LCU_CHROMA_SIZE];
ALIGNED(64) uvg_pixel_im im_buf_L0[LCU_LUMA_SIZE + 2 * LCU_CHROMA_SIZE];
ALIGNED(64) uvg_pixel_im im_buf_L1[LCU_LUMA_SIZE + 2 * LCU_CHROMA_SIZE];
const int pu_x = cu_loc->x;
const int pu_y = cu_loc->y;
const int pu_w = cu_loc->width;
const int pu_h = cu_loc->height;
yuv_t px_L0;
px_L0.size = pu_w * pu_h;
px_L0.y = &px_buf_L0[0];
px_L0.u = &px_buf_L0[LCU_LUMA_SIZE];
px_L0.v = &px_buf_L0[LCU_LUMA_SIZE + LCU_CHROMA_SIZE];
yuv_t px_L1;
px_L1.size = pu_w * pu_h;
px_L1.y = &px_buf_L1[0];
px_L1.u = &px_buf_L1[LCU_LUMA_SIZE];
px_L1.v = &px_buf_L1[LCU_LUMA_SIZE + LCU_CHROMA_SIZE];
yuv_im_t im_L0;
im_L0.size = pu_w * pu_h;
im_L0.y = &im_buf_L0[0];
im_L0.u = &im_buf_L0[LCU_LUMA_SIZE];
im_L0.v = &im_buf_L0[LCU_LUMA_SIZE + LCU_CHROMA_SIZE];
yuv_im_t im_L1;
im_L1.size = pu_w * pu_h;
im_L1.y = &im_buf_L1[0];
im_L1.u = &im_buf_L1[LCU_LUMA_SIZE];
im_L1.v = &im_buf_L1[LCU_LUMA_SIZE + LCU_CHROMA_SIZE];
// Sample blocks from both reference picture lists.
// Flags state if the outputs were written to high-precision / interpolated sample buffers.
unsigned im_flags_L0 = inter_recon_unipred(state, ref1, pu_w, mv_param[0], &px_L0, &im_L0, predict_luma, predict_chroma,
cu_loc);
unsigned im_flags_L1 = inter_recon_unipred(state, ref2, pu_w, mv_param[1], &px_L1, &im_L1, predict_luma, predict_chroma,
cu_loc);
// After reconstruction, merge the predictors by taking an average of each pixel
uvg_bipred_average(lcu, &px_L0, &px_L1, &im_L0, &im_L1,
pu_x, pu_y, pu_w, pu_h,
im_flags_L0, im_flags_L1,
predict_luma, predict_chroma);
}
/**
* Reconstruct a single CU.
*
* The CU may consist of multiple PUs, each of which can use either
* uniprediction or biprediction.
*
* \param state encoder state
* \param lcu containing LCU
* \param x x-coordinate of the CU in pixels
* \param y y-coordinate of the CU in pixels
* \param width CU width
* \param predict_luma Enable or disable luma prediction for this call.
* \param predict_chroma Enable or disable chroma prediction for this call.
*/
void uvg_inter_recon_cu(
const encoder_state_t * const state,
lcu_t *lcu,
bool predict_luma,
bool predict_chroma,
const cu_loc_t* const cu_loc)
{
uvg_inter_pred_pu(state, lcu, predict_luma, predict_chroma, cu_loc);
}
static void ibc_recon_cu(const encoder_state_t * const state,
lcu_t *lcu,
int32_t x,
int32_t y,
int32_t width,
bool predict_luma,
bool predict_chroma)
{
const int x_scu = SUB_SCU(x);
const int y_scu = SUB_SCU(y);
uint32_t offset = x_scu + y_scu * LCU_WIDTH;
uint32_t offset_c = x_scu / 2 + y_scu / 2 * LCU_WIDTH_C;
cu_info_t *cu = LCU_GET_CU_AT_PX(lcu, x_scu, y_scu);
int32_t mv_x = cu->inter.mv[0][0] >> INTERNAL_MV_PREC;
int32_t mv_y = cu->inter.mv[0][1] >> INTERNAL_MV_PREC;
uint32_t ibc_row = y / LCU_WIDTH;
int32_t buffer_x = ((x - x_scu) + LCU_WIDTH <= IBC_BUFFER_WIDTH ?
x :
x - (((x - x_scu)) - IBC_BUFFER_WIDTH)) + mv_x;
int32_t buffer_y = y_scu + mv_y;
// The whole block must be to the left of the current position
assert((-mv_x >= width || -mv_y >= width) && x >= 0 && y >= 0);
// Predicted block completely outside of this LCU
if (mv_x + x_scu + width <= 0) {
if(predict_luma) uvg_pixels_blit(&state->tile->frame->ibc_buffer_y[ibc_row][buffer_y * IBC_BUFFER_WIDTH + buffer_x], lcu->rec.y + offset, width, width, IBC_BUFFER_WIDTH, LCU_WIDTH);
if (predict_chroma) {
uvg_pixels_blit(&state->tile->frame->ibc_buffer_u[ibc_row][(buffer_y / 2) * IBC_BUFFER_WIDTH_C + (buffer_x / 2)], lcu->rec.u + offset_c, width / 2, width / 2, IBC_BUFFER_WIDTH_C, LCU_WIDTH_C);
uvg_pixels_blit(&state->tile->frame->ibc_buffer_v[ibc_row][(buffer_y / 2) * IBC_BUFFER_WIDTH_C + (buffer_x / 2)], lcu->rec.v + offset_c, width / 2, width / 2, IBC_BUFFER_WIDTH_C, LCU_WIDTH_C);
}
} else if (mv_x + x_scu + width >= width) { // Completely in current LCU
if(predict_luma) uvg_pixels_blit(&lcu->rec.y[(y_scu + mv_y) * LCU_WIDTH + x_scu + mv_x], lcu->rec.y + offset, width, width, LCU_WIDTH, LCU_WIDTH);
if (predict_chroma) {
uvg_pixels_blit(&lcu->rec.u[((y_scu+mv_y) / 2) * LCU_WIDTH_C + (x_scu + mv_x) / 2], lcu->rec.u + offset_c, width / 2, width / 2, LCU_WIDTH_C, LCU_WIDTH_C);
uvg_pixels_blit(&lcu->rec.v[((y_scu+mv_y) / 2) * LCU_WIDTH_C + (x_scu + mv_x) / 2], lcu->rec.v + offset_c, width / 2, width / 2, LCU_WIDTH_C, LCU_WIDTH_C);
}
} else { // Partly on the buffer and party on the current LCU rec
uint32_t width_buffer = -(mv_x + x_scu);
uint32_t width_lcu = width - width_buffer;
if(predict_luma) uvg_pixels_blit(&state->tile->frame->ibc_buffer_y[ibc_row][buffer_y * IBC_BUFFER_WIDTH + buffer_x], lcu->rec.y + offset, width_buffer, width, IBC_BUFFER_WIDTH, LCU_WIDTH);
if (predict_chroma) {
uvg_pixels_blit(&state->tile->frame->ibc_buffer_u[ibc_row][(buffer_y / 2) * IBC_BUFFER_WIDTH_C + (buffer_x / 2)], lcu->rec.u + offset_c, width_buffer / 2 + (width_buffer&1), width / 2, IBC_BUFFER_WIDTH_C, LCU_WIDTH_C);
uvg_pixels_blit(&state->tile->frame->ibc_buffer_v[ibc_row][(buffer_y / 2) * IBC_BUFFER_WIDTH_C + (buffer_x / 2)], lcu->rec.v + offset_c, width_buffer / 2 + (width_buffer&1), width / 2, IBC_BUFFER_WIDTH_C, LCU_WIDTH_C);
}
offset += width_buffer;
offset_c += width_buffer/2 + (width_buffer&1);
if(predict_luma) uvg_pixels_blit(&lcu->rec.y[(y_scu + mv_y) * LCU_WIDTH + x_scu + mv_x + width_buffer], lcu->rec.y + offset, width_lcu, width, LCU_WIDTH, LCU_WIDTH);
if (predict_chroma && (width_lcu / 2)) {
uvg_pixels_blit(&lcu->rec.u[((y_scu+mv_y) / 2) * LCU_WIDTH_C + (x_scu + mv_x + width_buffer) / 2], lcu->rec.u + offset_c, width_lcu / 2, width / 2, LCU_WIDTH_C, LCU_WIDTH_C);
uvg_pixels_blit(&lcu->rec.v[((y_scu+mv_y) / 2) * LCU_WIDTH_C + (x_scu + mv_x + width_buffer) / 2], lcu->rec.v + offset_c, width_lcu / 2, width / 2, LCU_WIDTH_C, LCU_WIDTH_C);
}
}
}
/**
* Predict a single PU.
*
* The PU may use either uniprediction or biprediction.
*
* \param state encoder state
* \param lcu containing LCU
* \param x x-coordinate of the CU in pixels
* \param y y-coordinate of the CU in pixels
* \param width CU width
* \param predict_luma Enable or disable luma prediction for this call.
* \param predict_chroma Enable or disable chroma prediction for this call.
* \param i_pu Index of the PU. Always zero for 2Nx2N. Used for SMP+AMP.
*/
void uvg_inter_pred_pu(
const encoder_state_t * const state,
lcu_t *lcu,
bool predict_luma,
bool predict_chroma,
const cu_loc_t* const cu_loc)
{
const int x_scu = SUB_SCU(cu_loc->x);
const int y_scu = SUB_SCU(cu_loc->y);
cu_info_t *pu = LCU_GET_CU_AT_PX(lcu, x_scu, y_scu);
if (pu->inter.mv_dir == 3) {
const uvg_picture *const refs[2] = {
state->frame->ref->images[
state->frame->ref_LX[0][
pu->inter.mv_ref[0]]],
state->frame->ref->images[
state->frame->ref_LX[1][
pu->inter.mv_ref[1]]],
};
uvg_inter_recon_bipred(state,
refs[0], refs[1],
pu->inter.mv, lcu,
predict_luma, predict_chroma,
cu_loc);
}
else if (pu->type == CU_IBC) {
ibc_recon_cu(state, lcu, cu_loc->x, cu_loc->y, cu_loc->width, predict_luma, predict_chroma);
} else{
const int mv_idx = pu->inter.mv_dir - 1;
const uvg_picture *const ref =
state->frame->ref->images[
state->frame->ref_LX[mv_idx][
pu->inter.mv_ref[mv_idx]]];
const unsigned offset_luma = SUB_SCU(cu_loc->y) * LCU_WIDTH + SUB_SCU(cu_loc->x);
const unsigned offset_chroma = SUB_SCU(cu_loc->y) / 2 * LCU_WIDTH_C + SUB_SCU(cu_loc->x) / 2;
yuv_t lcu_adapter;
lcu_adapter.size = cu_loc->width * cu_loc->height;
lcu_adapter.y = lcu->rec.y + offset_luma;
lcu_adapter.u = lcu->rec.u + offset_chroma;
lcu_adapter.v = lcu->rec.v + offset_chroma;
inter_recon_unipred(state,
ref,
LCU_WIDTH, pu->inter.mv[mv_idx],
&lcu_adapter,
NULL,
predict_luma,
predict_chroma,
cu_loc);
}
if (predict_chroma && state->encoder_control->cfg.jccr) {
const int offset = x_scu / 2 + y_scu / 2 * LCU_WIDTH_C;
uvg_pixels_blit(lcu->rec.u + offset, lcu->rec.joint_u + offset, cu_loc->chroma_width, cu_loc->chroma_height, LCU_WIDTH_C, LCU_WIDTH_C);
uvg_pixels_blit(lcu->rec.v + offset, lcu->rec.joint_v + offset, cu_loc->chroma_width, cu_loc->chroma_height, LCU_WIDTH_C, LCU_WIDTH_C);
}
}
/**
* \brief Clear unused L0/L1 motion vectors and reference
* \param cu coding unit to clear
*/
static void inter_clear_cu_unused(cu_info_t* cu)
{
for (unsigned i = 0; i < 2; ++i) {
if (cu->inter.mv_dir & (1 << i)) continue;
cu->inter.mv[i][0] = 0;
cu->inter.mv[i][1] = 0;
cu->inter.mv_ref[i] = 255;
}
}
/**
* \brief Check whether a0 mv cand block is coded before the current block.
* \param x x-coordinate of the current block (in pixels)
* \param y y-coordinate of the current block (in pixels)
* \param width width of the current block (in pixels)
* \param height height of the current block (in pixels)
* \return True, if the a0 mv candidate block is coded before the
* current block. Otherwise false.
*/
static bool is_a0_cand_coded(int x, int y, int width, int height)
{
int size = MIN(width & ~(width - 1), height & ~(height - 1));
if (height != size) {
// For SMP and AMP blocks the situation is equivalent to a square block
// at the lower left corner of the PU.
y = y + height - size;
}
while (size < LCU_WIDTH) {
const int parent_size = 2 * size;
const int cu_index = (x % parent_size != 0) + 2 * (y % parent_size != 0);
switch (cu_index) {
case 0:
// A0 is in the CU directly left of the parent CU so it has been
// coded already.
// +---+---+
// | X | |
// |---+---+
// A0 | | |
// +---+---+
return true;
case 1:
// A0 is in the CU that will be coded after the current CU.
// +---+---+
// | | X |
// |---+---+
// |A0 | |
// +---+---+
return false;
case 2:
// +---+---+
// | | |
// |---+---+
// | X | |
// +---+---+
// A0
// Move to the parent block.
y -= size;
size = parent_size;
break;
case 3:
// A0 is in the CU directly down of the parent CU so is has not
// been coded yet.
// +---+---+
// | | |
// |---+---+
// | | X |
// +---+---+
// A0
return false;
}
}
// For 64x64 blocks A0 candidate is located outside the LCU.
return false;
}
/**
* \brief Check whether b0 mv cand block is coded before the current block.
* \param x x-coordinate of the current block (in pixels)
* \param y y-coordinate of the current block (in pixels)
* \param width width of the current block (in pixels)
* \param height height of the current block (in pixels)
* \return True, if the b0 mv candidate block is coded before the
* current block. Otherwise false.
*/
static bool is_b0_cand_coded(int x, int y, int width, int height)
{
int size = MIN(width & ~(width - 1), height & ~(height - 1));
if (width != size) {
// For SMP and AMP blocks the situation is equivalent to a square block
// at the upper right corner of the PU.
x = x + width - size;
}
while (size < LCU_WIDTH) {
const int parent_size = 2 * size;
const int cu_index = (x % parent_size != 0) + 2 * (y % parent_size != 0);
switch (cu_index) {
case 0:
// B0 is in the CU directly above the parent CU so it has been
// coded already.
// B0
// +---+---+
// | X | |
// |---+---+
// | | |
// +---+---+
return true;
case 1:
// B0
// +---+---+
// | | X |
// |---+---+
// | | |
// +---+---+
// Move to the parent block.
x -= size;
size = parent_size;
break;
case 2:
// +---+---+
// | |B0 |
// |---+---+
// | X | |
// +---+---+
return true;
case 3:
// B0 is in the CU directly right of the parent CU so is has not
// been coded yet.
// +---+---+
// | | | B0
// |---+---+
// | | X |
// +---+---+
return false;
}
}
// The LCU to the right and up of the current LCU has been coded already.
return true;
}
/**
* \brief Get merge candidates for current block
*
* \param state encoder control state to use
* \param x block x position in SCU
* \param y block y position in SCU
* \param width current block width
* \param height current block height
* \param ref_list which reference list, L0 is 1 and L1 is 2
* \param ref_idx index in the reference list
* \param cand_out will be filled with C0 and C1 candidates
*/
static void get_temporal_merge_candidates(
const encoder_state_t * const state,
const cu_loc_t* const cu_loc,
uint8_t ref_list,
uint8_t ref_idx,
merge_candidates_t *cand_out)
{
/*
Predictor block locations
_________
|CurrentPU|
| __ |
| |C1| |
|_________|_
|C0|
*/
cand_out->c0 = cand_out->c1 = NULL;
// Find temporal reference
if (state->frame->ref->used_size) {
uint32_t colocated_ref;
// Select L0/L1 ref_idx reference
if (state->frame->ref_LX_size[ref_list-1] > ref_idx) {
colocated_ref = state->frame->ref_LX[ref_list - 1][ref_idx];
} else {
// not found
return;
}
cu_array_t *ref_cu_array = state->frame->ref->cu_arrays[colocated_ref];
int cu_per_width = ref_cu_array->width / SCU_WIDTH;
int32_t xColBr = cu_loc->x + cu_loc->width;
int32_t yColBr = cu_loc->y + cu_loc->height;
// C0 must be available
if (xColBr < state->encoder_control->in.width &&
yColBr < state->encoder_control->in.height) {
int32_t C0_offset = -1;
// Y inside the current CTU / LCU
if (yColBr % LCU_WIDTH != 0) {
C0_offset = ((xColBr >> 3) << 3) / SCU_WIDTH +
(((yColBr >> 3) << 3) / SCU_WIDTH) * cu_per_width;
}
if (C0_offset >= 0) {
// Only use when it's inter block
if (ref_cu_array->data[C0_offset].type == CU_INTER) {
cand_out->c0 = &ref_cu_array->data[C0_offset];
}
}
}
int32_t xColCtr = cu_loc->x + (cu_loc->width / 2);
int32_t yColCtr = cu_loc->y + (cu_loc->height / 2);
// C1 must be inside the LCU, in the center position of current CU
if (xColCtr < state->encoder_control->in.width && yColCtr < state->encoder_control->in.height) {
uint32_t C1_offset = ((xColCtr >> 3) << 3) / SCU_WIDTH + ((((yColCtr >> 3) << 3) / SCU_WIDTH) * cu_per_width);
if (ref_cu_array->data[C1_offset].type == CU_INTER) {
cand_out->c1 = &ref_cu_array->data[C1_offset];
}
}
}
}
static INLINE mv_t get_scaled_mv(mv_t mv, int scale)
{
int32_t scaled = scale * mv;
return CLIP(-131072, 131071, (scaled + 127 + (scaled < 0)) >> 8);
}
#define MV_EXPONENT_BITCOUNT 4
#define MV_MANTISSA_BITCOUNT 6
#define MV_MANTISSA_UPPER_LIMIT ((1 << (MV_MANTISSA_BITCOUNT - 1)) - 1)
#define MV_MANTISSA_LIMIT (1 << (MV_MANTISSA_BITCOUNT - 1))
#define MV_EXPONENT_MASK ((1 << MV_EXPONENT_BITCOUNT) - 1)
static int convert_mv_fixed_to_float(int32_t val)
{
uint32_t sign = val >> 31;
int scale = uvg_math_floor_log2((val ^ sign) | MV_MANTISSA_UPPER_LIMIT) - (MV_MANTISSA_BITCOUNT - 1);
int exponent;
uint32_t mantissa;
if (scale >= 0)
{
int round = (1 << scale) >> 1;
int n = (val + round) >> scale;
exponent = scale + ((n ^ sign) >> (MV_MANTISSA_BITCOUNT - 1));
mantissa = (n & MV_MANTISSA_UPPER_LIMIT) | (sign << (MV_MANTISSA_BITCOUNT - 1));
}
else
{
exponent = 0;
mantissa = val;
}
return exponent | (mantissa << MV_EXPONENT_BITCOUNT);
}
static int convert_mv_float_to_fixed(int val)
{
int exponent = val & MV_EXPONENT_MASK;
uint32_t mantissa = val >> MV_EXPONENT_BITCOUNT;
return exponent == 0 ? mantissa : (mantissa ^ MV_MANTISSA_LIMIT) << (exponent - 1);
}
static int round_mv_comp(int x)
{
return convert_mv_float_to_fixed(convert_mv_fixed_to_float(x));
}
static void apply_mv_scaling_pocs(int32_t current_poc,
int32_t current_ref_poc,
int32_t neighbor_poc,
int32_t neighbor_ref_poc,
mv_t mv_cand[2])
{
int32_t diff_current = current_poc - current_ref_poc;
int32_t diff_neighbor = neighbor_poc - neighbor_ref_poc;
if (diff_current == diff_neighbor) return;
diff_current = CLIP(-128, 127, diff_current);
diff_neighbor = CLIP(-128, 127, diff_neighbor);
int scale = CLIP(-4096, 4095,
(diff_current * ((0x4000 + (abs(diff_neighbor) >> 1)) / diff_neighbor) + 32) >> 6);
mv_cand[0] = get_scaled_mv(mv_cand[0], scale);
mv_cand[1] = get_scaled_mv(mv_cand[1], scale);
}
static INLINE void apply_mv_scaling(const encoder_state_t *state,
const cu_info_t *current_cu,
const cu_info_t *neighbor_cu,
int8_t current_reflist,
int8_t neighbor_reflist,
mv_t mv_cand[2])
{
apply_mv_scaling_pocs(state->frame->poc,
state->frame->ref->pocs[
state->frame->ref_LX[current_reflist][
current_cu->inter.mv_ref[current_reflist]]],
state->frame->poc,
state->frame->ref->pocs[
state->frame->ref_LX[neighbor_reflist][
neighbor_cu->inter.mv_ref[neighbor_reflist]]],
mv_cand);
}
static INLINE bool add_mvp_candidate(const encoder_state_t *state,
const cu_info_t *cur_cu,
const cu_info_t *cand,
int8_t reflist,
bool scaling,
mv_t mv_cand_out[2])
{
if (!cand) return false;
assert(cand->inter.mv_dir != 0);
for (int i = 0; i < 2; i++) {
const int cand_list = i == 0 ? reflist : !reflist;
if ((cand->inter.mv_dir & (1 << cand_list)) == 0) continue;
if (scaling) {
mv_cand_out[0] = cand->inter.mv[cand_list][0];
mv_cand_out[1] = cand->inter.mv[cand_list][1];
apply_mv_scaling(state, cur_cu, cand, reflist, cand_list, mv_cand_out);
return true;
}
if (state->frame->ref_LX[cand_list][cand->inter.mv_ref[cand_list]] ==
state->frame->ref_LX[reflist][cur_cu->inter.mv_ref[reflist]])
{
mv_cand_out[0] = cand->inter.mv[cand_list][0];
mv_cand_out[1] = cand->inter.mv[cand_list][1];
return true;
}
}
return false;
}
static bool is_duplicate_candidate_ibc(const cu_info_t* cu1, const cu_info_t* cu2)
{
if (!cu2) return false;
if (cu1->inter.mv[0][0] != cu2->inter.mv[0][0] ||
cu1->inter.mv[0][1] != cu2->inter.mv[0][1]) {
return false;
}
return true;
}
/**
* \brief Get merge candidates for current block.
*
* The output parameters b0, b1, b2, a0, a1 are pointed to the
* corresponding cu_info_t struct in lcu->cu, or set to NULL, if the
* candidate is not available.
*
* \param x block x position in pixels
* \param y block y position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param picture_width tile width in pixels
* \param picture_height tile height in pixels
* \param lcu current LCU
* \param cand_out will be filled with A and B candidates
*/
static void get_ibc_merge_candidates(const encoder_state_t * const state,
const cu_info_t * const cur_cu,
lcu_t *lcu,
const cu_array_t *cua,
int32_t x,
int32_t y,
int32_t width,
int32_t height,
mv_t mv_cand[IBC_MRG_MAX_NUM_CANDS][2]
)
{
/*
Predictor block locations
____ _______
|B2|______|B1|B0|
| |
| Cur CU |
__| |
|A1|_________|
|A0|
*/
int32_t x_local = SUB_SCU(x); //!< coordinates from top-left of this LCU
int32_t y_local = SUB_SCU(y);
cu_info_t *a1 = NULL;
cu_info_t *b1 = NULL;
uint8_t candidates = 0;
// A1 availability testing
if (x != 0) {
a1 = lcu != NULL?LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local + height - 1): uvg_cu_array_at_const(cua, x - 1, y + height - 1);
// Do not check a1->coded because the block above is always coded before
// the current one and the flag is not set when searching an SMP block.
if (a1->type == CU_IBC) {
inter_clear_cu_unused(a1);
mv_cand[candidates][0] = a1->inter.mv[0][0];
mv_cand[candidates][1] = a1->inter.mv[0][1];
candidates++;
} else {
a1 = NULL;
}
}
// B1 availability testing
if (y != 0) {
b1 = lcu != NULL?LCU_GET_CU_AT_PX(lcu, x_local + width - 1, y_local - 1): uvg_cu_array_at_const(cua, x + width - 1, y - 1);
// Do not check b1->coded because the block to the left is always coded
// before the current one and the flag is not set when searching an SMP
// block.
if (b1->type == CU_IBC) {
if(!is_duplicate_candidate_ibc(b1, a1)) {
inter_clear_cu_unused(b1);
mv_cand[candidates][0] = b1->inter.mv[0][0];
mv_cand[candidates][1] = b1->inter.mv[0][1];
candidates++;
}
} else {
b1 = NULL;
}
}
if (candidates > 0)
uvg_round_precision(INTERNAL_MV_PREC, 2, &mv_cand[0][0], &mv_cand[0][1]);
if (candidates > 1)
uvg_round_precision(INTERNAL_MV_PREC, 2, &mv_cand[1][0], &mv_cand[1][1]);
if (candidates < IBC_MRG_MAX_NUM_CANDS)
{
const uint32_t ctu_row = (y >> LOG2_LCU_WIDTH);
const uint32_t ctu_row_mul_five = ctu_row * MAX_NUM_HMVP_CANDS;
int32_t num_cand = state->tile->frame->hmvp_size_ibc[ctu_row];
for (int i = 0; i < MIN(MAX_NUM_HMVP_CANDS,num_cand); i++) {
cu_info_t* cand = &state->tile->frame->hmvp_lut_ibc[ctu_row_mul_five + i];
bool duplicate = false;
// Check that the HMVP candidate is not duplicate
if (is_duplicate_candidate_ibc(cand, a1)) {
duplicate = true;
} else if(is_duplicate_candidate_ibc(cand, b1)) {
duplicate = true;
}
// allow duplicates after the first hmvp lut item
if (!duplicate || i > 0) {
mv_cand[candidates][0] = cand->inter.mv[0][0];
mv_cand[candidates][1] = cand->inter.mv[0][1];
candidates++;
if (candidates == IBC_MRG_MAX_NUM_CANDS) return;
}
}
}
// Fill with (0,0)
while (candidates < IBC_MRG_MAX_NUM_CANDS) {
mv_cand[candidates][0] = 0;
mv_cand[candidates][1] = 0;
candidates++;
}
}
/**
* \brief Get merge candidates for current block.
*
* The output parameters b0, b1, b2, a0, a1 are pointed to the
* corresponding cu_info_t struct in lcu->cu, or set to NULL, if the
* candidate is not available.
*
* \param x block x position in pixels
* \param y block y position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param picture_width tile width in pixels
* \param picture_height tile height in pixels
* \param lcu current LCU
* \param cand_out will be filled with A and B candidates
*/
static void get_spatial_merge_candidates(const cu_loc_t* const cu_loc,
int32_t picture_width,
int32_t picture_height,
lcu_t *lcu,
merge_candidates_t *cand_out,
uint8_t parallel_merge_level,
bool wpp
)
{
/*
Predictor block locations
____ _______
|B2|______|B1|B0|
| |
| Cur CU |
__| |
|A1|_________|
|A0|
*/
const int32_t x_local = SUB_SCU(cu_loc->x); //!< coordinates from top-left of this LCU
const int32_t y_local = SUB_SCU(cu_loc->y);
const int x = cu_loc->x;
const int y = cu_loc->y;
const int width = cu_loc->width;
const int height = cu_loc->height;
// A0 and A1 availability testing
if (x != 0) {
cu_info_t *a1 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local + height - 1);
// Do not check a1->coded because the block above is always coded before
// the current one and the flag is not set when searching an SMP block.
if (a1->type == CU_INTER) {
inter_clear_cu_unused(a1);
cand_out->a[1] = a1;
}
if (y_local + height < LCU_WIDTH && y + height < picture_height) {
cu_info_t *a0 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local + height);
if (a0->type == CU_INTER && is_a0_cand_coded(x, y, width, height)) {
inter_clear_cu_unused(a0);
cand_out->a[0] = a0;
}
}
}
// B0, B1 and B2 availability testing
if (y != 0) {
cu_info_t *b0 = NULL;
if (x + width < picture_width) {
if (x_local + width < LCU_WIDTH) {
b0 = LCU_GET_CU_AT_PX(lcu, x_local + width, y_local - 1);
} else if (!wpp && y_local == 0) {
// Special case, top-right CU
b0 = LCU_GET_TOP_RIGHT_CU(lcu);
}
}
if (b0 && b0->type == CU_INTER && is_b0_cand_coded(x, y, width, height)) {
inter_clear_cu_unused(b0);
cand_out->b[0] = b0;
}
cu_info_t *b1 = LCU_GET_CU_AT_PX(lcu, x_local + width - 1, y_local - 1);
// Do not check b1->coded because the block to the left is always coded
// before the current one and the flag is not set when searching an SMP
// block.
if (b1->type == CU_INTER) {
inter_clear_cu_unused(b1);
cand_out->b[1] = b1;
}
if (x != 0) {
cu_info_t *b2 = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local - 1);
// Do not check b2->coded because the block above and to the left is
// always coded before the current one.
if (b2->type == CU_INTER) {
inter_clear_cu_unused(b2);
cand_out->b[2] = b2;
}
}
}
}
/**
* \brief Get merge candidates for current block.
*
* The output parameters b0, b1, b2, a0, a1 are pointed to the
* corresponding cu_info_t struct in lcu->cu, or set to NULL, if the
* candidate is not available.
*
* \param cua cu information
* \param x block x position in pixels
* \param y block y position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param picture_width tile width in pixels
* \param picture_height tile height in pixels
* \param cand_out will be filled with A and B candidates
*/
static void get_spatial_merge_candidates_cua(
const cu_array_t *cua,
int32_t picture_width,
int32_t picture_height,
merge_candidates_t *cand_out,
bool wpp,
const cu_loc_t* const cu_loc)
{
/*
Predictor block locations
____ _______
|B2|______|B1|B0|
| |
| Cur CU |
__| |
|A1|_________|
|A0|
*/
const int x = cu_loc->x;
const int y = cu_loc->y;
const int width = cu_loc->width;
const int height = cu_loc->height;
const int32_t x_local = SUB_SCU(x); //!< coordinates from top-left of this LCU
const int32_t y_local = SUB_SCU(y);
// A0 and A1 availability testing
if (x != 0) {
const cu_info_t *a1 = uvg_cu_array_at_const(cua, x - 1, y + height - 1);
// The block above is always coded before the current one.
if (a1->type == CU_INTER) {
cand_out->a[1] = a1;
}
if (y_local + height < LCU_WIDTH && y + height < picture_height) {
const cu_info_t *a0 = uvg_cu_array_at_const(cua, x - 1, y + height);
if (a0->type == CU_INTER && is_a0_cand_coded(x, y, width, height)) {
cand_out->a[0] = a0;
}
}
}
// B0, B1 and B2 availability testing
if (y != 0) {
if (x + width < picture_width && (x_local + width < LCU_WIDTH || (!wpp && y_local == 0))) {
const cu_info_t *b0 = uvg_cu_array_at_const(cua, x + width, y - 1);
if (b0->type == CU_INTER && is_b0_cand_coded(x, y, width, height)) {
cand_out->b[0] = b0;
}
}
const cu_info_t* b1 = uvg_cu_array_at_const(cua, x + width - 1, y - 1);
// The block to the left is always coded before the current one.
if (b1->type == CU_INTER) {
cand_out->b[1] = b1;
}
if (x != 0) {
const cu_info_t *b2 = uvg_cu_array_at_const(cua, x - 1, y - 1);
// The block above and to the left is always coded before the current
// one.
if (b2->type == CU_INTER) {
cand_out->b[2] = b2;
}
}
}
}
/**
* \brief Try to add a temporal MVP or merge candidate.
*
* \param state encoder state
* \param current_ref index of the picture referenced by the current CU
* \param colocated colocated CU
* \param reflist either 0 (for L0) or 1 (for L1)
* \param[out] mv_out Returns the motion vector
*
* \return Whether a temporal candidate was added or not.
*/
static bool add_temporal_candidate(const encoder_state_t *state,
uint8_t current_ref,
const cu_info_t *colocated,
int32_t reflist,
mv_t mv_out[2])
{
if (!colocated) return false;
int colocated_ref;
if (state->frame->ref_LX_size[0] > 0) {
// get the first reference from L0 if it exists
colocated_ref = state->frame->ref_LX[0][0];
} else {
// otherwise no candidate added
return false;
}
// When there are reference pictures from the future (POC > current POC)
// in L0 or L1, the primary list for the colocated PU is the inverse of
// collocated_from_l0_flag. Otherwise it is equal to reflist.
//
// uvg266 always sets collocated_from_l0_flag so the list is L1 when
// there are future references.
int col_list = reflist;
for (uint32_t i = 0; i < state->frame->ref->used_size; i++) {
if (state->frame->ref->pocs[i] > state->frame->poc) {
col_list = 1;
break;
}
}
if ((colocated->inter.mv_dir & (col_list + 1)) == 0) {
// Use the other list if the colocated PU does not have a MV for the
// primary list.
col_list = 1 - col_list;
}
mv_out[0] = colocated->inter.mv[col_list][0];
mv_out[1] = colocated->inter.mv[col_list][1];
mv_out[0] = round_mv_comp(mv_out[0]);
mv_out[1] = round_mv_comp(mv_out[1]);
apply_mv_scaling_pocs(
state->frame->poc,
state->frame->ref->pocs[current_ref],
state->frame->ref->pocs[colocated_ref],
state->frame->ref->images[colocated_ref]->ref_pocs[
state->frame->ref->ref_LXs[colocated_ref]
[col_list][colocated->inter.mv_ref[col_list]]],
mv_out
);
return true;
}
/**
* \brief Pick two mv candidates from the spatial and temporal candidates.
*/
static void get_mv_cand_from_candidates(
const encoder_state_t * const state,
const merge_candidates_t *merge_cand,
const cu_info_t * const cur_cu,
int8_t reflist,
mv_t mv_cand[2][2],
int ctu_row)
{
const cu_info_t *const *a = merge_cand->a;
const cu_info_t *const *b = merge_cand->b;
const cu_info_t *c0 = merge_cand->c0;
const cu_info_t *c1 = merge_cand->c1;
uint8_t candidates = 0;
uint8_t b_candidates = 0;
// Left predictors without scaling
if (add_mvp_candidate(state, cur_cu, a[0], reflist, false, mv_cand[candidates])) {
candidates++;
} else if (add_mvp_candidate(state, cur_cu, a[1], reflist, false, mv_cand[candidates])) {
candidates++;
}
// Top predictors without scaling
if (add_mvp_candidate(state, cur_cu, b[0], reflist, false, mv_cand[candidates])) {
b_candidates++;
} else if (add_mvp_candidate(state, cur_cu, b[1], reflist, false, mv_cand[candidates])) {
b_candidates++;
}
else if (add_mvp_candidate(state, cur_cu, b[2], reflist, false, mv_cand[candidates])) {
b_candidates++;
}
candidates += b_candidates;
if (candidates > 0)
uvg_round_precision(INTERNAL_MV_PREC, 2, &mv_cand[0][0], &mv_cand[0][1]);
if (candidates > 1)
uvg_round_precision(INTERNAL_MV_PREC, 2, &mv_cand[1][0], &mv_cand[1][1]);
// Remove identical candidate
if (candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) {
candidates = 1;
}
// Use Temporal Motion Vector Prediction when enabled.
// TMVP required at least two sequential P/B-frames.
bool can_use_tmvp =
state->encoder_control->cfg.tmvp_enable &&
state->frame->poc > 1 &&
state->frame->ref->used_size &&
candidates < AMVP_MAX_NUM_CANDS &&
(c0 != NULL || c1 != NULL);
if (can_use_tmvp && add_temporal_candidate(state,
state->frame->ref_LX[reflist][cur_cu->inter.mv_ref[reflist]],
(c0 != NULL) ? c0 : c1,
reflist,
mv_cand[candidates]))
{
candidates++;
}
if (candidates < AMVP_MAX_NUM_CANDS)
{
const uint32_t ctu_row_mul_five = ctu_row * MAX_NUM_HMVP_CANDS;
int32_t num_cand = state->tile->frame->hmvp_size[ctu_row];
for (int i = 0; i < MIN(/*MAX_NUM_HMVP_AVMPCANDS*/4,num_cand); i++) {
for (int pred_source = 0; pred_source < 2; pred_source++) {
const int cand_list = pred_source == 0 ? reflist : !reflist;
cu_info_t* cand = &state->tile->frame->hmvp_lut[ctu_row_mul_five + num_cand - 1 - i];
if ((cand->inter.mv_dir & (1 << cand_list)) == 0) continue;
// Make sure the candidate points to the same reference frame
if (state->frame->ref_LX[cand_list][cand->inter.mv_ref[cand_list]] ==
state->frame->ref_LX[reflist][cur_cu->inter.mv_ref[reflist]])
{
mv_cand[candidates][0] = cand->inter.mv[cand_list][0];
mv_cand[candidates][1] = cand->inter.mv[cand_list][1];
candidates++;
if (candidates == AMVP_MAX_NUM_CANDS) return;
}
}
}
}
// Fill with (0,0)
while (candidates < AMVP_MAX_NUM_CANDS) {
mv_cand[candidates][0] = 0;
mv_cand[candidates][1] = 0;
candidates++;
}
}
/**
* \brief Get MV prediction for current block.
*
* \param state encoder state
* \param x block x position in pixels
* \param y block y position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param mv_cand Return the motion vector candidates.
* \param cur_cu current CU
* \param lcu current LCU
* \param reflist reflist index (either 0 or 1)
*/
void uvg_inter_get_mv_cand(
const encoder_state_t * const state,
mv_t mv_cand[2][2],
const cu_info_t * const cur_cu,
lcu_t *lcu,
int8_t reflist,
const cu_loc_t* const cu_loc)
{
merge_candidates_t merge_cand = { 0 };
const uint8_t parallel_merge_level = state->encoder_control->cfg.log2_parallel_merge_level;
if (cur_cu->type == CU_IBC) {
mv_t ibc_mv_cand[IBC_MRG_MAX_NUM_CANDS][2];
get_ibc_merge_candidates(state, cur_cu,lcu,NULL, cu_loc->x, cu_loc->y, cu_loc->width, cu_loc->height,ibc_mv_cand);
memcpy(mv_cand[0], ibc_mv_cand[0], sizeof(mv_t) * 2);
memcpy(mv_cand[1], ibc_mv_cand[1], sizeof(mv_t) * 2);
} else {
get_spatial_merge_candidates(cu_loc, state->tile->frame->width, state->tile->frame->height, lcu,
&merge_cand,
parallel_merge_level,
state->encoder_control->cfg.wpp);
get_temporal_merge_candidates(state, cu_loc, 1, 0, &merge_cand);
get_mv_cand_from_candidates(state, &merge_cand, cur_cu, reflist, mv_cand, cu_loc->y >> LOG2_LCU_WIDTH);
}
uvg_round_precision(INTERNAL_MV_PREC, 2, &mv_cand[0][0], &mv_cand[0][1]);
uvg_round_precision(INTERNAL_MV_PREC, 2, &mv_cand[1][0], &mv_cand[1][1]);
}
/**
* \brief Get MV prediction for current block using state->tile->frame->cu_array.
*
* \param state encoder state
* \param x block x position in pixels
* \param y block y position in pixels
* \param width block width in pixels
* \param height block height in pixels
* \param mv_cand Return the motion vector candidates.
* \param cur_cu current CU
* \param reflist reflist index (either 0 or 1)
*/
void uvg_inter_get_mv_cand_cua(
const encoder_state_t * const state,
mv_t mv_cand[2][2],
const cu_info_t* cur_cu,
int8_t reflist,
const cu_loc_t* const cu_loc)
{
merge_candidates_t merge_cand = { 0 };
const cu_array_t *cua = state->tile->frame->cu_array;
if (cur_cu->type == CU_IBC) {
mv_t ibc_mv_cand[IBC_MRG_MAX_NUM_CANDS][2];
get_ibc_merge_candidates(state, cur_cu, NULL,cua,cu_loc->x, cu_loc->y, cu_loc->width, cu_loc->height,ibc_mv_cand);
memcpy(mv_cand[0], ibc_mv_cand[0], sizeof(mv_t) * 2);
memcpy(mv_cand[1], ibc_mv_cand[1], sizeof(mv_t) * 2);
} else {
get_spatial_merge_candidates_cua(cua,
state->tile->frame->width, state->tile->frame->height, &merge_cand, state->encoder_control->cfg.wpp,
cu_loc);
get_temporal_merge_candidates(state, cu_loc, 1, 0, &merge_cand);
get_mv_cand_from_candidates(state, &merge_cand, cur_cu, reflist, mv_cand, cu_loc->y >> LOG2_LCU_WIDTH);
}
uvg_round_precision(INTERNAL_MV_PREC, 2, &mv_cand[0][0], &mv_cand[0][1]);
uvg_round_precision(INTERNAL_MV_PREC, 2, &mv_cand[1][0], &mv_cand[1][1]);
}
/**
<EFBFBD> \brief Checks if two CUs have similar motion vectors. The function takes two CUs and compares their motion vectors.
<EFBFBD> \param cu1 first CU
<EFBFBD> \param cu2 second CU
<EFBFBD> \return returns 0 if the two CUs have dissimilar motion vectors, and 1 if the motions are similar.
*/
static bool is_duplicate_candidate(const cu_info_t* cu1, const cu_info_t* cu2)
{
if (!cu2) return false;
if (cu1->inter.mv_dir != cu2->inter.mv_dir) return false;
for (int reflist = 0; reflist < 2; reflist++) {
if (cu1->inter.mv_dir & (1 << reflist)) {
if (cu1->inter.mv[reflist][0] != cu2->inter.mv[reflist][0] ||
cu1->inter.mv[reflist][1] != cu2->inter.mv[reflist][1] ||
cu1->inter.mv_ref[reflist] != cu2->inter.mv_ref[reflist]) {
return false;
}
}
}
return true;
}
/**
* Adds a merge candidate to the list of possible candidates, if it is not a duplicate.
*
* \param cand The candidate to be added.
* \param possible_duplicate1 The first possible duplicate candidate to check for duplication.
* \param possible_duplicate2 The second possible duplicate candidate to check for duplication.
* \param merge_cand_out The output parameter to store the merge candidate information.
*
* @return Returns true if the merge candidate was added successfully, false otherwise.
*/
static bool add_merge_candidate(const cu_info_t *cand,
const cu_info_t *possible_duplicate1,
const cu_info_t *possible_duplicate2,
inter_merge_cand_t *merge_cand_out)
{
if (!cand ||
is_duplicate_candidate(cand, possible_duplicate1) ||
is_duplicate_candidate(cand, possible_duplicate2)) {
return false;
}
merge_cand_out->mv[0][0] = cand->inter.mv[0][0];
merge_cand_out->mv[0][1] = cand->inter.mv[0][1];
merge_cand_out->mv[1][0] = cand->inter.mv[1][0];
merge_cand_out->mv[1][1] = cand->inter.mv[1][1];
merge_cand_out->ref[0] = cand->inter.mv_ref[0]; // L0/L1 references
merge_cand_out->ref[1] = cand->inter.mv_ref[1];
merge_cand_out->dir = cand->inter.mv_dir;
return true;
}
static void hmvp_shift_lut(cu_info_t* lut, int32_t size, int32_t start, int32_t end) {
if (end > MAX_NUM_HMVP_CANDS-1) end = MAX_NUM_HMVP_CANDS-1;
if (end == 0 && size == 1) end = 1;
for (int i = end-1; i >= start; i--) {
memcpy(&lut[i + 1], &lut[i], sizeof(cu_info_t));
}
}
static bool hmvp_push_lut_item(cu_info_t* lut, int32_t size, const cu_info_t* cu, bool ibc) {
int8_t duplicate = -1;
if (ibc) {
for (int i = 0; i < size; i++) {
if (is_duplicate_candidate_ibc(cu, (const cu_info_t *)&lut[i])) {
duplicate = i;
break;
}
}
} else {
for (int i = 0; i < size; i++) {
if (is_duplicate_candidate(cu, (const cu_info_t *)&lut[i])) {
duplicate = i;
break;
}
}
}
// If duplicate found, shift the whole lut up to the duplicate, otherwise to the end
if(duplicate != 0) hmvp_shift_lut(lut, size, 0, duplicate == -1 ? MAX_NUM_HMVP_CANDS : duplicate);
memcpy(lut, cu, sizeof(cu_info_t));
return duplicate == -1;
}
/**
* \brief Add processed CU motion vector to the HMVP look-up table
*
* \param state encoder state
* \param pic_x block x position in pixels
* \param pic_y block y position in pixels
* \param block_width block width in pixels
* \param block_height block height in pixels
* \param cu current CU
*/
void uvg_hmvp_add_mv(const encoder_state_t* const state, uint32_t pic_x, uint32_t pic_y, uint32_t block_width, uint32_t block_height, const cu_info_t* cu)
{
//if (!cu.geoFlag && !cu.affine)
if(cu->type != CU_INTRA)
{
const uint8_t parallel_merge_level = state->encoder_control->cfg.log2_parallel_merge_level;
const uint32_t xBr = block_width + pic_x;
const uint32_t yBr = block_height + pic_y;
bool hmvp_possible = ((xBr >> parallel_merge_level) > (pic_x >> parallel_merge_level)) && ((yBr >> parallel_merge_level) > (pic_y >> parallel_merge_level));
if (hmvp_possible || cu->type == CU_IBC) {
const uint32_t ctu_row = (pic_y >> LOG2_LCU_WIDTH);
const uint32_t ctu_row_mul_five = ctu_row * MAX_NUM_HMVP_CANDS;
if (cu->type == CU_IBC) {
bool add_row = hmvp_push_lut_item(&state->tile->frame->hmvp_lut_ibc[ctu_row_mul_five], state->tile->frame->hmvp_size_ibc[ctu_row], cu, true);
if(add_row && state->tile->frame->hmvp_size_ibc[ctu_row] < MAX_NUM_HMVP_CANDS) {
state->tile->frame->hmvp_size_ibc[ctu_row]++;
}
} else {
bool add_row = hmvp_push_lut_item(&state->tile->frame->hmvp_lut[ctu_row_mul_five], state->tile->frame->hmvp_size[ctu_row], cu, false);
if(add_row && state->tile->frame->hmvp_size[ctu_row] < MAX_NUM_HMVP_CANDS) {
state->tile->frame->hmvp_size[ctu_row]++;
}
}
}
}
}
static void round_avg_mv(mv_t* mvx, mv_t* mvy, int nShift)
{
const int nOffset = 1 << (nShift - 1);
*mvx = (*mvx + nOffset - (*mvx >= 0)) >> nShift;
*mvy = (*mvy + nOffset - (*mvy >= 0)) >> nShift;
}
static bool different_mer(int32_t x, int32_t y, int32_t x2, int32_t y2, uint8_t parallel_merge_level) {
if ((x >> parallel_merge_level) != (x2 >> parallel_merge_level) || (y >> parallel_merge_level) != (y2 >> parallel_merge_level))
{
return true;
}
return false;
}
void uvg_change_precision(int src, int dst, mv_t* hor, mv_t* ver) {
const int shift = (int)dst - (int)src;
if (shift >= 0)
{
uint32_t* hor_unsigned = (uint32_t *)hor;
uint32_t* ver_unsigned = (uint32_t *)ver;
*hor_unsigned <<= shift;
*ver_unsigned <<= shift;
}
else
{
const int right_shift = -shift;
const int offset = 1 << (right_shift - 1);
*hor = *hor >= 0 ? (*hor + offset - 1) >> right_shift : (*hor + offset) >> right_shift;
*ver = *ver >= 0 ? (*ver + offset - 1) >> right_shift : (*ver + offset) >> right_shift;
}
}
void uvg_change_precision_vector2d(int src, int dst, vector2d_t *mv) {
const int shift = (int)dst - (int)src;
if (shift >= 0)
{
int* hor_unsigned = &mv->x;
int* ver_unsigned = &mv->y;
*hor_unsigned <<= shift;
*ver_unsigned <<= shift;
}
else
{
const int right_shift = -shift;
const int offset = 1 << (right_shift - 1);
mv->x = mv->x >= 0 ? (mv->x + offset - 1) >> right_shift : (mv->x + offset) >> right_shift;
mv->y = mv->y >= 0 ? (mv->y + offset - 1) >> right_shift : (mv->y + offset) >> right_shift;
}
}
void uvg_round_precision(int src, int dst, mv_t* hor, mv_t* ver) {
uvg_change_precision(src, dst, hor, ver);
uvg_change_precision(dst, src, hor, ver);
}
void uvg_round_precision_vector2d(int src, int dst, vector2d_t* mv) {
mv_t hor = mv->x;
mv_t ver = mv->y;
uvg_change_precision(src, dst, &hor, &ver);
uvg_change_precision(dst, src, &hor, &ver);
mv->x = hor;
mv->y = ver;
}
/**
* \brief Get merge predictions for current block
* \param state the encoder state
* \param x block x position in SCU
* \param y block y position in SCU
* \param width block width
* \param height block height
* \param use_a1 true, if candidate a1 can be used
* \param use_b1 true, if candidate b1 can be used
* \param mv_cand Returns the merge candidates.
* \param lcu lcu containing the block
* \return number of merge candidates
*/
uint8_t uvg_inter_get_merge_cand(
const encoder_state_t * const state,
const cu_loc_t* const cu_loc,
inter_merge_cand_t mv_cand[MRG_MAX_NUM_CANDS],
lcu_t *lcu)
{
uint8_t candidates = 0;
int8_t zero_idx = 0;
const uint8_t parallel_merge_level = state->encoder_control->cfg.log2_parallel_merge_level;
merge_candidates_t merge_cand = { 0 };
const uint8_t max_num_cands = state->encoder_control->cfg.max_merge;
// Current CU
cu_info_t *cur_cu = LCU_GET_CU_AT_PX(lcu, SUB_SCU(cu_loc->x), SUB_SCU(cu_loc->y));
if(cur_cu->type == CU_IBC) {
mv_t ibc_mv_cand[IBC_MRG_MAX_NUM_CANDS][2];
get_ibc_merge_candidates(state, cur_cu,lcu,NULL, cu_loc->x, cu_loc->y, cu_loc->width, cu_loc->height,ibc_mv_cand);
for (int i = 0; i < IBC_MRG_MAX_NUM_CANDS; i++) {
mv_cand[i].dir = 1;
mv_cand[i].mv[0][0] = ibc_mv_cand[i][0];
mv_cand[i].mv[0][1] = ibc_mv_cand[i][1];
}
return IBC_MRG_MAX_NUM_CANDS;
}
get_spatial_merge_candidates(cu_loc, state->tile->frame->width, state->tile->frame->height, lcu,
&merge_cand,
parallel_merge_level,
state->encoder_control->cfg.wpp);
const cu_info_t **a = merge_cand.a;
const cu_info_t **b = merge_cand.b;
const int x = cu_loc->x;
const int y = cu_loc->y;
if (different_mer(x, y, x, y - 1, parallel_merge_level) && add_merge_candidate(b[1], NULL, NULL, &mv_cand[candidates])) candidates++;
if (different_mer(x, y, x - 1, y, parallel_merge_level) && add_merge_candidate(a[1], b[1], NULL, &mv_cand[candidates])) candidates++;
if (different_mer(x, y, x + 1, y - 1, parallel_merge_level) && add_merge_candidate(b[0], b[1], NULL, &mv_cand[candidates])) candidates++;
if (different_mer(x, y, x - 1, y + 1, parallel_merge_level) && add_merge_candidate(a[0], a[1], NULL, &mv_cand[candidates])) candidates++;
if (candidates < 4 &&
different_mer(x, y, x - 1, y - 1, parallel_merge_level) && add_merge_candidate(b[2], a[1], b[1], &mv_cand[candidates])) candidates++;
bool can_use_tmvp =
state->encoder_control->cfg.tmvp_enable &&
candidates < max_num_cands &&
state->frame->ref->used_size;
if (can_use_tmvp) {
mv_cand[candidates].dir = 0;
const int max_reflist = (state->frame->slicetype == UVG_SLICE_B ? 1 : 0);
for (int reflist = 0; reflist <= max_reflist; reflist++) {
// Fetch temporal candidates for the current CU
// ToDo: change collocated_from_l0_flag to allow L1 ref
get_temporal_merge_candidates(state, cu_loc, 1, 0, &merge_cand);
// TODO: enable L1 TMVP candidate
// get_temporal_merge_candidates(state, x, y, width, height, 2, 0, &merge_cand);
const cu_info_t *temporal_cand =
(merge_cand.c0 != NULL) ? merge_cand.c0 : merge_cand.c1;
if (add_temporal_candidate(state,
// Reference index 0 is always used for
// the temporal merge candidate.
state->frame->ref_LX[0][0],
temporal_cand,
reflist,
mv_cand[candidates].mv[reflist])) {
mv_cand[candidates].ref[reflist] = 0;
mv_cand[candidates].dir |= (1 << reflist);
if (state->frame->ref->pocs[state->frame->ref_LX[reflist][0]] > state->frame->poc) {
mv_cand[candidates].mv[reflist][0] *= -1;
mv_cand[candidates].mv[reflist][1] *= -1;
}
}
}
if (mv_cand[candidates].dir != 0) {
candidates++;
}
}
if (candidates == max_num_cands) return candidates;
if (candidates != max_num_cands - 1) {
const uint32_t ctu_row = (cu_loc->y >> LOG2_LCU_WIDTH);
const uint32_t ctu_row_mul_five = ctu_row * MAX_NUM_HMVP_CANDS;
int32_t num_cand = state->tile->frame->hmvp_size[ctu_row];
for (int i = 0; i < num_cand; i++) {
const cu_info_t* hmvp_cand = &state->tile->frame->hmvp_lut[ctu_row_mul_five + i];
if (i > 1 || ((!is_duplicate_candidate(hmvp_cand, a[1]))
&& (!is_duplicate_candidate(hmvp_cand, b[1]))) ) {
mv_cand[candidates].mv[0][0] = state->tile->frame->hmvp_lut[ctu_row_mul_five + i].inter.mv[0][0];
mv_cand[candidates].mv[0][1] = state->tile->frame->hmvp_lut[ctu_row_mul_five + i].inter.mv[0][1];
mv_cand[candidates].dir = state->tile->frame->hmvp_lut[ctu_row_mul_five + i].inter.mv_dir;
mv_cand[candidates].ref[0] = state->tile->frame->hmvp_lut[ctu_row_mul_five + i].inter.mv_ref[0];
if (state->frame->slicetype == UVG_SLICE_B) {
mv_cand[candidates].mv[1][0] = state->tile->frame->hmvp_lut[ctu_row_mul_five + i].inter.mv[1][0];
mv_cand[candidates].mv[1][1] = state->tile->frame->hmvp_lut[ctu_row_mul_five + i].inter.mv[1][1];
mv_cand[candidates].ref[1] = state->tile->frame->hmvp_lut[ctu_row_mul_five + i].inter.mv_ref[1];
}
candidates++;
if (candidates == max_num_cands - 1) break;
}
}
}
// pairwise-average candidates
if (candidates > 1 && candidates < max_num_cands)
{
// calculate average MV for L0 and L1 seperately
uint8_t inter_dir = 0;
for (int reflist = 0; reflist < (state->frame->slicetype == UVG_SLICE_B ? 2 : 1); reflist++)
{
const int16_t ref_i = mv_cand[0].dir & (reflist + 1) ? mv_cand[0].ref[reflist] : -1;
const int16_t ref_j = mv_cand[1].dir & (reflist + 1) ? mv_cand[1].ref[reflist] : -1;
// both MVs are invalid, skip
if ((ref_i == -1) && (ref_j == -1))
{
continue;
}
inter_dir += 1 << reflist;
// both MVs are valid, average these two MVs
if ((ref_i != -1) && (ref_j != -1))
{
mv_t mv_i[2] = { mv_cand[0].mv[reflist][0], mv_cand[0].mv[reflist][1] };
mv_t mv_j[2] = { mv_cand[1].mv[reflist][0], mv_cand[1].mv[reflist][1] };
// average two MVs
mv_t avg_mv[2] = { mv_i[0] + mv_j[0], mv_i[1] + mv_j[1] };
round_avg_mv(&avg_mv[0], &avg_mv[1], 1);
mv_cand[candidates].mv[reflist][0] = avg_mv[0];
mv_cand[candidates].mv[reflist][1] = avg_mv[1];
mv_cand[candidates].ref[reflist] = (uint8_t)ref_i;
}
// only one MV is valid, take the only one MV
else if (ref_i != -1)
{
mv_t mv_i[2] = { mv_cand[0].mv[reflist][0], mv_cand[0].mv[reflist][1] };
mv_cand[candidates].mv[reflist][0] = mv_i[0];
mv_cand[candidates].mv[reflist][1] = mv_i[1];
mv_cand[candidates].ref[reflist] = (uint8_t)ref_i;
}
else if (ref_j != -1)
{
mv_t mv_j[2] = { mv_cand[1].mv[reflist][0], mv_cand[1].mv[reflist][1] };
mv_cand[candidates].mv[reflist][0] = mv_j[0];
mv_cand[candidates].mv[reflist][1] = mv_j[1];
mv_cand[candidates].ref[reflist] = (uint8_t)ref_j;
}
}
mv_cand[candidates].dir = inter_dir;
if (inter_dir > 0)
{
candidates++;
}
}
if (candidates == max_num_cands) return candidates;
int num_ref = state->frame->ref->used_size;
if (candidates < max_num_cands && state->frame->slicetype == UVG_SLICE_B) {
int ref_negative = 0;
int ref_positive = 0;
for (uint32_t j = 0; j < state->frame->ref->used_size; j++) {
if (state->frame->ref->pocs[j] < state->frame->poc) {
ref_negative++;
} else {
ref_positive++;
}
}
num_ref = MIN(ref_negative, ref_positive);
}
// Add (0,0) prediction
while (candidates != max_num_cands) {
mv_cand[candidates].mv[0][0] = 0;
mv_cand[candidates].mv[0][1] = 0;
mv_cand[candidates].ref[0] = (zero_idx >= num_ref - 1) ? 0 : zero_idx;
mv_cand[candidates].dir = 1;
if (state->frame->slicetype == UVG_SLICE_B) {
mv_cand[candidates].ref[1] = mv_cand[candidates].ref[0];
mv_cand[candidates].mv[1][0] = 0;
mv_cand[candidates].mv[1][1] = 0;
mv_cand[candidates].dir = 3;
}
zero_idx++;
candidates++;
}
return candidates;
}