uvg266/tests/inter_recon_bipred_tests.c

218 lines
8 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2017 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1 as
* published by the Free Software Foundation.
*
* Kvazaar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "greatest/greatest.h"
#include "test_strategies.h"
#include "strategies/generic/picture-generic.h"
#include <string.h>
#include <stdlib.h>
static lcu_t expected_test_result;
static lcu_t result;
static lcu_t lcu1;
int temp1, temp2, temp3, temp4;
int16_t mv_param[2][2] = { { 3,3 },{ 3,3 } };
int width = 4;
int height = 4;
int xpos = 0;
int ypos = 0;
kvz_pixel temp_lcu_y[LCU_WIDTH*LCU_WIDTH];
kvz_pixel temp_lcu_u[LCU_WIDTH_C*LCU_WIDTH_C];
kvz_pixel temp_lcu_v[LCU_WIDTH_C*LCU_WIDTH_C];
int hi_prec_luma_rec0;
int hi_prec_luma_rec1;
int hi_prec_chroma_rec0;
int hi_prec_chroma_rec1;
hi_prec_buf_t* high_precision_rec0 = 0;
hi_prec_buf_t* high_precision_rec1 = 0;
int temp_x, temp_y;
static void setup()
{
memset(lcu1.rec.y, 0, sizeof(kvz_pixel) * 64 * 64);
memset(lcu1.rec.u, 0, sizeof(kvz_pixel) * 32 * 32);
memset(lcu1.rec.v, 0, sizeof(kvz_pixel) * 32 * 32);
for (int i = 0; i < LCU_WIDTH*LCU_WIDTH; i++) {
temp_lcu_y[i] = rand() %256;
lcu1.rec.y[i] = rand() % 256;
}
for (int i = 0; i < LCU_WIDTH_C*LCU_WIDTH_C; i++) {
temp_lcu_u[i] = rand() % 256;
temp_lcu_v[i] = rand() % 256;
lcu1.rec.v[i] = rand() % 256;
lcu1.rec.u[i] = rand() % 256;
}
memset(expected_test_result.rec.y, 0, sizeof(kvz_pixel) * 64 * 64);
memset(expected_test_result.rec.u, 0, sizeof(kvz_pixel) * 32 * 32);
memset(expected_test_result.rec.v, 0, sizeof(kvz_pixel) * 32 * 32);
memcpy(expected_test_result.rec.y, lcu1.rec.y, sizeof(kvz_pixel) * 64 * 64);
memcpy(expected_test_result.rec.u, lcu1.rec.u, sizeof(kvz_pixel) * 32 * 32);
memcpy(expected_test_result.rec.v, lcu1.rec.v, sizeof(kvz_pixel) * 32 * 32);
// Setup is not optimized working function from picture-generic.c.
int shift = 15 - KVZ_BIT_DEPTH;
int offset = 1 << (shift - 1);
hi_prec_luma_rec0 = mv_param[0][0] & 3 || mv_param[0][1] & 3;
hi_prec_luma_rec1 = mv_param[1][0] & 3 || mv_param[1][1] & 3;
hi_prec_chroma_rec0 = mv_param[0][0] & 7 || mv_param[0][1] & 7;
hi_prec_chroma_rec1 = mv_param[1][0] & 7 || mv_param[1][1] & 7;
if (hi_prec_chroma_rec0) high_precision_rec0 = kvz_hi_prec_buf_t_alloc(LCU_WIDTH*LCU_WIDTH);
if (hi_prec_chroma_rec1) high_precision_rec1 = kvz_hi_prec_buf_t_alloc(LCU_WIDTH*LCU_WIDTH);
for (temp_y = 0; temp_y < height; ++temp_y) {
int y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1));
for (temp_x = 0; temp_x < width; ++temp_x) {
int x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1));
int16_t sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (expected_test_result.rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
expected_test_result.rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift);
}
}
for (temp_y = 0; temp_y < height >> 1; ++temp_y) {
int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1));
for (temp_x = 0; temp_x < width >> 1; ++temp_x) {
int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1));
int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (expected_test_result.rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
expected_test_result.rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift);
int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] : (expected_test_result.rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
expected_test_result.rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu] = (kvz_pixel)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift);
}
}
}
TEST test_inter_recon_bipred()
{
memset(result.rec.y, 0, sizeof(kvz_pixel) * 64 * 64);
memset(result.rec.u, 0, sizeof(kvz_pixel) * 32 * 32);
memset(result.rec.v, 0, sizeof(kvz_pixel) * 32 * 32);
memcpy(result.rec.y, lcu1.rec.y, sizeof(kvz_pixel) * 64 * 64);
memcpy(result.rec.u, lcu1.rec.u, sizeof(kvz_pixel) * 32 * 32);
memcpy(result.rec.v, lcu1.rec.v, sizeof(kvz_pixel) * 32 * 32);
for (temp_y = 0; temp_y < height; ++temp_y) {
int y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1));
for (temp_x = 0; temp_x < width; temp_x += 1) {
int x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1));
printf("%d ", expected_test_result.rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu]);
}
}
printf("\n");
for (temp_y = 0; temp_y < height >> 1; ++temp_y) {
int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1));
for (temp_x = 0; temp_x < width >> 1; ++temp_x) {
int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1));
printf("%d ", expected_test_result.rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]);
}
}
printf("\n");
kvz_inter_recon_bipred_generic(hi_prec_luma_rec0, hi_prec_luma_rec1, hi_prec_chroma_rec0, hi_prec_chroma_rec1, width, height, xpos, ypos, high_precision_rec0, high_precision_rec1, &result, temp_lcu_y, temp_lcu_u, temp_lcu_v);
for (temp_y = 0; temp_y < height; ++temp_y) {
int y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1));
for (temp_x = 0; temp_x < width; temp_x += 1) {
int x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1));
printf("%d ", result.rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu]);
}
}
printf("\n");
for (temp_y = 0; temp_y < height >> 1; ++temp_y) {
int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1));
for (temp_x = 0; temp_x < width >> 1; ++temp_x) {
int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1));
printf("%d ", result.rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]);
}
}
printf("\n");
for (temp_y = 0; temp_y < height; ++temp_y) {
int y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1));
for (temp_x = 0; temp_x < width; temp_x+=1) {
int x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1));
ASSERT_EQ_FMT(expected_test_result.rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu], result.rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu], "%d");
}
}
for (temp_y = 0; temp_y < height >> 1; ++temp_y) {
int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1));
for (temp_x = 0; temp_x < width >> 1; ++temp_x) {
int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1));
ASSERT_EQ_FMT(expected_test_result.rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu], result.rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu], "%d");
ASSERT_EQ_FMT(expected_test_result.rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu], result.rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu], "%d");
}
}
PASS();
}
SUITE(inter_recon_bipred_tests)
{
setup();
for (volatile int i = 0; i < strategies.count; ++i) {
if (strcmp(strategies.strategies[i].type, "inter_recon_bipred") != 0) {
continue;
}
kvz_inter_recon_bipred_generic = strategies.strategies[i].fptr;
RUN_TEST(test_inter_recon_bipred);
}
}