mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-30 20:54:07 +00:00
2035 lines
67 KiB
C
2035 lines
67 KiB
C
/**
|
|
* \file
|
|
*
|
|
* \author Marko Viitanen ( fador@iki.fi ),
|
|
* Tampere University of Technology,
|
|
* Department of Pervasive Computing.
|
|
* \author Ari Koivula ( ari@koivu.la ),
|
|
* Tampere University of Technology,
|
|
* Department of Pervasive Computing.
|
|
*/
|
|
|
|
#include "encoder.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "config.h"
|
|
#include "cabac.h"
|
|
#include "picture.h"
|
|
#include "nal.h"
|
|
#include "context.h"
|
|
#include "transform.h"
|
|
#include "intra.h"
|
|
#include "inter.h"
|
|
#include "filter.h"
|
|
#include "search.h"
|
|
|
|
int16_t g_lambda_cost[55];
|
|
uint32_t* g_sig_last_scan[3][7];
|
|
|
|
/* Local functions. */
|
|
static void add_checksum(encoder_control* encoder);
|
|
|
|
void init_sig_last_scan(uint32_t *buff_d, uint32_t *buff_h, uint32_t *buff_v,
|
|
int32_t width, int32_t height)
|
|
{
|
|
uint32_t num_scan_pos = width * width;
|
|
uint32_t next_scan_pos = 0;
|
|
int32_t xx, yy, x, y;
|
|
uint32_t scan_line;
|
|
uint32_t blk_y, blk_x;
|
|
uint32_t blk;
|
|
uint32_t cnt = 0;
|
|
|
|
if (width < 16) {
|
|
uint32_t *buff_tmp = buff_d;
|
|
|
|
if (width == 8) {
|
|
buff_tmp = (uint32_t *)g_sig_last_scan_32x32;
|
|
}
|
|
|
|
for (scan_line = 0; next_scan_pos < num_scan_pos; scan_line++) {
|
|
int primary_dim = scan_line;
|
|
int second_dim = 0;
|
|
|
|
while (primary_dim >= width) {
|
|
second_dim++;
|
|
primary_dim--;
|
|
}
|
|
|
|
while (primary_dim >= 0 && second_dim < width) {
|
|
buff_tmp[next_scan_pos] = primary_dim * width + second_dim ;
|
|
next_scan_pos++;
|
|
second_dim++;
|
|
primary_dim--;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (width > 4) {
|
|
uint32_t num_blk_side = width >> 2;
|
|
uint32_t num_blks = num_blk_side * num_blk_side;
|
|
uint32_t log2_blk = g_convert_to_bit[num_blk_side] + 1;
|
|
|
|
for (blk = 0; blk < num_blks; blk++) {
|
|
uint32_t init_blk_pos = g_sig_last_scan[SCAN_DIAG][log2_blk][blk];
|
|
next_scan_pos = 0;
|
|
|
|
if (width == 32) {
|
|
init_blk_pos = g_sig_last_scan_32x32[blk];
|
|
}
|
|
|
|
{
|
|
uint32_t offset_y = init_blk_pos / num_blk_side;
|
|
uint32_t offset_x = init_blk_pos - offset_y * num_blk_side;
|
|
uint32_t offset_d = 4 * (offset_x + offset_y * width);
|
|
uint32_t offset_scan = 16 * blk;
|
|
|
|
for (scan_line = 0; next_scan_pos < 16; scan_line++) {
|
|
int primary_dim = scan_line;
|
|
int second_dim = 0;
|
|
|
|
//TODO: optimize
|
|
while (primary_dim >= 4) {
|
|
second_dim++;
|
|
primary_dim--;
|
|
}
|
|
|
|
while (primary_dim >= 0 && second_dim < 4) {
|
|
buff_d[next_scan_pos + offset_scan] = primary_dim * width +
|
|
second_dim + offset_d;
|
|
next_scan_pos++;
|
|
second_dim++;
|
|
primary_dim--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (width > 2) {
|
|
uint32_t num_blk_side = width >> 2;
|
|
|
|
for (blk_y = 0; blk_y < num_blk_side; blk_y++) {
|
|
for (blk_x = 0; blk_x < num_blk_side; blk_x++) {
|
|
uint32_t offset = blk_y * 4 * width + blk_x * 4;
|
|
|
|
for (y = 0; y < 4; y++) {
|
|
for (x = 0; x < 4; x++) {
|
|
buff_h[cnt] = y * width + x + offset;
|
|
cnt ++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
cnt = 0;
|
|
|
|
for (blk_x = 0; blk_x < num_blk_side; blk_x++) {
|
|
for (blk_y = 0; blk_y < num_blk_side; blk_y++) {
|
|
uint32_t offset = blk_y * 4 * width + blk_x * 4;
|
|
|
|
for (x = 0; x < 4; x++) {
|
|
for (y = 0; y < 4; y++) {
|
|
buff_v[cnt] = y * width + x + offset;
|
|
cnt ++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (yy = 0; yy < height; yy++) {
|
|
for (xx = 0; xx < width; xx++) {
|
|
buff_h[cnt] = yy * width + xx;
|
|
cnt ++;
|
|
}
|
|
}
|
|
|
|
cnt = 0;
|
|
|
|
for (xx = 0; xx < width; xx++) {
|
|
for (yy = 0; yy < height; yy++) {
|
|
buff_v[cnt] = yy * width + xx;
|
|
cnt ++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void init_tables(void)
|
|
{
|
|
int i;
|
|
int c = 0;
|
|
memset(g_convert_to_bit, -1, sizeof(g_convert_to_bit));
|
|
|
|
for (i = 4; i < (1 << 7); i *= 2) {
|
|
g_convert_to_bit[i] = c;
|
|
c++;
|
|
}
|
|
|
|
g_convert_to_bit[i] = c;
|
|
c = 2;
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
g_sig_last_scan[0][i] = (uint32_t *)malloc(c * c * sizeof(uint32_t));
|
|
g_sig_last_scan[1][i] = (uint32_t *)malloc(c * c * sizeof(uint32_t));
|
|
g_sig_last_scan[2][i] = (uint32_t *)malloc(c * c * sizeof(uint32_t));
|
|
|
|
init_sig_last_scan(g_sig_last_scan[0][i], g_sig_last_scan[1][i],
|
|
g_sig_last_scan[2][i], c, c);
|
|
c <<= 1;
|
|
}
|
|
|
|
// Lambda cost
|
|
// TODO: cleanup
|
|
//g_lambda_cost = (int16_t*)malloc(sizeof(int16_t)*55);
|
|
for (i = 0; i < 55; i++) {
|
|
if (i < 12) {
|
|
g_lambda_cost[i] = 0;
|
|
} else {
|
|
g_lambda_cost[i] = (int16_t)sqrt(0.57 * pow(2.0, (i - 12) / 3));
|
|
}
|
|
|
|
//g_lambda_cost[i] = g_lambda_cost[i]*g_lambda_cost[i];
|
|
}
|
|
|
|
}
|
|
|
|
void init_encoder_control(encoder_control *control, bitstream *output)
|
|
{
|
|
control->stream = output;
|
|
}
|
|
|
|
void init_encoder_input(encoder_input *input, FILE *inputfile,
|
|
int32_t width, int32_t height)
|
|
{
|
|
input->file = inputfile;
|
|
input->width = width;
|
|
input->height = height;
|
|
input->real_width = width;
|
|
input->real_height = height;
|
|
|
|
// If input dimensions are not divisible by the smallest block size, add
|
|
// pixels to the dimensions, so that they are. These extra pixels will be
|
|
// compressed along with the real ones but they will be cropped out before
|
|
// rendering.
|
|
if (width % CU_MIN_SIZE_PIXELS) {
|
|
input->width += CU_MIN_SIZE_PIXELS - (width % CU_MIN_SIZE_PIXELS);
|
|
}
|
|
|
|
if (height % CU_MIN_SIZE_PIXELS) {
|
|
input->height += CU_MIN_SIZE_PIXELS - (height % CU_MIN_SIZE_PIXELS);
|
|
}
|
|
|
|
input->height_in_lcu = input->height / LCU_WIDTH;
|
|
input->width_in_lcu = input->width / LCU_WIDTH;
|
|
|
|
// Add one extra LCU when image not divisible by LCU_WIDTH
|
|
if (input->height_in_lcu * LCU_WIDTH < height) {
|
|
input->height_in_lcu++;
|
|
}
|
|
|
|
if (input->width_in_lcu * LCU_WIDTH < width) {
|
|
input->width_in_lcu++;
|
|
}
|
|
|
|
// Allocate the picture and CU array
|
|
input->cur_pic = picture_init(input->width, input->height,
|
|
input->width_in_lcu,
|
|
input->height_in_lcu);
|
|
|
|
if (!input->cur_pic) {
|
|
printf("Error allocating picture!\r\n");
|
|
exit(1);
|
|
}
|
|
|
|
#ifdef _DEBUG
|
|
if (width != input->width || height != input->height) {
|
|
printf("Picture buffer has been extended to be a multiple of the smallest block size:\r\n");
|
|
printf(" Width = %d (%d), Height = %d (%d)\r\n", width, input->width, height,
|
|
input->height);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void encode_one_frame(encoder_control *encoder)
|
|
{
|
|
// output parameters before first frame
|
|
if (encoder->frame == 0) {
|
|
// Video Parameter Set (VPS)
|
|
encode_vid_parameter_set(encoder);
|
|
bitstream_align(encoder->stream);
|
|
bitstream_flush(encoder->stream);
|
|
nal_write(encoder->output, encoder->stream->buffer,
|
|
encoder->stream->buffer_pos, 0, NAL_VPS_NUT, 0);
|
|
bitstream_clear_buffer(encoder->stream);
|
|
|
|
// Sequence Parameter Set (SPS)
|
|
encode_seq_parameter_set(encoder);
|
|
bitstream_align(encoder->stream);
|
|
bitstream_flush(encoder->stream);
|
|
nal_write(encoder->output, encoder->stream->buffer,
|
|
encoder->stream->buffer_pos, 0, NAL_SPS_NUT, 0);
|
|
bitstream_clear_buffer(encoder->stream);
|
|
|
|
// Picture Parameter Set (PPS)
|
|
encode_pic_parameter_set(encoder);
|
|
bitstream_align(encoder->stream);
|
|
bitstream_flush(encoder->stream);
|
|
nal_write(encoder->output, encoder->stream->buffer,
|
|
encoder->stream->buffer_pos, 0, NAL_PPS_NUT, 0);
|
|
bitstream_clear_buffer(encoder->stream);
|
|
|
|
// First slice is IDR
|
|
cabac_start(&cabac);
|
|
encoder->in.cur_pic->slicetype = SLICE_I;
|
|
encoder->in.cur_pic->type = NAL_IDR_W_RADL;
|
|
search_slice_data(encoder);
|
|
|
|
encode_slice_header(encoder);
|
|
bitstream_align(encoder->stream);
|
|
encode_slice_data(encoder);
|
|
cabac_flush(&cabac);
|
|
bitstream_align(encoder->stream);
|
|
bitstream_flush(encoder->stream);
|
|
nal_write(encoder->output, encoder->stream->buffer,
|
|
encoder->stream->buffer_pos, 0, NAL_IDR_W_RADL, 0);
|
|
bitstream_clear_buffer(encoder->stream);
|
|
} else {
|
|
cabac_start(&cabac);
|
|
encoder->in.cur_pic->slicetype = SLICE_P;
|
|
encoder->in.cur_pic->type = NAL_TRAIL_R;
|
|
search_slice_data(encoder);
|
|
|
|
encode_slice_header(encoder);
|
|
bitstream_align(encoder->stream);
|
|
encode_slice_data(encoder);
|
|
cabac_flush(&cabac);
|
|
bitstream_align(encoder->stream);
|
|
bitstream_flush(encoder->stream);
|
|
nal_write(encoder->output, encoder->stream->buffer,
|
|
encoder->stream->buffer_pos, 0, NAL_TRAIL_R, 0);
|
|
bitstream_clear_buffer(encoder->stream);
|
|
}
|
|
|
|
// Filtering
|
|
filter_deblock(encoder);
|
|
|
|
// Calculate checksum
|
|
add_checksum(encoder);
|
|
}
|
|
|
|
void fill_after_frame(FILE *file, unsigned height, unsigned array_width,
|
|
unsigned array_height, unsigned char *data)
|
|
{
|
|
unsigned char *p = data + height * array_width;
|
|
unsigned char *end = data + array_width * array_height;
|
|
|
|
while (p < end) {
|
|
// Fill the line by copying the line above.
|
|
memcpy(p, p - array_width, array_width);
|
|
p += array_width;
|
|
}
|
|
}
|
|
|
|
void read_and_fill_frame_data(FILE *file, unsigned width, unsigned height,
|
|
unsigned array_width, unsigned char *data)
|
|
{
|
|
unsigned char *p = data;
|
|
unsigned char *end = data + array_width * height;
|
|
unsigned char fill_char;
|
|
unsigned i;
|
|
|
|
while (p < end) {
|
|
// Read the beginning of the line from input.
|
|
fread(p, sizeof(unsigned char), width, file);
|
|
|
|
// Fill the rest with the last pixel value.
|
|
fill_char = p[width - 1];
|
|
|
|
for (i = width; i < array_width; ++i) {
|
|
p[i] = fill_char;
|
|
}
|
|
|
|
p += array_width;
|
|
}
|
|
}
|
|
|
|
void read_one_frame(FILE *file, encoder_control *encoder)
|
|
{
|
|
encoder_input *in = &encoder->in;
|
|
unsigned width = in->real_width;
|
|
unsigned height = in->real_height;
|
|
unsigned array_width = in->cur_pic->width;
|
|
unsigned array_height = in->cur_pic->height;
|
|
|
|
if (width != array_width) {
|
|
// In the case of frames not being aligned on 8 bit borders, bits need to be copied to fill them in.
|
|
read_and_fill_frame_data(file, width, height, array_width,
|
|
in->cur_pic->y_data);
|
|
read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1,
|
|
in->cur_pic->u_data);
|
|
read_and_fill_frame_data(file, width >> 1, height >> 1, array_width >> 1,
|
|
in->cur_pic->v_data);
|
|
} else {
|
|
// Otherwise the data can be read directly to the array.
|
|
fread(in->cur_pic->y_data, sizeof(unsigned char),
|
|
width * height, file);
|
|
fread(in->cur_pic->u_data, sizeof(unsigned char),
|
|
(width >> 1) * (height >> 1), file);
|
|
fread(in->cur_pic->v_data, sizeof(unsigned char),
|
|
(width >> 1) * (height >> 1), file);
|
|
}
|
|
|
|
if (height != array_height) {
|
|
fill_after_frame(file, height, array_width, array_height,
|
|
in->cur_pic->y_data);
|
|
fill_after_frame(file, height >> 1, array_width >> 1, array_height >> 1,
|
|
in->cur_pic->u_data);
|
|
fill_after_frame(file, height >> 1, array_width >> 1, array_height >> 1,
|
|
in->cur_pic->v_data);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Add a checksum SEI message to the bitstream.
|
|
* \param encoder The encoder.
|
|
* \returns Void
|
|
*/
|
|
static void add_checksum(encoder_control *encoder)
|
|
{
|
|
unsigned char checksum[3][SEI_HASH_MAX_LENGTH];
|
|
uint32_t checksum_val;
|
|
unsigned int i;
|
|
|
|
picture_checksum(encoder->in.cur_pic, checksum);
|
|
|
|
WRITE_U(encoder->stream, 132, 8, "sei_type");
|
|
WRITE_U(encoder->stream, 13, 8, "size");
|
|
WRITE_U(encoder->stream, 2, 8, "hash_type"); // 2 = checksum
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
// Pack bits into a single 32 bit uint instead of pushing them one byte
|
|
// at a time.
|
|
checksum_val = (checksum[i][0] << 24) + (checksum[i][1] << 16) +
|
|
(checksum[i][2] << 8) + (checksum[i][3]);
|
|
WRITE_U(encoder->stream, checksum_val, 32, "picture_checksum");
|
|
}
|
|
|
|
bitstream_align(encoder->stream);
|
|
bitstream_flush(encoder->stream);
|
|
nal_write(encoder->output, encoder->stream->buffer,
|
|
encoder->stream->buffer_pos, 0, NAL_SUFFIT_SEI_NUT, 0);
|
|
bitstream_clear_buffer(encoder->stream);
|
|
}
|
|
|
|
void encode_pic_parameter_set(encoder_control *encoder)
|
|
{
|
|
#ifdef _DEBUG
|
|
printf("=========== Picture Parameter Set ID: 0 ===========\n");
|
|
#endif
|
|
WRITE_UE(encoder->stream, 0, "pic_parameter_set_id");
|
|
WRITE_UE(encoder->stream, 0, "seq_parameter_set_id");
|
|
WRITE_U(encoder->stream, 0, 1, "dependent_slice_segments_enabled_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "output_flag_present_flag");
|
|
WRITE_U(encoder->stream, 0, 3, "num_extra_slice_header_bits");
|
|
WRITE_U(encoder->stream, ENABLE_SIGN_HIDING, 1, "sign_data_hiding_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "cabac_init_present_flag");
|
|
|
|
WRITE_UE(encoder->stream, 0, "num_ref_idx_l0_default_active_minus1");
|
|
WRITE_UE(encoder->stream, 0, "num_ref_idx_l1_default_active_minus1");
|
|
WRITE_SE(encoder->stream, ((int8_t)encoder->QP) - 26, "pic_init_qp_minus26");
|
|
WRITE_U(encoder->stream, 0, 1, "constrained_intra_pred_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "transform_skip_enabled_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "cu_qp_delta_enabled_flag");
|
|
//if cu_qp_delta_enabled_flag
|
|
//WRITE_UE(encoder->stream, 0, "diff_cu_qp_delta_depth");
|
|
|
|
//TODO: add QP offsets
|
|
WRITE_SE(encoder->stream, 0, "pps_cb_qp_offset");
|
|
WRITE_SE(encoder->stream, 0, "pps_cr_qp_offset");
|
|
WRITE_U(encoder->stream, 0, 1, "pps_slice_chroma_qp_offsets_present_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "weighted_pred_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "weighted_bipred_idc");
|
|
|
|
//WRITE_U(encoder->stream, 0, 1, "dependent_slices_enabled_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "transquant_bypass_enable_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "tiles_enabled_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "entropy_coding_sync_enabled_flag");
|
|
//TODO: enable tiles for concurrency
|
|
//IF tiles
|
|
//ENDIF
|
|
WRITE_U(encoder->stream, 0, 1, "loop_filter_across_slice_flag");
|
|
WRITE_U(encoder->stream, 1, 1, "deblocking_filter_control_present_flag");
|
|
//IF deblocking_filter
|
|
WRITE_U(encoder->stream, 0, 1, "deblocking_filter_override_enabled_flag");
|
|
WRITE_U(encoder->stream, encoder->deblock_enable ? 0 : 1, 1,
|
|
"pps_disable_deblocking_filter_flag");
|
|
|
|
//IF !disabled
|
|
if (encoder->deblock_enable) {
|
|
WRITE_SE(encoder->stream, encoder->beta_offset_div2, "beta_offset_div2");
|
|
WRITE_SE(encoder->stream, encoder->tc_offset_div2, "tc_offset_div2");
|
|
}
|
|
|
|
//ENDIF
|
|
//ENDIF
|
|
WRITE_U(encoder->stream, 0, 1, "pps_scaling_list_data_present_flag");
|
|
//IF scaling_list
|
|
//ENDIF
|
|
WRITE_U(encoder->stream, 0, 1, "lists_modification_present_flag");
|
|
WRITE_UE(encoder->stream, 0, "log2_parallel_merge_level_minus2");
|
|
WRITE_U(encoder->stream, 0, 1, "slice_segment_header_extension_present_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "pps_extension_flag");
|
|
}
|
|
|
|
void encode_PTL(encoder_control *encoder)
|
|
{
|
|
int i;
|
|
// PTL
|
|
// Profile Tier
|
|
WRITE_U(encoder->stream, 0, 2, "XXX_profile_space[]");
|
|
WRITE_U(encoder->stream, 0, 1, "XXX_tier_flag[]");
|
|
WRITE_U(encoder->stream, 0, 5, "XXX_profile_idc[]");
|
|
WRITE_U(encoder->stream, 0, 32, "XXX_profile_compatibility_flag[][j]");
|
|
|
|
WRITE_U(encoder->stream, 1, 1, "general_progressive_source_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "general_interlaced_source_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "general_non_packed_constraint_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "general_frame_only_constraint_flag");
|
|
|
|
WRITE_U(encoder->stream, 0, 32, "XXX_reserved_zero_44bits[0..31]");
|
|
WRITE_U(encoder->stream, 0, 12, "XXX_reserved_zero_44bits[32..43]");
|
|
|
|
// end Profile Tier
|
|
|
|
WRITE_U(encoder->stream, 0, 8, "general_level_idc");
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "sub_layer_profile_present_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "sub_layer_level_present_flag");
|
|
|
|
for (i = 1; i < 8; i++) {
|
|
WRITE_U(encoder->stream, 0, 2, "reserved_zero_2bits");
|
|
}
|
|
|
|
// end PTL
|
|
}
|
|
|
|
void encode_seq_parameter_set(encoder_control *encoder)
|
|
{
|
|
encoder_input *const in = &encoder->in;
|
|
|
|
#ifdef _DEBUG
|
|
printf("=========== Sequence Parameter Set ID: 0 ===========\n");
|
|
#endif
|
|
|
|
// TODO: profile IDC and level IDC should be defined later on
|
|
WRITE_U(encoder->stream, 0, 4, "sps_video_parameter_set_id");
|
|
WRITE_U(encoder->stream, 1, 3, "sps_max_sub_layers_minus1");
|
|
WRITE_U(encoder->stream, 0, 1, "sps_temporal_id_nesting_flag");
|
|
|
|
encode_PTL(encoder);
|
|
|
|
WRITE_UE(encoder->stream, 0, "sps_seq_parameter_set_id");
|
|
WRITE_UE(encoder->stream, encoder->in.video_format,
|
|
"chroma_format_idc");
|
|
|
|
if (encoder->in.video_format == 3) {
|
|
WRITE_U(encoder->stream, 0, 1, "separate_colour_plane_flag");
|
|
}
|
|
|
|
WRITE_UE(encoder->stream, encoder->in.width, "pic_width_in_luma_samples");
|
|
WRITE_UE(encoder->stream, encoder->in.height, "pic_height_in_luma_samples");
|
|
|
|
if (in->width != in->real_width || in->height != in->real_height) {
|
|
// The standard does not seem to allow setting conf_win values such that
|
|
// the number of luma samples is not a multiple of 2. Options are to either
|
|
// hide one line or show an extra line of non-video. Neither seems like a
|
|
// very good option, so let's not even try.
|
|
assert(!(in->width % 2));
|
|
WRITE_U(encoder->stream, 1, 1, "conformance_window_flag");
|
|
WRITE_UE(encoder->stream, 0, "conf_win_left_offset");
|
|
WRITE_UE(encoder->stream, (in->width - in->real_width) >> 1,
|
|
"conf_win_right_offset");
|
|
WRITE_UE(encoder->stream, 0, "conf_win_top_offset");
|
|
WRITE_UE(encoder->stream, (in->height - in->real_height) >> 1,
|
|
"conf_win_bottom_offset");
|
|
} else {
|
|
WRITE_U(encoder->stream, 0, 1, "conformance_window_flag");
|
|
}
|
|
|
|
//IF window flag
|
|
//END IF
|
|
|
|
WRITE_UE(encoder->stream, encoder->bitdepth - 8, "bit_depth_luma_minus8");
|
|
WRITE_UE(encoder->stream, encoder->bitdepth - 8, "bit_depth_chroma_minus8");
|
|
WRITE_UE(encoder->stream, 0, "log2_max_pic_order_cnt_lsb_minus4");
|
|
WRITE_U(encoder->stream, 0, 1, "sps_sub_layer_ordering_info_present_flag");
|
|
|
|
//for each layer
|
|
WRITE_UE(encoder->stream, 0, "sps_max_dec_pic_buffering");
|
|
WRITE_UE(encoder->stream, 0, "sps_num_reorder_pics");
|
|
WRITE_UE(encoder->stream, 0, "sps_max_latency_increase");
|
|
//end for
|
|
|
|
WRITE_UE(encoder->stream, MIN_SIZE - 3, "log2_min_coding_block_size_minus3");
|
|
WRITE_UE(encoder->stream, MAX_DEPTH, "log2_diff_max_min_coding_block_size");
|
|
WRITE_UE(encoder->stream, 0, "log2_min_transform_block_size_minus2"); // 4x4
|
|
WRITE_UE(encoder->stream, 3, "log2_diff_max_min_transform_block_size"); // 4x4...32x32
|
|
WRITE_UE(encoder->stream, 2, "max_transform_hierarchy_depth_inter");
|
|
WRITE_UE(encoder->stream, 2, "max_transform_hierarchy_depth_intra");
|
|
|
|
// Use default scaling list
|
|
WRITE_U(encoder->stream, ENABLE_SCALING_LIST, 1, "scaling_list_enable_flag");
|
|
#if ENABLE_SCALING_LIST == 1
|
|
WRITE_U(encoder->stream, 0, 1, "sps_scaling_list_data_present_flag");
|
|
#endif
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "amp_enabled_flag");
|
|
WRITE_U(encoder->stream, encoder->sao_enable ? 1 : 0, 1,
|
|
"sample_adaptive_offset_enabled_flag");
|
|
WRITE_U(encoder->stream, ENABLE_PCM, 1, "pcm_enabled_flag");
|
|
#if ENABLE_PCM == 1
|
|
WRITE_U(encoder->stream, 7, 4, "pcm_sample_bit_depth_luma_minus1");
|
|
WRITE_U(encoder->stream, 7, 4, "pcm_sample_bit_depth_chroma_minus1");
|
|
WRITE_UE(encoder->stream, 0, "log2_min_pcm_coding_block_size_minus3");
|
|
WRITE_UE(encoder->stream, 2, "log2_diff_max_min_pcm_coding_block_size");
|
|
WRITE_U(encoder->stream, 1, 1, "pcm_loop_filter_disable_flag");
|
|
#endif
|
|
|
|
WRITE_UE(encoder->stream, 0, "num_short_term_ref_pic_sets");
|
|
|
|
//IF num short term ref pic sets
|
|
//ENDIF
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "long_term_ref_pics_present_flag");
|
|
|
|
//IF long_term_ref_pics_present
|
|
//ENDIF
|
|
|
|
WRITE_U(encoder->stream, ENABLE_TEMPORAL_MVP, 1,
|
|
"sps_temporal_mvp_enable_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "sps_strong_intra_smoothing_enable_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "vui_parameters_present_flag");
|
|
|
|
//TODO: VUI?
|
|
//encode_VUI(encoder);
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "sps_extension_flag");
|
|
}
|
|
|
|
void encode_vid_parameter_set(encoder_control *encoder)
|
|
{
|
|
int i;
|
|
#ifdef _DEBUG
|
|
printf("=========== Video Parameter Set ID: 0 ===========\n");
|
|
#endif
|
|
|
|
WRITE_U(encoder->stream, 0, 4, "vps_video_parameter_set_id");
|
|
WRITE_U(encoder->stream, 3, 2, "vps_reserved_three_2bits");
|
|
WRITE_U(encoder->stream, 0, 6, "vps_reserved_zero_6bits");
|
|
WRITE_U(encoder->stream, 1, 3, "vps_max_sub_layers_minus1");
|
|
WRITE_U(encoder->stream, 0, 1, "vps_temporal_id_nesting_flag");
|
|
WRITE_U(encoder->stream, 0xffff, 16, "vps_reserved_ffff_16bits");
|
|
|
|
encode_PTL(encoder);
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "vps_sub_layer_ordering_info_present_flag");
|
|
|
|
// for each layer
|
|
for (i = 0; i < 1; i++) {
|
|
WRITE_UE(encoder->stream, 1, "vps_max_dec_pic_buffering");
|
|
WRITE_UE(encoder->stream, 0, "vps_num_reorder_pics");
|
|
WRITE_UE(encoder->stream, 0, "vps_max_latency_increase");
|
|
}
|
|
|
|
WRITE_U(encoder->stream, 0, 6, "vps_max_nuh_reserved_zero_layer_id");
|
|
WRITE_UE(encoder->stream, 0, "vps_max_op_sets_minus1");
|
|
WRITE_U(encoder->stream, 0, 1, "vps_timing_info_present_flag");
|
|
|
|
//IF timing info
|
|
//END IF
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "vps_extension_flag");
|
|
}
|
|
|
|
void encode_VUI(encoder_control *encoder)
|
|
{
|
|
#ifdef _DEBUG
|
|
printf("=========== VUI Set ID: 0 ===========\n");
|
|
#endif
|
|
WRITE_U(encoder->stream, 0, 1, "aspect_ratio_info_present_flag");
|
|
|
|
//IF aspect ratio info
|
|
//ENDIF
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "overscan_info_present_flag");
|
|
|
|
//IF overscan info
|
|
//ENDIF
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "video_signal_type_present_flag");
|
|
|
|
//IF video type
|
|
//ENDIF
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "chroma_loc_info_present_flag");
|
|
|
|
//IF chroma loc info
|
|
//ENDIF
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "neutral_chroma_indication_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "field_seq_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "frame_field_info_present_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "default_display_window_flag");
|
|
|
|
//IF default display window
|
|
//ENDIF
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "vui_timing_info_present_flag");
|
|
|
|
//IF timing info
|
|
//ENDIF
|
|
|
|
WRITE_U(encoder->stream, 0, 1, "bitstream_restriction_flag");
|
|
|
|
//IF bitstream restriction
|
|
//ENDIF
|
|
}
|
|
|
|
void encode_slice_header(encoder_control *encoder)
|
|
{
|
|
#ifdef _DEBUG
|
|
printf("=========== Slice ===========\n");
|
|
#endif
|
|
|
|
WRITE_U(encoder->stream, 1, 1, "first_slice_segment_in_pic_flag");
|
|
|
|
if (encoder->in.cur_pic->type >= NAL_BLA_W_LP
|
|
&& encoder->in.cur_pic->type <= NAL_RSV_IRAP_VCL23) {
|
|
WRITE_U(encoder->stream, 1, 1, "no_output_of_prior_pics_flag");
|
|
}
|
|
|
|
WRITE_UE(encoder->stream, 0, "slice_pic_parameter_set_id");
|
|
|
|
//WRITE_U(encoder->stream, 0, 1, "dependent_slice_segment_flag");
|
|
|
|
WRITE_UE(encoder->stream, encoder->in.cur_pic->slicetype, "slice_type");
|
|
|
|
// if !entropy_slice_flag
|
|
|
|
//if output_flag_present_flag
|
|
//WRITE_U(encoder->stream, 1, 1, "pic_output_flag");
|
|
//end if
|
|
//if( IdrPicFlag ) <- nal_unit_type == 5
|
|
if (encoder->in.cur_pic->type != NAL_IDR_W_RADL
|
|
&& encoder->in.cur_pic->type != NAL_IDR_N_LP) {
|
|
int j;
|
|
int ref_negative = 1;
|
|
int ref_positive = 0;
|
|
WRITE_U(encoder->stream, encoder->frame & 0xf, 4, "pic_order_cnt_lsb");
|
|
WRITE_U(encoder->stream, 0, 1, "short_term_ref_pic_set_sps_flag");
|
|
WRITE_UE(encoder->stream, ref_negative, "num_negative_pics");
|
|
WRITE_UE(encoder->stream, ref_positive, "num_positive_pics");
|
|
|
|
for (j = 0; j < ref_negative; j++) {
|
|
WRITE_UE(encoder->stream, 0, "delta_poc_s0_minus1");
|
|
WRITE_U(encoder->stream, 1, 1, "used_by_curr_pic_s0_flag");
|
|
}
|
|
|
|
//WRITE_UE(encoder->stream, 0, "short_term_ref_pic_set_idx");
|
|
}
|
|
|
|
//end if
|
|
//end if
|
|
if (encoder->sao_enable) {
|
|
WRITE_U(encoder->stream, 1, 1, "slice_sao_luma_flag");
|
|
WRITE_U(encoder->stream, 0, 1, "slice_sao_chroma_flag");
|
|
}
|
|
|
|
if (encoder->in.cur_pic->slicetype != SLICE_I) {
|
|
WRITE_U(encoder->stream, 0, 1, "num_ref_idx_active_override_flag");
|
|
WRITE_UE(encoder->stream, 0, "five_minus_max_num_merge_cand");
|
|
}
|
|
|
|
if (encoder->in.cur_pic->slicetype == SLICE_B) {
|
|
WRITE_U(encoder->stream, 0, 1, "mvd_l1_zero_flag");
|
|
}
|
|
|
|
// Skip flags that are not present
|
|
// if !entropy_slice_flag
|
|
WRITE_SE(encoder->stream, 0, "slice_qp_delta");
|
|
//WRITE_U(encoder->stream, 1, 1, "alignment");
|
|
}
|
|
|
|
void encode_slice_data(encoder_control *encoder)
|
|
{
|
|
uint16_t x_ctb, y_ctb;
|
|
|
|
scalinglist_process();
|
|
init_contexts(encoder, encoder->in.cur_pic->slicetype);
|
|
|
|
// Loop through every LCU in the slice
|
|
for (y_ctb = 0; y_ctb < encoder->in.height_in_lcu; y_ctb++) {
|
|
uint8_t last_cu_y = (y_ctb == (encoder->in.height_in_lcu - 1)) ? 1 : 0;
|
|
|
|
for (x_ctb = 0; x_ctb < encoder->in.width_in_lcu; x_ctb++) {
|
|
uint8_t last_cu_x = (x_ctb == (encoder->in.width_in_lcu - 1)) ? 1 : 0;
|
|
uint8_t depth = 0;
|
|
|
|
// Recursive function for looping through all the sub-blocks
|
|
encode_coding_tree(encoder, x_ctb << MAX_DEPTH, y_ctb << MAX_DEPTH, depth);
|
|
|
|
// signal Terminating bit
|
|
if (!last_cu_x || !last_cu_y) {
|
|
cabac_encode_bin_trm(&cabac, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void encode_coding_tree(encoder_control *encoder, uint16_t x_ctb,
|
|
uint16_t y_ctb, uint8_t depth)
|
|
{
|
|
cu_info *cur_cu = &encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
|
|
uint8_t split_flag = GET_SPLITDATA(cur_cu, depth);
|
|
uint8_t split_model = 0;
|
|
|
|
// Check for slice border
|
|
uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
|
|
uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
|
|
uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
|
|
uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
|
|
uint8_t border = border_x | border_y; /*!< are we in any border CU */
|
|
|
|
|
|
// When not in MAX_DEPTH, insert split flag and split the blocks if needed
|
|
if (depth != MAX_DEPTH) {
|
|
// Implisit split flag when on border
|
|
if (!border) {
|
|
// Get left and top block split_flags and if they are present and true, increase model number
|
|
if (x_ctb > 0 && GET_SPLITDATA(&(encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb - 1 + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)]), depth) == 1) {
|
|
split_model++;
|
|
}
|
|
|
|
if (y_ctb > 0 && GET_SPLITDATA(&(encoder->in.cur_pic->cu_array[MAX_DEPTH][x_ctb + (y_ctb - 1) * (encoder->in.width_in_lcu << MAX_DEPTH)]), depth) == 1) {
|
|
split_model++;
|
|
}
|
|
|
|
cabac.ctx = &g_split_flag_model[split_model];
|
|
CABAC_BIN(&cabac, split_flag, "SplitFlag");
|
|
}
|
|
|
|
if (split_flag || border) {
|
|
// Split blocks and remember to change x and y block positions
|
|
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
|
|
encode_coding_tree(encoder, x_ctb, y_ctb, depth + 1); // x,y
|
|
|
|
// TODO: fix when other half of the block would not be completely over the border
|
|
if (!border_x || border_split_x) {
|
|
encode_coding_tree(encoder, x_ctb + change, y_ctb, depth + 1);
|
|
}
|
|
if (!border_y || border_split_y) {
|
|
encode_coding_tree(encoder, x_ctb, y_ctb + change, depth + 1);
|
|
}
|
|
if (!border || (border_split_x && border_split_y)) {
|
|
encode_coding_tree(encoder, x_ctb + change, y_ctb + change, depth + 1);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Encode skip flag
|
|
if (encoder->in.cur_pic->slicetype != SLICE_I) {
|
|
int8_t ctx_skip = 0;
|
|
// uiCtxSkip = aboveskipped + leftskipped;
|
|
cabac.ctx = &g_cu_skip_flag_model[ctx_skip];
|
|
CABAC_BIN(&cabac, (cur_cu->type == CU_SKIP) ? 1 : 0, "SkipFlag");
|
|
}
|
|
|
|
// IF SKIP
|
|
if (cur_cu->type == CU_SKIP) {
|
|
// Encode merge index
|
|
// TODO: calculate/fetch merge candidates
|
|
int16_t unary_idx = 0; //pcCU->getMergeIndex( uiAbsPartIdx );
|
|
int16_t num_cand = 0; //pcCU->getSlice()->getMaxNumMergeCand();
|
|
int32_t ui;
|
|
|
|
if (num_cand > 1) {
|
|
for (ui = 0; ui < num_cand - 1; ui++) {
|
|
int32_t symbol = (ui == unary_idx) ? 0 : 1;
|
|
|
|
if (ui == 0) {
|
|
cabac.ctx = &g_cu_merge_idx_ext_model;
|
|
CABAC_BIN(&cabac, symbol, "MergeIndex");
|
|
} else {
|
|
CABAC_BIN_EP(&cabac, symbol, "MergeIndex");
|
|
}
|
|
|
|
if (symbol == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// ENDIF SKIP
|
|
|
|
// Prediction mode
|
|
if (encoder->in.cur_pic->slicetype != SLICE_I) {
|
|
cabac.ctx = &g_cu_pred_mode_model;
|
|
CABAC_BIN(&cabac, (cur_cu->type == CU_INTRA) ? 1 : 0, "PredMode");
|
|
}
|
|
|
|
// Signal PartSize on max depth
|
|
if (depth == MAX_DEPTH || cur_cu->type != CU_INTRA) {
|
|
// TODO: Handle inter sizes other than 2Nx2N
|
|
cabac.ctx = &g_part_size_model[0];
|
|
CABAC_BIN(&cabac, 1, "PartSize");
|
|
// TODO: add AMP modes
|
|
}
|
|
|
|
//end partsize
|
|
if (cur_cu->type == CU_INTER) {
|
|
// FOR each part
|
|
// Mergeflag
|
|
uint8_t merge_flag = 0;
|
|
cabac.ctx = &g_cu_merge_flag_ext_model;
|
|
CABAC_BIN(&cabac, merge_flag, "MergeFlag");
|
|
|
|
if (merge_flag) { //merge
|
|
// MergeIndex
|
|
int16_t unary_idx = 0; //pcCU->getMergeIndex( uiAbsPartIdx );
|
|
int16_t num_cand = 0; //pcCU->getSlice()->getMaxNumMergeCand();
|
|
int32_t ui;
|
|
|
|
if (num_cand > 1) {
|
|
for (ui = 0; ui < num_cand - 1; ui++) {
|
|
int32_t symbol = (ui == unary_idx) ? 0 : 1;
|
|
|
|
if (ui == 0) {
|
|
cabac.ctx = &g_cu_merge_idx_ext_model;
|
|
CABAC_BIN(&cabac, symbol, "MergeIndex");
|
|
} else {
|
|
CABAC_BIN_EP(&cabac, symbol, "MergeIndex");
|
|
}
|
|
|
|
if (symbol == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
uint32_t ref_list_idx;
|
|
int16_t mv_cand[2][2];
|
|
|
|
/*
|
|
// Void TEncSbac::codeInterDir( TComDataCU* pcCU, UInt uiAbsPartIdx )
|
|
if(encoder->in.cur_pic->slicetype == SLICE_B)
|
|
{
|
|
// Code Inter Dir
|
|
const UInt uiInterDir = pcCU->getInterDir( uiAbsPartIdx ) - 1;
|
|
const UInt uiCtx = pcCU->getCtxInterDir( uiAbsPartIdx );
|
|
ContextModel *pCtx = m_cCUInterDirSCModel.get( 0 );
|
|
if (pcCU->getPartitionSize(uiAbsPartIdx) == SIZE_2Nx2N || pcCU->getHeight(uiAbsPartIdx) != 8 )
|
|
{
|
|
m_pcBinIf->encodeBin( uiInterDir == 2 ? 1 : 0, *( pCtx + uiCtx ) );
|
|
}
|
|
if (uiInterDir < 2)
|
|
{
|
|
m_pcBinIf->encodeBin( uiInterDir, *( pCtx + 4 ) );
|
|
}
|
|
}
|
|
*/
|
|
|
|
for (ref_list_idx = 0; ref_list_idx < 2; ref_list_idx++) {
|
|
//if(encoder->ref_idx_num[uiRefListIdx] > 0)
|
|
{
|
|
if (cur_cu->inter.mv_dir & (1 << ref_list_idx)) {
|
|
if (0) { //encoder->ref_idx_num[uiRefListIdx] != 1)//NumRefIdx != 1)
|
|
// parseRefFrmIdx
|
|
int32_t ref_frame = cur_cu->inter.mv_ref;
|
|
|
|
cabac.ctx = &g_cu_ref_pic_model[0];
|
|
CABAC_BIN(&cabac, (ref_frame == 0) ? 0 : 1, "ref_frame_flag");
|
|
|
|
if (ref_frame > 0) {
|
|
uint32_t i;
|
|
uint32_t ref_num = encoder->ref_idx_num[ref_list_idx] - 2;
|
|
|
|
cabac.ctx = &g_cu_ref_pic_model[1];
|
|
ref_frame--;
|
|
|
|
for (i = 0; i < ref_num; ++i) {
|
|
const uint32_t symbol = (i == ref_frame) ? 0 : 1;
|
|
|
|
if (i == 0) {
|
|
CABAC_BIN(&cabac, symbol, "ref_frame_flag2");
|
|
} else {
|
|
CABAC_BIN_EP(&cabac, symbol, "ref_frame_flag2");
|
|
}
|
|
|
|
if (symbol == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get MV candidates
|
|
inter_get_mv_cand(encoder, x_ctb, y_ctb, depth, mv_cand);
|
|
|
|
// Select better candidate
|
|
cur_cu->inter.mv_ref = 0; // Default to candidate 0
|
|
|
|
// Only check when candidates are different
|
|
if (mv_cand[0][0] != mv_cand[1][0] || mv_cand[0][1] != mv_cand[1][1]) {
|
|
uint16_t cand_1_diff = abs(cur_cu->inter.mv[0] - mv_cand[0][0]) + abs(
|
|
cur_cu->inter.mv[1] - mv_cand[0][1]);
|
|
uint16_t cand_2_diff = abs(cur_cu->inter.mv[0] - mv_cand[1][0]) + abs(
|
|
cur_cu->inter.mv[1] - mv_cand[1][1]);
|
|
|
|
// Select candidate 1 if it's closer
|
|
if (cand_2_diff < cand_1_diff) {
|
|
cur_cu->inter.mv_ref = 1;
|
|
}
|
|
}
|
|
|
|
if (!(/*pcCU->getSlice()->getMvdL1ZeroFlag() &&*/ encoder->ref_list == REF_PIC_LIST_1 && cur_cu->inter.mv_dir == 3)) {
|
|
const int32_t mvd_hor = cur_cu->inter.mv[0] - mv_cand[cur_cu->inter.mv_ref][0];
|
|
const int32_t mvd_ver = cur_cu->inter.mv[1] - mv_cand[cur_cu->inter.mv_ref][1];
|
|
const int8_t hor_abs_gr0 = mvd_hor != 0;
|
|
const int8_t ver_abs_gr0 = mvd_ver != 0;
|
|
const uint32_t mvd_hor_abs = abs(mvd_hor);
|
|
const uint32_t mvd_ver_abs = abs(mvd_ver);
|
|
|
|
cabac.ctx = &g_cu_mvd_model[0];
|
|
CABAC_BIN(&cabac, (mvd_hor != 0) ? 1 : 0, "abs_mvd_greater0_flag_hor");
|
|
CABAC_BIN(&cabac, (mvd_ver != 0) ? 1 : 0, "abs_mvd_greater0_flag_ver");
|
|
|
|
cabac.ctx = &g_cu_mvd_model[1];
|
|
|
|
if (hor_abs_gr0) {
|
|
CABAC_BIN(&cabac, (mvd_hor_abs > 1) ? 1 : 0, "abs_mvd_greater1_flag_hor");
|
|
}
|
|
|
|
if (ver_abs_gr0) {
|
|
CABAC_BIN(&cabac, (mvd_ver_abs > 1) ? 1 : 0, "abs_mvd_greater1_flag_ver");
|
|
}
|
|
|
|
if (hor_abs_gr0) {
|
|
if (mvd_hor_abs > 1) {
|
|
cabac_write_ep_ex_golomb(&cabac, mvd_hor_abs - 2, 1);
|
|
}
|
|
|
|
CABAC_BIN_EP(&cabac, (mvd_hor > 0) ? 0 : 1, "mvd_sign_flag_hor");
|
|
}
|
|
|
|
if (ver_abs_gr0) {
|
|
if (mvd_ver_abs > 1) {
|
|
cabac_write_ep_ex_golomb(&cabac, mvd_ver_abs - 2, 1);
|
|
}
|
|
|
|
CABAC_BIN_EP(&cabac, (mvd_ver > 0) ? 0 : 1, "mvd_sign_flag_ver");
|
|
}
|
|
|
|
// Inter reconstruction
|
|
inter_recon(encoder->ref->pics[0], x_ctb * CU_MIN_SIZE_PIXELS,
|
|
y_ctb * CU_MIN_SIZE_PIXELS, LCU_WIDTH >> depth, cur_cu->inter.mv,
|
|
encoder->in.cur_pic);
|
|
|
|
// Mark this block as "coded" (can be used for predictions..)
|
|
picture_set_block_coded(encoder->in.cur_pic, x_ctb, y_ctb, depth, 1);
|
|
}
|
|
|
|
// Signal which candidate MV to use
|
|
cabac_write_unary_max_symbol(&cabac, g_mvp_idx_model, cur_cu->inter.mv_ref, 1,
|
|
AMVP_MAX_NUM_CANDS - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
cabac.ctx = &g_cu_qt_root_cbf_model;
|
|
CABAC_BIN(&cabac, 0, "rqt_root_cbf");
|
|
|
|
if (0) {
|
|
transform_info ti;
|
|
memset(&ti, 0, sizeof(transform_info));
|
|
|
|
ti.x_ctb = x_ctb; ti.y_ctb = y_ctb;
|
|
|
|
// Coded block pattern
|
|
ti.cb_top[0] = 0;
|
|
ti.cb_top[1] = 0;
|
|
ti.cb_top[2] = 0;
|
|
ti.split[0] = 0;
|
|
|
|
// Code (possible) coeffs to bitstream
|
|
ti.idx = 0;
|
|
encode_transform_coeff(encoder, &ti, depth, 0);
|
|
}
|
|
}
|
|
|
|
// END for each part
|
|
} else if (cur_cu->type == CU_INTRA) {
|
|
uint8_t intra_perd_mode = cur_cu->intra.mode;
|
|
uint8_t intra_pred_mode_chroma = 36; // 36 = Chroma derived from luma
|
|
int8_t intra_preds[3] = { -1, -1, -1};
|
|
int8_t mpm_preds = -1;
|
|
int i;
|
|
uint32_t flag;
|
|
uint8_t *base_y = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
|
|
uint8_t *base_u = &encoder->in.cur_pic->u_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)];
|
|
uint8_t *base_v = &encoder->in.cur_pic->v_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)];
|
|
uint32_t width = LCU_WIDTH >> depth;
|
|
|
|
// INTRAPREDICTION VARIABLES
|
|
int16_t pred_y[LCU_WIDTH * LCU_WIDTH + 1];
|
|
int16_t pred_u[LCU_WIDTH * LCU_WIDTH >> 2];
|
|
int16_t pred_v[LCU_WIDTH * LCU_WIDTH >> 2];
|
|
|
|
uint8_t *recbase_y = &encoder->in.cur_pic->y_recdata[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
|
|
uint8_t *recbase_u = &encoder->in.cur_pic->u_recdata[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)];
|
|
uint8_t *recbase_v = &encoder->in.cur_pic->v_recdata[x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * (encoder->in.width >> 1)];
|
|
|
|
// SEARCH BEST INTRA MODE (AGAIN)
|
|
int16_t rec[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8)];
|
|
int16_t *rec_shift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1];
|
|
intra_build_reference_border(encoder->in.cur_pic, x_ctb, y_ctb,
|
|
(LCU_WIDTH >> (depth)) * 2 + 8, rec,
|
|
(LCU_WIDTH >> (depth)) * 2 + 8, 0);
|
|
cur_cu->intra.mode = (int8_t)intra_prediction(encoder->in.cur_pic->y_data,
|
|
encoder->in.width,
|
|
rec_shift,
|
|
(LCU_WIDTH >> (depth)) * 2 + 8,
|
|
x_ctb * (LCU_WIDTH >> (MAX_DEPTH)),
|
|
y_ctb * (LCU_WIDTH >> (MAX_DEPTH)),
|
|
width, pred_y, width,
|
|
&cur_cu->intra.cost);
|
|
intra_perd_mode = cur_cu->intra.mode;
|
|
intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth,
|
|
intra_perd_mode);
|
|
|
|
#if ENABLE_PCM == 1
|
|
// Code must start after variable initialization
|
|
cabac_encode_bin_trm(&cabac, 0); // IPCMFlag == 0
|
|
#endif
|
|
|
|
// PREDINFO CODING
|
|
// If intra prediction mode is found from the predictors,
|
|
// it can be signaled with two EP's. Otherwise we can send
|
|
// 5 EP bins with the full predmode
|
|
intra_get_dir_luma_predictor(encoder->in.cur_pic, x_ctb, y_ctb, depth,
|
|
intra_preds);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
if (intra_preds[i] == intra_perd_mode) {
|
|
mpm_preds = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// For each part {
|
|
flag = (mpm_preds == -1) ? 0 : 1;
|
|
cabac.ctx = &g_intra_mode_model;
|
|
CABAC_BIN(&cabac, flag, "IntraPred");
|
|
// } End for each part
|
|
|
|
// Intrapredmode signaling
|
|
// If found from predictors, we can simplify signaling
|
|
if (flag) {
|
|
flag = (mpm_preds == 0) ? 0 : 1;
|
|
CABAC_BIN_EP(&cabac, flag, "intraPredMode");
|
|
|
|
if (mpm_preds != 0) {
|
|
flag = (mpm_preds == 1) ? 0 : 1;
|
|
CABAC_BIN_EP(&cabac, flag, "intraPredMode");
|
|
}
|
|
} else {
|
|
// we signal the "full" predmode
|
|
int32_t intra_pred_mode_temp = intra_perd_mode;
|
|
|
|
if (intra_preds[0] > intra_preds[1]) {
|
|
SWAP(intra_preds[0], intra_preds[1], int8_t);
|
|
}
|
|
|
|
if (intra_preds[0] > intra_preds[2]) {
|
|
SWAP(intra_preds[0], intra_preds[2], int8_t);
|
|
}
|
|
|
|
if (intra_preds[1] > intra_preds[2]) {
|
|
SWAP(intra_preds[1], intra_preds[2], int8_t);
|
|
}
|
|
|
|
for (i = 2; i >= 0; i--) {
|
|
intra_pred_mode_temp = intra_pred_mode_temp > intra_preds[i] ?
|
|
intra_pred_mode_temp - 1 : intra_pred_mode_temp;
|
|
}
|
|
|
|
CABAC_BINS_EP(&cabac, intra_pred_mode_temp, 5, "intraPredMode");
|
|
}
|
|
|
|
// If we have chroma, signal it
|
|
if (encoder->in.video_format != FORMAT_400) {
|
|
// Chroma intra prediction
|
|
cabac.ctx = &g_chroma_pred_model[0];
|
|
CABAC_BIN(&cabac, ((intra_pred_mode_chroma != 36) ? 1 : 0), "IntraPredChroma");
|
|
|
|
// If not copied from luma, signal it
|
|
if (intra_pred_mode_chroma != 36) {
|
|
int8_t intra_pred_mode_chroma_temp = intra_pred_mode_chroma;
|
|
// Default chroma predictors
|
|
uint32_t allowed_chroma_dir[5] = { 0, 26, 10, 1, 36 };
|
|
|
|
// If intra is the same as one of the default predictors, replace it
|
|
for (i = 0; i < 4; i++) {
|
|
if (intra_perd_mode == allowed_chroma_dir[i]) {
|
|
allowed_chroma_dir[i] = 34; /* VER+8 mode */
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (intra_pred_mode_chroma_temp == allowed_chroma_dir[i]) {
|
|
intra_pred_mode_chroma_temp = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
CABAC_BINS_EP(&cabac, intra_pred_mode_chroma_temp, 2, "intraPredModeChroma");
|
|
}
|
|
}
|
|
|
|
// END OF PREDINFO CODING
|
|
|
|
// Coeff
|
|
// Transform tree
|
|
{
|
|
// TODO: dynamic memory allocation
|
|
int16_t coeff_y[LCU_WIDTH * LCU_WIDTH * 2];
|
|
int16_t coeff_u[LCU_WIDTH * LCU_WIDTH >> 1];
|
|
int16_t coeff_v[LCU_WIDTH * LCU_WIDTH >> 1];
|
|
|
|
// Initialize helper structure for transform
|
|
transform_info ti;
|
|
memset(&ti, 0, sizeof(transform_info));
|
|
|
|
ti.x_ctb = x_ctb; ti.y_ctb = y_ctb;
|
|
|
|
// Base pointers
|
|
ti.base = base_y; ti.base_u = base_u; ti.base_v = base_v;
|
|
ti.base_stride = encoder->in.width;
|
|
|
|
// Prediction pointers
|
|
ti.pred = pred_y; ti.pred_u = pred_u; ti.pred_v = pred_v;
|
|
ti.pred_stride = (LCU_WIDTH >> depth);
|
|
|
|
// Reconstruction pointers
|
|
ti.recbase = recbase_y; ti.recbase_u = recbase_u; ti.recbase_v = recbase_v;
|
|
ti.recbase_stride = encoder->in.width;
|
|
|
|
// Coeff pointers
|
|
ti.coeff[0] = coeff_y; ti.coeff[1] = coeff_u; ti.coeff[2] = coeff_v;
|
|
|
|
// Prediction info
|
|
ti.intra_pred_mode = intra_perd_mode;
|
|
ti.intra_pred_mode_chroma = intra_pred_mode_chroma;
|
|
|
|
// Handle transforms, quant and reconstruction
|
|
ti.idx = 0;
|
|
encode_transform_tree(encoder, &ti, depth);
|
|
|
|
// Coded block pattern
|
|
ti.cb_top[0] = (ti.cb[0] & 0x1 || ti.cb[1] & 0x1 || ti.cb[2] & 0x1
|
|
|| ti.cb[3] & 0x1) ? 1 : 0;
|
|
ti.cb_top[1] = (ti.cb[0] & 0x2 || ti.cb[1] & 0x2 || ti.cb[2] & 0x2
|
|
|| ti.cb[3] & 0x2) ? 1 : 0;
|
|
ti.cb_top[2] = (ti.cb[0] & 0x4 || ti.cb[1] & 0x4 || ti.cb[2] & 0x4
|
|
|| ti.cb[3] & 0x4) ? 1 : 0;
|
|
|
|
// Code (possible) coeffs to bitstream
|
|
ti.idx = 0;
|
|
encode_transform_coeff(encoder, &ti, depth, 0);
|
|
}
|
|
// end Transform tree
|
|
// end Coeff
|
|
|
|
}
|
|
|
|
#if ENABLE_PCM == 1
|
|
// Code IPCM block
|
|
if (cur_cu->type == CU_PCM) {
|
|
cabac_encode_bin_trm(&cabac, 1); // IPCMFlag == 1
|
|
cabac_finish(&cabac);
|
|
bitstream_align(cabac.stream);
|
|
// PCM sample
|
|
{
|
|
unsigned y, x;
|
|
|
|
uint8_t *base_y = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
|
|
uint8_t *base_u = &encoder->in.cur_pic->u_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)];
|
|
uint8_t *base_v = &encoder->in.cur_pic->v_data[(x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1))) * encoder->in.width / 2)];
|
|
|
|
// Luma
|
|
for (y = 0; y < LCU_WIDTH >> depth; y++) {
|
|
for (x = 0; x < LCU_WIDTH >> depth; x++) {
|
|
bitstream_put(cabac.stream, base_y[x + y * encoder->in.width], 8);
|
|
}
|
|
}
|
|
|
|
// Chroma
|
|
if (encoder->in.video_format != FORMAT_400) {
|
|
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
|
|
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
|
|
bitstream_put(cabac.stream, base_u[x + y * (encoder->in.width >> 1)], 8);
|
|
}
|
|
|
|
}
|
|
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
|
|
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
|
|
bitstream_put(cabac.stream, base_v[x + y * (encoder->in.width >> 1)], 8);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// end PCM sample
|
|
cabac_start(&cabac);
|
|
|
|
} // end Code IPCM block
|
|
|
|
#endif /* END ENABLE_PCM */
|
|
else { /* Should not happend */
|
|
printf("UNHANDLED TYPE!\r\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* end prediction unit */
|
|
/* end coding_unit */
|
|
|
|
}
|
|
|
|
void encode_transform_tree(encoder_control *encoder, transform_info *ti,
|
|
uint8_t depth)
|
|
{
|
|
// we have 64>>depth transform size
|
|
int x, y, i;
|
|
int32_t width = LCU_WIDTH >> depth;
|
|
|
|
if (depth == 0) { // Split 64x64
|
|
// Prepare for multi-level splitting
|
|
ti->split[ti->idx] = 1 << depth;
|
|
}
|
|
|
|
// Split transform and increase depth
|
|
if (ti->split[ti->idx] & (1 << depth)) {
|
|
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
|
|
ti->idx = 0; encode_transform_tree(encoder, ti, depth + 1);
|
|
ti->x_ctb += change;
|
|
ti->idx = 1; encode_transform_tree(encoder, ti, depth + 1);
|
|
ti->x_ctb -= change; ti->y_ctb += change;
|
|
ti->idx = 2; encode_transform_tree(encoder, ti, depth + 1);
|
|
ti->x_ctb += change;
|
|
ti->idx = 3; encode_transform_tree(encoder, ti, depth + 1);
|
|
return;
|
|
}
|
|
|
|
{
|
|
uint8_t cb_y = 0, cb_u = 0, cb_v = 0;
|
|
int32_t coeff_fourth = ((LCU_WIDTH >> (depth)) * (LCU_WIDTH >> (depth))) + 1;
|
|
|
|
int32_t base_stride = ti->base_stride;
|
|
int32_t recbase_stride = ti->recbase_stride;
|
|
int32_t pred_stride = ti->pred_stride;
|
|
|
|
int32_t recbase_offset[4] = {
|
|
0, width, ti->recbase_stride * width,
|
|
ti->recbase_stride * width + width
|
|
};
|
|
int32_t base_offset[4] = {
|
|
0, width, ti->base_stride * width,
|
|
ti->base_stride * width + width
|
|
};
|
|
int32_t pred_offset[4] = {
|
|
0, width, ti->pred_stride * width,
|
|
ti->pred_stride * width + width
|
|
};
|
|
|
|
int32_t recbase_offset_c[4] = {
|
|
0, width >> 1, (ti->recbase_stride >> 1) * (width >> 1),
|
|
(ti->recbase_stride >> 1) *(width >> 1) + (width >> 1)
|
|
};
|
|
int32_t base_offset_c[4] = {
|
|
0, width >> 1, (ti->base_stride >> 1) * (width >> 1),
|
|
(ti->base_stride >> 1) * (width >> 1) + (width >> 1)
|
|
};
|
|
int32_t pred_offset_c[4] = {
|
|
0, width >> 1, (ti->pred_stride >> 1) * (width >> 1),
|
|
(ti->pred_stride >> 1) * (width >> 1) + (width >> 1)
|
|
};
|
|
|
|
uint8_t *base_y = &ti->base[base_offset[ti->idx]];
|
|
uint8_t *base_u = &ti->base_u[base_offset_c[ti->idx]];
|
|
uint8_t *base_v = &ti->base_v[base_offset_c[ti->idx]];
|
|
|
|
uint8_t *recbase_y = &ti->recbase[recbase_offset[ti->idx]];
|
|
uint8_t *recbase_u = &ti->recbase_u[recbase_offset_c[ti->idx]];
|
|
uint8_t *recbase_v = &ti->recbase_v[recbase_offset_c[ti->idx]];
|
|
|
|
int16_t *pred_y = &ti->pred[pred_offset[ti->idx]];
|
|
int16_t *pred_u = &ti->pred_u[pred_offset_c[ti->idx]];
|
|
int16_t *pred_v = &ti->pred_v[pred_offset_c[ti->idx]];
|
|
|
|
int16_t *coeff_y = &ti->coeff[0][ti->idx * coeff_fourth];
|
|
int16_t *coeff_u = &ti->coeff[1][ti->idx * coeff_fourth >> 1];
|
|
int16_t *coeff_v = &ti->coeff[2][ti->idx * coeff_fourth >> 1];
|
|
|
|
// Quant and transform here...
|
|
int16_t block[LCU_WIDTH * LCU_WIDTH >> 2];
|
|
int16_t pre_quant_coeff[LCU_WIDTH * LCU_WIDTH >> 2];
|
|
|
|
// INTRA PREDICTION
|
|
// TODO: split to a function!
|
|
int16_t rec[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8)];
|
|
int16_t *rec_shift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1];
|
|
int16_t *rec_shift_u = &rec[(LCU_WIDTH >> (depth + 1)) * 2 + 8 + 1];
|
|
|
|
uint32_t ac_sum = 0;
|
|
|
|
// Build reconstructed block to use in prediction with extrapolated borders
|
|
intra_build_reference_border(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb,
|
|
(LCU_WIDTH >> (depth)) * 2 + 8, rec, (LCU_WIDTH >> (depth)) * 2 + 8, 0);
|
|
intra_recon(rec_shift, (LCU_WIDTH >> (depth)) * 2 + 8,
|
|
ti->x_ctb * (LCU_WIDTH >> (MAX_DEPTH)), ti->y_ctb * (LCU_WIDTH >> (MAX_DEPTH)),
|
|
width, pred_y, pred_stride, ti->intra_pred_mode, 0);
|
|
|
|
// Filter DC-prediction
|
|
if (ti->intra_pred_mode == 1 && width < 32) {
|
|
intra_dc_pred_filtering(rec_shift, (LCU_WIDTH >> (depth)) * 2 + 8, pred_y,
|
|
width, LCU_WIDTH >> depth, LCU_WIDTH >> depth);
|
|
}
|
|
|
|
if (ti->intra_pred_mode_chroma != 36
|
|
&& ti->intra_pred_mode_chroma == ti->intra_pred_mode) {
|
|
ti->intra_pred_mode_chroma = 36;
|
|
}
|
|
|
|
intra_build_reference_border(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb,
|
|
(LCU_WIDTH >> (depth + 1)) * 2 + 8, rec,
|
|
(LCU_WIDTH >> (depth + 1)) * 2 + 8,
|
|
1);
|
|
intra_recon(rec_shift_u,
|
|
(LCU_WIDTH >> (depth + 1)) * 2 + 8,
|
|
ti->x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)),
|
|
ti->y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)),
|
|
width >> 1,
|
|
pred_u,
|
|
pred_stride >> 1,
|
|
ti->intra_pred_mode_chroma != 36 ? ti->intra_pred_mode_chroma : ti->intra_pred_mode,
|
|
1);
|
|
intra_build_reference_border(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb,
|
|
(LCU_WIDTH >> (depth + 1)) * 2 + 8,
|
|
rec, (LCU_WIDTH >> (depth + 1)) * 2 + 8,
|
|
2);
|
|
intra_recon(rec_shift_u, (LCU_WIDTH >> (depth + 1)) * 2 + 8,
|
|
ti->x_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)),
|
|
ti->y_ctb * (LCU_WIDTH >> (MAX_DEPTH + 1)),
|
|
width >> 1,
|
|
pred_v,
|
|
pred_stride >> 1,
|
|
ti->intra_pred_mode_chroma != 36 ? ti->intra_pred_mode_chroma : ti->intra_pred_mode,
|
|
1);
|
|
|
|
// This affects reconstruction, do after that
|
|
picture_set_block_coded(encoder->in.cur_pic, ti->x_ctb, ti->y_ctb, depth, 1);
|
|
|
|
// INTRA PREDICTION ENDS HERE
|
|
|
|
// Get residual by subtracting prediction
|
|
i = 0;
|
|
ac_sum = 0;
|
|
|
|
for (y = 0; y < LCU_WIDTH >> depth; y++) {
|
|
for (x = 0; x < LCU_WIDTH >> depth; x++) {
|
|
block[i] = ((int16_t)base_y[x + y * base_stride]) -
|
|
pred_y[x + y * pred_stride];
|
|
i++;
|
|
}
|
|
}
|
|
|
|
// Transform and quant residual to coeffs
|
|
transform2d(block, pre_quant_coeff, width, 0);
|
|
quant(encoder, pre_quant_coeff, coeff_y, width, width, &ac_sum, 0, SCAN_DIAG);
|
|
|
|
// Check for non-zero coeffs
|
|
for (i = 0; i < width * width; i++) {
|
|
if (coeff_y[i] != 0) {
|
|
// Found one, we can break here
|
|
cb_y = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// if non-zero coeffs
|
|
if (cb_y) {
|
|
// RECONSTRUCT for predictions
|
|
dequant(encoder, coeff_y, pre_quant_coeff, width, width, 0);
|
|
itransform2d(block, pre_quant_coeff, width, 0);
|
|
|
|
i = 0;
|
|
|
|
for (y = 0; y < LCU_WIDTH >> depth; y++) {
|
|
for (x = 0; x < LCU_WIDTH >> depth; x++) {
|
|
int16_t val = block[i++] + pred_y[x + y * pred_stride];
|
|
// TODO: support 10+bits
|
|
recbase_y[x + y * recbase_stride] = (uint8_t)CLIP(0, 255, val);
|
|
}
|
|
}
|
|
// END RECONTRUCTION
|
|
} else {
|
|
// without coeffs, we only use the prediction
|
|
for (y = 0; y < LCU_WIDTH >> depth; y++) {
|
|
for (x = 0; x < LCU_WIDTH >> depth; x++) {
|
|
recbase_y[x + y * recbase_stride] = (uint8_t)CLIP(0, 255, pred_y[x + y * pred_stride]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (encoder->in.video_format != FORMAT_400) {
|
|
// Chroma U
|
|
i = 0;
|
|
ac_sum = 0;
|
|
|
|
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
|
|
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
|
|
block[i] = ((int16_t)base_u[x + y * (base_stride >> 1)]) -
|
|
pred_u[x + y * (pred_stride >> 1)];
|
|
i++;
|
|
}
|
|
}
|
|
|
|
transform2d(block, pre_quant_coeff, LCU_WIDTH >> (depth + 1), 65535);
|
|
quant(encoder, pre_quant_coeff, coeff_u, width >> 1, width >> 1, &ac_sum, 2,
|
|
SCAN_DIAG);
|
|
|
|
for (i = 0; i < width *width >> 2; i++) {
|
|
if (coeff_u[i] != 0) {
|
|
// Found one, we can break here
|
|
cb_u = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Chroma V
|
|
i = 0;
|
|
ac_sum = 0;
|
|
|
|
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
|
|
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
|
|
block[i] = ((int16_t)base_v[x + y * (base_stride >> 1)]) -
|
|
pred_v[x + y * (pred_stride >> 1)];
|
|
i++;
|
|
}
|
|
}
|
|
|
|
transform2d(block, pre_quant_coeff, LCU_WIDTH >> (depth + 1), 65535);
|
|
quant(encoder, pre_quant_coeff, coeff_v, width >> 1, width >> 1, &ac_sum, 3,
|
|
SCAN_DIAG);
|
|
|
|
for (i = 0; i < width *width >> 2; i++) {
|
|
if (coeff_v[i] != 0) {
|
|
// Found one, we can break here
|
|
cb_v = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cb_u) {
|
|
// RECONSTRUCT for predictions
|
|
dequant(encoder, coeff_u, pre_quant_coeff, width >> 1, width >> 1, 2);
|
|
itransform2d(block, pre_quant_coeff, LCU_WIDTH >> (depth + 1), 65535);
|
|
|
|
i = 0;
|
|
|
|
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
|
|
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
|
|
int16_t val = block[i++] + pred_u[x + y * (pred_stride >> 1)];
|
|
// TODO: support 10+bits
|
|
recbase_u[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255, val);
|
|
}
|
|
}
|
|
|
|
// END RECONTRUCTION
|
|
} else {
|
|
// without coeffs, we only use the prediction
|
|
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
|
|
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
|
|
recbase_u[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255,
|
|
pred_u[x + y * (pred_stride >> 1)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cb_v) {
|
|
// RECONSTRUCT for predictions
|
|
dequant(encoder, coeff_v, pre_quant_coeff, width >> 1, width >> 1, 3);
|
|
itransform2d(block, pre_quant_coeff, LCU_WIDTH >> (depth + 1), 65535);
|
|
|
|
i = 0;
|
|
|
|
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
|
|
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
|
|
int16_t val = block[i++] + pred_v[x + y * (pred_stride >> 1)];
|
|
// TODO: support 10+bits
|
|
recbase_v[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255, val);
|
|
}
|
|
}
|
|
|
|
// END RECONTRUCTION
|
|
} else {
|
|
// without coeffs, we only use the prediction
|
|
for (y = 0; y < LCU_WIDTH >> (depth + 1); y++) {
|
|
for (x = 0; x < LCU_WIDTH >> (depth + 1); x++) {
|
|
recbase_v[x + y * (recbase_stride >> 1)] = (uint8_t)CLIP(0, 255,
|
|
pred_v[x + y * (pred_stride >> 1)]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store coded block pattern
|
|
ti->cb[ti->idx] = cb_y | (cb_u << 1) | (cb_v << 2);
|
|
// END INTRAPREDICTION
|
|
return;
|
|
}
|
|
|
|
// end Residual Coding
|
|
}
|
|
|
|
void encode_transform_coeff(encoder_control *encoder, transform_info *ti,
|
|
int8_t depth, int8_t tr_depth)
|
|
{
|
|
int8_t width = LCU_WIDTH >> depth;
|
|
int8_t split = (ti->split[ti->idx] & (1 << depth)) ? 1 : 0;
|
|
int8_t cb_y, cb_u, cb_v;
|
|
int32_t coeff_fourth = ((LCU_WIDTH >> (depth)) * (LCU_WIDTH >> (depth))) + 1;
|
|
|
|
if (depth != 0 && depth != MAX_DEPTH + 1) {
|
|
cabac.ctx = &g_trans_subdiv_model[5 - ((g_convert_to_bit[LCU_WIDTH] + 2) -
|
|
depth)];
|
|
CABAC_BIN(&cabac, split, "TransformSubdivFlag");
|
|
}
|
|
|
|
// Signal if chroma data is present
|
|
// Chroma data is also signaled BEFORE transform split
|
|
// Chroma data is not signaled if it was set to 0 before split
|
|
if (encoder->in.video_format != FORMAT_400) {
|
|
// Non-zero chroma U Tcoeffs
|
|
int8_t cb_flag = (tr_depth == 0) ? ti->cb_top[1] : ((ti->cb[ti->idx] & 0x2) ? 1
|
|
: 0);
|
|
cabac.ctx = &g_qt_cbf_model_chroma[tr_depth];
|
|
|
|
if (tr_depth == 0 || ti->cb_top[1]) {
|
|
CABAC_BIN(&cabac, cb_flag, "cbf_chroma_u");
|
|
}
|
|
|
|
// Non-zero chroma V Tcoeffs
|
|
// NOTE: Using the same ctx as before
|
|
cb_flag = (tr_depth == 0) ? ti->cb_top[2] : ((ti->cb[ti->idx] & 0x4) ? 1 : 0);
|
|
|
|
if (tr_depth == 0 || ti->cb_top[2]) {
|
|
CABAC_BIN(&cabac, cb_flag, "cbf_chroma_v");
|
|
}
|
|
}
|
|
|
|
if (split) {
|
|
ti->idx = 0; encode_transform_coeff(encoder, ti, depth + 1, tr_depth + 1);
|
|
ti->idx = 1; encode_transform_coeff(encoder, ti, depth + 1, tr_depth + 1);
|
|
ti->idx = 2; encode_transform_coeff(encoder, ti, depth + 1, tr_depth + 1);
|
|
ti->idx = 3; encode_transform_coeff(encoder, ti, depth + 1, tr_depth + 1);
|
|
return;
|
|
}
|
|
|
|
cb_y = ti->cb[ti->idx] & 0x1;
|
|
cb_u = (ti->cb[ti->idx] & 0x2) ? 1 : 0;
|
|
cb_v = (ti->cb[ti->idx] & 0x4) ? 1 : 0;
|
|
|
|
// Non-zero luma Tcoeffs
|
|
cabac.ctx = &g_qt_cbf_model_luma[tr_depth ? 0 : 1];
|
|
CABAC_BIN(&cabac, cb_y, "cbf_luma");
|
|
|
|
{
|
|
uint32_t ctx_idx;
|
|
uint32_t scan_idx = SCAN_DIAG;
|
|
uint32_t dir_mode;
|
|
|
|
switch (width) {
|
|
case 2:
|
|
ctx_idx = 6;
|
|
break;
|
|
case 4:
|
|
ctx_idx = 5;
|
|
break;
|
|
|
|
case 8:
|
|
ctx_idx = 4;
|
|
break;
|
|
|
|
case 16:
|
|
ctx_idx = 3;
|
|
break;
|
|
|
|
case 32:
|
|
ctx_idx = 2;
|
|
break;
|
|
|
|
case 64:
|
|
ctx_idx = 1;
|
|
break;
|
|
|
|
default:
|
|
ctx_idx = 0;
|
|
break;
|
|
}
|
|
|
|
ctx_idx -= tr_depth;
|
|
|
|
// CoeffNxN
|
|
// Residual Coding
|
|
if (cb_y) {
|
|
// Luma (Intra) scanmode
|
|
dir_mode = ti->intra_pred_mode;
|
|
|
|
if (ctx_idx > 3
|
|
&& ctx_idx < 6) { //if multiple scans supported for transform size
|
|
scan_idx = abs((int32_t) dir_mode - 26) < 5 ? 1 : (abs((int32_t)dir_mode - 10) < 5 ? 2 : 0);
|
|
}
|
|
|
|
encode_coeff_nxn(encoder, &ti->coeff[0][ti->idx * coeff_fourth],
|
|
width, 0, scan_idx);
|
|
}
|
|
|
|
if (cb_u || cb_v) {
|
|
int8_t chroma_width = width >> 1;
|
|
// Chroma scanmode
|
|
ctx_idx++;
|
|
dir_mode = ti->intra_pred_mode_chroma;
|
|
|
|
if (dir_mode == 36) {
|
|
// TODO: support NxN
|
|
dir_mode = ti->intra_pred_mode;
|
|
}
|
|
|
|
scan_idx = SCAN_DIAG;
|
|
|
|
if (ctx_idx > 4 && ctx_idx < 7) { // if multiple scans supported for transform size
|
|
scan_idx = abs((int32_t) dir_mode - 26) < 5 ? 1 : (abs((int32_t)dir_mode - 10) < 5 ? 2 : 0);
|
|
}
|
|
|
|
if (cb_u) {
|
|
encode_coeff_nxn(encoder, &ti->coeff[1][ti->idx * coeff_fourth >> 1],
|
|
chroma_width, 2, scan_idx);
|
|
}
|
|
|
|
if (cb_v) {
|
|
encode_coeff_nxn(encoder, &ti->coeff[2][ti->idx * coeff_fourth >> 1],
|
|
chroma_width, 2, scan_idx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void encode_coeff_nxn(encoder_control *encoder, int16_t *coeff, uint8_t width,
|
|
uint8_t type, int8_t scan_mode)
|
|
{
|
|
int c1 = 1;
|
|
uint8_t last_coeff_x = 0;
|
|
uint8_t last_coeff_y = 0;
|
|
int32_t i;
|
|
uint32_t sig_coeffgroup_flag[64];
|
|
|
|
uint32_t num_nonzero = 0;
|
|
int32_t scan_pos_last = -1;
|
|
int32_t pos_last = 0;
|
|
int32_t shift = 4 >> 1;
|
|
int8_t be_valid = ENABLE_SIGN_HIDING;
|
|
int32_t scan_pos_sig;
|
|
int32_t last_scan_set;
|
|
uint32_t go_rice_param = 0;
|
|
uint32_t blk_pos, pos_y, pos_x, sig, ctx_sig;
|
|
|
|
// CONSTANTS
|
|
const uint32_t num_blk_side = width >> shift;
|
|
const uint32_t log2_block_size = g_convert_to_bit[width] + 2;
|
|
const uint32_t *scan =
|
|
g_sig_last_scan[scan_mode][log2_block_size - 1];
|
|
const uint32_t *scan_cg = NULL;
|
|
|
|
// Init base contexts according to block type
|
|
cabac_ctx *base_coeff_group_ctx = &g_cu_sig_coeff_group_model[type];
|
|
cabac_ctx *baseCtx = (type == 0) ? &g_cu_sig_model_luma[0] :
|
|
&g_cu_sig_model_chroma[0];
|
|
memset(sig_coeffgroup_flag, 0, sizeof(uint32_t) * 64);
|
|
|
|
// Count non-zero coeffs
|
|
for (i = 0; i < width * width; i++) {
|
|
if (coeff[i] != 0) {
|
|
num_nonzero++;
|
|
}
|
|
}
|
|
|
|
scan_cg = g_sig_last_scan[scan_mode][log2_block_size > 3 ? log2_block_size - 3 : 0];
|
|
|
|
if (log2_block_size == 3) {
|
|
scan_cg = g_sig_last_scan_8x8[scan_mode];
|
|
} else if (log2_block_size == 5) {
|
|
scan_cg = g_sig_last_scan_32x32;
|
|
}
|
|
|
|
scan_pos_last = -1;
|
|
|
|
// Significance mapping
|
|
while (num_nonzero > 0) {
|
|
pos_last = scan[++scan_pos_last];
|
|
#define POSY (pos_last >> log2_block_size)
|
|
#define POSX (pos_last - ( POSY << log2_block_size ))
|
|
|
|
if (coeff[pos_last] != 0) {
|
|
sig_coeffgroup_flag[(num_blk_side * (POSY >> shift) + (POSX >> shift))] = 1;
|
|
}
|
|
|
|
num_nonzero -= (coeff[pos_last] != 0) ? 1 : 0;
|
|
#undef POSY
|
|
#undef POSX
|
|
}
|
|
|
|
last_coeff_x = pos_last & (width - 1);
|
|
last_coeff_y = pos_last >> log2_block_size;
|
|
|
|
// Code last_coeff_x and last_coeff_y
|
|
encode_last_significant_xy(encoder, last_coeff_x, last_coeff_y, width, width,
|
|
type, scan_mode);
|
|
|
|
scan_pos_sig = scan_pos_last;
|
|
last_scan_set = (scan_pos_last >> 4);
|
|
|
|
// significant_coeff_flag
|
|
for (i = last_scan_set; i >= 0; i--) {
|
|
int32_t sub_pos = i << 4; // LOG2_SCAN_SET_SIZE;
|
|
int32_t abs_coeff[16];
|
|
int32_t cg_blk_pos = scan_cg[i];
|
|
int32_t cg_pos_y = cg_blk_pos / num_blk_side;
|
|
int32_t cg_pos_x = cg_blk_pos - (cg_pos_y * num_blk_side);
|
|
|
|
uint32_t coeff_signs = 0;
|
|
int32_t last_nz_pos_in_cg = -1;
|
|
int32_t first_nz_pos_in_cg = 16;
|
|
int32_t num_non_zero = 0;
|
|
go_rice_param = 0;
|
|
|
|
if (scan_pos_sig == scan_pos_last) {
|
|
abs_coeff[0] = abs(coeff[pos_last]);
|
|
coeff_signs = (coeff[pos_last] < 0);
|
|
num_non_zero = 1;
|
|
last_nz_pos_in_cg = scan_pos_sig;
|
|
first_nz_pos_in_cg = scan_pos_sig;
|
|
scan_pos_sig--;
|
|
}
|
|
|
|
if (i == last_scan_set || i == 0) {
|
|
sig_coeffgroup_flag[cg_blk_pos] = 1;
|
|
} else {
|
|
uint32_t sig_coeff_group = (sig_coeffgroup_flag[cg_blk_pos] != 0);
|
|
uint32_t ctx_sig = context_get_sig_coeff_group(sig_coeffgroup_flag, cg_pos_x,
|
|
cg_pos_y, width);
|
|
cabac.ctx = &base_coeff_group_ctx[ctx_sig];
|
|
CABAC_BIN(&cabac, sig_coeff_group, "significant_coeff_group");
|
|
}
|
|
|
|
if (sig_coeffgroup_flag[cg_blk_pos]) {
|
|
int32_t pattern_sig_ctx = context_calc_pattern_sig_ctx(sig_coeffgroup_flag,
|
|
cg_pos_x, cg_pos_y, width);
|
|
|
|
for (; scan_pos_sig >= sub_pos; scan_pos_sig--) {
|
|
blk_pos = scan[scan_pos_sig];
|
|
pos_y = blk_pos >> log2_block_size;
|
|
pos_x = blk_pos - (pos_y << log2_block_size);
|
|
sig = (coeff[blk_pos] != 0) ? 1 : 0;
|
|
|
|
if (scan_pos_sig > sub_pos || i == 0 || num_non_zero) {
|
|
ctx_sig = context_get_sig_ctx_inc(pattern_sig_ctx, scan_mode, pos_x, pos_y,
|
|
log2_block_size, width, type);
|
|
cabac.ctx = &baseCtx[ctx_sig];
|
|
CABAC_BIN(&cabac, sig, "significant_coeff_flag");
|
|
}
|
|
|
|
if (sig) {
|
|
abs_coeff[num_non_zero] = abs(coeff[blk_pos]);
|
|
coeff_signs = 2 * coeff_signs + (coeff[blk_pos] < 0);
|
|
num_non_zero++;
|
|
|
|
if (last_nz_pos_in_cg == -1) {
|
|
last_nz_pos_in_cg = scan_pos_sig;
|
|
}
|
|
|
|
first_nz_pos_in_cg = scan_pos_sig;
|
|
}
|
|
}
|
|
} else {
|
|
scan_pos_sig = sub_pos - 1;
|
|
}
|
|
|
|
if (num_non_zero > 0) {
|
|
int8_t sign_hidden = (last_nz_pos_in_cg - first_nz_pos_in_cg >=
|
|
4 /*SBH_THRESHOLD*/) ? 1 : 0;
|
|
uint32_t ctx_set = (i > 0 && type == 0) ? 2 : 0;
|
|
cabac_ctx *base_ctx_mod;
|
|
int32_t num_c1_flag, first_c2_flag_idx, idx, first_coeff2;
|
|
|
|
if (c1 == 0) {
|
|
ctx_set++;
|
|
}
|
|
|
|
c1 = 1;
|
|
|
|
base_ctx_mod = (type == 0) ? &g_cu_one_model_luma[4 * ctx_set] :
|
|
&g_cu_one_model_chroma[4 * ctx_set];
|
|
num_c1_flag = MIN(num_non_zero, C1FLAG_NUMBER);
|
|
first_c2_flag_idx = -1;
|
|
|
|
for (idx = 0; idx < num_c1_flag; idx++) {
|
|
uint32_t symbol = (abs_coeff[idx] > 1) ? 1 : 0;
|
|
cabac.ctx = &base_ctx_mod[c1];
|
|
CABAC_BIN(&cabac, symbol, "significant_coeff2_flag");
|
|
|
|
if (symbol) {
|
|
c1 = 0;
|
|
|
|
if (first_c2_flag_idx == -1) {
|
|
first_c2_flag_idx = idx;
|
|
}
|
|
} else if ((c1 < 3) && (c1 > 0)) {
|
|
c1++;
|
|
}
|
|
}
|
|
|
|
if (c1 == 0) {
|
|
base_ctx_mod = (type == 0) ? &g_cu_abs_model_luma[ctx_set] :
|
|
&g_cu_abs_model_chroma[ctx_set];
|
|
|
|
if (first_c2_flag_idx != -1) {
|
|
uint8_t symbol = (abs_coeff[first_c2_flag_idx] > 2) ? 1 : 0;
|
|
cabac.ctx = &base_ctx_mod[0];
|
|
CABAC_BIN(&cabac, symbol, "first_c2_flag");
|
|
}
|
|
}
|
|
|
|
if (be_valid && sign_hidden) {
|
|
CABAC_BINS_EP(&cabac, (coeff_signs >> 1), (num_non_zero - 1), "");
|
|
} else {
|
|
CABAC_BINS_EP(&cabac, coeff_signs, num_non_zero, "");
|
|
}
|
|
|
|
if (c1 == 0 || num_non_zero > C1FLAG_NUMBER) {
|
|
first_coeff2 = 1;
|
|
|
|
for (idx = 0; idx < num_non_zero; idx++) {
|
|
int32_t base_level = (idx < C1FLAG_NUMBER) ? (2 + first_coeff2) : 1;
|
|
|
|
if (abs_coeff[idx] >= base_level) {
|
|
cabac_write_coeff_remain(&cabac, abs_coeff[idx] - base_level, go_rice_param);
|
|
|
|
if (abs_coeff[idx] > 3 * (1 << go_rice_param)) {
|
|
go_rice_param = MIN(go_rice_param + 1, 4);
|
|
}
|
|
}
|
|
|
|
if (abs_coeff[idx] >= 2) {
|
|
first_coeff2 = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
\brief Encode (X,Y) position of the last significant coefficient
|
|
\param lastpos_x X component of last coefficient
|
|
\param lastpos_y Y component of last coefficient
|
|
\param width Block width
|
|
\param height Block height
|
|
\param type plane type / luminance or chrominance
|
|
\param scan scan type (diag, hor, ver)
|
|
|
|
This method encodes the X and Y component within a block of the last significant coefficient.
|
|
*/
|
|
void encode_last_significant_xy(encoder_control *encoder,
|
|
uint8_t lastpos_x, uint8_t lastpos_y,
|
|
uint8_t width, uint8_t height,
|
|
uint8_t type, uint8_t scan)
|
|
{
|
|
uint8_t offset_x = type ? 0 : ((TOBITS(width) * 3) + ((TOBITS(width) + 1) >> 2)), offset_y = offset_x;
|
|
uint8_t shift_x = type ? (TOBITS(width)) : ((TOBITS(width) + 3) >> 2), shift_y = shift_x;
|
|
int group_idx_x;
|
|
int group_idx_y;
|
|
int last_x, last_y, i;
|
|
cabac_ctx *base_ctx_x = (type ? g_cu_ctx_last_x_chroma : g_cu_ctx_last_x_luma);
|
|
cabac_ctx *base_ctx_y = (type ? g_cu_ctx_last_y_chroma : g_cu_ctx_last_y_luma);
|
|
|
|
if (scan == SCAN_VER) {
|
|
SWAP(lastpos_x, lastpos_y, uint8_t);
|
|
}
|
|
|
|
group_idx_x = g_group_idx[lastpos_x];
|
|
group_idx_y = g_group_idx[lastpos_y];
|
|
|
|
// Last X binarization
|
|
for (last_x = 0; last_x < group_idx_x ; last_x++) {
|
|
cabac.ctx = &base_ctx_x[offset_x + (last_x >> shift_x)];
|
|
CABAC_BIN(&cabac, 1, "LastSignificantX");
|
|
}
|
|
|
|
if (group_idx_x < g_group_idx[width - 1]) {
|
|
cabac.ctx = &base_ctx_x[offset_x + (last_x >> shift_x)];
|
|
CABAC_BIN(&cabac, 0, "LastSignificantX");
|
|
}
|
|
|
|
// Last Y binarization
|
|
for (last_y = 0; last_y < group_idx_y ; last_y++) {
|
|
cabac.ctx = &base_ctx_y[offset_y + (last_y >> shift_y)];
|
|
CABAC_BIN(&cabac, 1, "LastSignificantY");
|
|
}
|
|
|
|
if (group_idx_y < g_group_idx[height - 1]) {
|
|
cabac.ctx = &base_ctx_y[offset_y + (last_y >> shift_y)];
|
|
CABAC_BIN(&cabac, 0, "LastSignificantY");
|
|
}
|
|
|
|
// Last X
|
|
if (group_idx_x > 3) {
|
|
lastpos_x -= g_min_in_group[group_idx_x];
|
|
|
|
for (i = ((group_idx_x - 2) >> 1) - 1; i >= 0; i--) {
|
|
CABAC_BIN_EP(&cabac, (lastpos_x >> i) & 1, "LastSignificantX");
|
|
}
|
|
}
|
|
|
|
// Last Y
|
|
if (group_idx_y > 3) {
|
|
lastpos_y -= g_min_in_group[group_idx_y];
|
|
|
|
for (i = ((group_idx_y - 2) >> 1) - 1; i >= 0; i--) {
|
|
CABAC_BIN_EP(&cabac, (lastpos_y >> i) & 1, "LastSignificantY");
|
|
}
|
|
}
|
|
|
|
// end LastSignificantXY
|
|
} |