mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-30 20:54:07 +00:00
a430d48669
VTM properly decodes bitstream from kvazaar but the checksum doesn't match. Couple hard coded values needed for this in function "kvz_encode_alf_bits".
6515 lines
235 KiB
C
6515 lines
235 KiB
C
|
||
|
||
#include "alf.h"
|
||
|
||
#include <limits.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
|
||
#include "cabac.h"
|
||
#include "rdo.h"
|
||
#include "strategies/strategies-sao.h"
|
||
#include "kvz_math.h"
|
||
|
||
void kvz_alf_init(encoder_state_t *const state,
|
||
encoder_state_config_slice_t *slice)
|
||
//alf_info_t *alf)
|
||
{
|
||
if (g_slice_count == state->slice->id) {
|
||
return;
|
||
}
|
||
g_slice_count = state->slice->id;
|
||
|
||
reset_alf_param(&alf_param);
|
||
|
||
if (false/*cs.slice->getPendingRasInit()*/ || (state->frame->pictype == KVZ_NAL_IDR_W_RADL || state->frame->pictype == KVZ_NAL_IDR_N_LP))
|
||
{
|
||
for (int i = 0; i < ALF_CTB_MAX_NUM_APS; i++) {
|
||
//state->slice->apss[i].aps_id = 0;
|
||
//state->slice->apss[i].aps_type = 0;
|
||
reset_alf_param(&state->slice->apss[i]);
|
||
state->slice->apss[i].num_luma_filters = 0;
|
||
|
||
}
|
||
g_aps_id_start = ALF_CTB_MAX_NUM_APS;
|
||
}
|
||
|
||
enum kvz_chroma_format chroma_fmt = state->encoder_control->chroma_format;
|
||
chroma_scale_x = (chroma_fmt == KVZ_CSP_444) ? 0 : 1;
|
||
chroma_scale_y = (chroma_fmt != KVZ_CSP_420) ? 0 : 1;
|
||
|
||
//Default clp_rng for a slice
|
||
g_clp_rngs.comp[COMPONENT_Y].min = g_clp_rngs.comp[COMPONENT_Cb].min = g_clp_rngs.comp[COMPONENT_Cr].min = 0;
|
||
g_clp_rngs.comp[COMPONENT_Y].max = (1<< ALF_NUM_BITS)-1;
|
||
g_clp_rngs.comp[COMPONENT_Y].bd = ALF_NUM_BITS;
|
||
g_clp_rngs.comp[COMPONENT_Y].n = 0;
|
||
g_clp_rngs.comp[COMPONENT_Cb].max = g_clp_rngs.comp[COMPONENT_Cr].max = (1<< ALF_NUM_BITS)-1;
|
||
g_clp_rngs.comp[COMPONENT_Cb].bd = g_clp_rngs.comp[COMPONENT_Cr].bd = ALF_NUM_BITS;
|
||
g_clp_rngs.comp[COMPONENT_Cb].n = g_clp_rngs.comp[COMPONENT_Cr].n = 0;
|
||
g_clp_rngs.used = g_clp_rngs.chroma = false;
|
||
|
||
//int shiftLuma = 2 * 0;// DISTORTION_PRECISION_ADJUSTMENT(g_input_bit_depth[CHANNEL_TYPE_LUMA]);
|
||
//int shiftChroma = 2 * 0;// DISTORTION_PRECISION_ADJUSTMENT(m_inputBitDepth[CHANNEL_TYPE_CHROMA]);
|
||
g_lambda[COMPONENT_Y] = state->frame->lambda;// *double(1 << shiftLuma);
|
||
g_lambda[COMPONENT_Cb] = state->frame->lambda;// *double(1 << shiftChroma);
|
||
g_lambda[COMPONENT_Cr] = state->frame->lambda;// *double(1 << shiftChroma);
|
||
}
|
||
|
||
//-------------------------help functions---------------------------
|
||
|
||
bool is_crossed_by_virtual_boundaries(const int x_pos, const int y_pos, const int width, const int height, bool* clip_top, bool* clip_bottom, bool* clip_left, bool* clip_right,
|
||
int* num_hor_vir_bndry, int* num_ver_vir_bndry, int hor_vir_bndry_pos[], int ver_vir_bndry_pos[], encoder_state_t *const state)
|
||
{
|
||
*clip_top = false; *clip_bottom = false; *clip_left = false; *clip_right = false;
|
||
*num_hor_vir_bndry = 0; *num_ver_vir_bndry = 0;
|
||
if (state->encoder_control->cfg.loop_filter_across_virtual_boundaries_disabled_flag)
|
||
{
|
||
for (int i = 0; i < state->slice->num_hor_virtual_boundaries; i++)
|
||
{
|
||
if (state->slice->virtual_boundaries_pos_y[i] == y_pos)
|
||
{
|
||
*clip_top = true;
|
||
}
|
||
else if (state->slice->virtual_boundaries_pos_y[i] == y_pos + height)
|
||
{
|
||
*clip_bottom = true;
|
||
}
|
||
else if (y_pos < state->slice->virtual_boundaries_pos_y[i] && state->slice->virtual_boundaries_pos_y[i] < y_pos + height)
|
||
{
|
||
hor_vir_bndry_pos[*num_hor_vir_bndry++] = state->slice->virtual_boundaries_pos_y[i];
|
||
}
|
||
}
|
||
for (int i = 0; i < state->slice->num_ver_virtual_boundaries; i++)
|
||
{
|
||
if (state->slice->virtual_boundaries_pos_x[i] == x_pos)
|
||
{
|
||
*clip_left = true;
|
||
}
|
||
else if (state->slice->virtual_boundaries_pos_x[i] == x_pos + width)
|
||
{
|
||
*clip_right = true;
|
||
}
|
||
else if (x_pos < state->slice->virtual_boundaries_pos_x[i] && state->slice->virtual_boundaries_pos_x[i] < x_pos + width)
|
||
{
|
||
ver_vir_bndry_pos[*num_ver_vir_bndry++] = state->slice->virtual_boundaries_pos_x[i];
|
||
}
|
||
}
|
||
}
|
||
return *num_hor_vir_bndry > 0 || *num_ver_vir_bndry > 0 || *clip_top || *clip_bottom || *clip_left || *clip_right;
|
||
}
|
||
|
||
void init_ctu_alternative_chroma(uint8_t* ctu_alts[MAX_NUM_COMPONENT])
|
||
{
|
||
uint8_t alt_idx = 0;
|
||
for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ++ctu_idx)
|
||
{
|
||
ctu_alts[COMPONENT_Cb][ctu_idx] = alt_idx;
|
||
ctu_alts[COMPONENT_Cr][ctu_idx] = alt_idx;
|
||
if ((ctu_idx + 1) * g_alf_aps_temp.num_alternatives_chroma >= (alt_idx + 1)*g_num_ctus_in_pic)
|
||
++alt_idx;
|
||
}
|
||
}
|
||
|
||
int clip_alf(const int clip, const short ref, const short val0, const short val1)
|
||
{
|
||
return alf_clip3(-clip, +clip, val0 - ref) + alf_clip3(-clip, +clip, val1 - ref);
|
||
}
|
||
|
||
int alf_clip_pixel(const int a, const clp_rng clp_rng)
|
||
{
|
||
return MIN(MAX(clp_rng.min, a), clp_rng.max);
|
||
}
|
||
|
||
int alf_clip3(const int minVal, const int maxVal, const int a)
|
||
{
|
||
return MIN(MAX(minVal, a), maxVal);
|
||
}
|
||
|
||
void get_clip_max(alf_covariance *cov, int *clip_max)
|
||
{
|
||
const int num_coeff = cov->num_coeff;
|
||
for (int k = 0; k < num_coeff - 1; ++k)
|
||
{
|
||
clip_max[k] = 0;
|
||
|
||
bool inc = true;
|
||
while (inc && clip_max[k] + 1 < cov->num_bins && cov->y[clip_max[k] + 1][k] == cov->y[clip_max[k]][k])
|
||
{
|
||
for (int l = 0; inc && l < num_coeff; ++l)
|
||
if (cov->ee[clip_max[k]][0][k][l] != cov->ee[clip_max[k] + 1][0][k][l])
|
||
{
|
||
inc = false;
|
||
}
|
||
if (inc)
|
||
{
|
||
++clip_max[k];
|
||
}
|
||
}
|
||
}
|
||
clip_max[num_coeff - 1] = 0;
|
||
}
|
||
|
||
void reduce_clip_cost(alf_covariance *cov, int *clip)
|
||
{
|
||
for (int k = 0; k < cov->num_coeff - 1; ++k)
|
||
{
|
||
bool dec = true;
|
||
while (dec && clip[k] > 0 && cov->y[clip[k] - 1][k] == cov->y[clip[k]][k])
|
||
{
|
||
for (int l = 0; dec && l < cov->num_coeff; ++l)
|
||
if (cov->ee[clip[k]][clip[l]][k][l] != cov->ee[clip[k] - 1][clip[l]][k][l])
|
||
{
|
||
dec = false;
|
||
}
|
||
if (dec)
|
||
{
|
||
--clip[k];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void set_ey_from_clip(alf_covariance *cov,const int* clip, double ee[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF], double y[MAX_NUM_ALF_LUMA_COEFF], int size)
|
||
{
|
||
for (int k = 0; k<size; k++)
|
||
{
|
||
y[k] = cov->y[clip[k]][k];
|
||
for (int l = 0; l<size; l++)
|
||
{
|
||
ee[k][l] = cov->ee[clip[k]][clip[l]][k][l];
|
||
}
|
||
}
|
||
}
|
||
|
||
double optimize_filter(alf_covariance *cov, int* clip, double *f, bool optimize_clip)
|
||
{
|
||
const int size = cov->num_coeff;
|
||
int clip_max[MAX_NUM_ALF_LUMA_COEFF];
|
||
|
||
double err_best, err_last;
|
||
|
||
double ke[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF];
|
||
double ky[MAX_NUM_ALF_LUMA_COEFF];
|
||
|
||
if (optimize_clip)
|
||
{
|
||
// Start by looking for min clipping that has no impact => max_clipping
|
||
get_clip_max(cov, clip_max);
|
||
for (int k = 0; k<size; ++k)
|
||
{
|
||
clip[k] = MAX(clip_max[k], clip[k]);
|
||
clip[k] = MIN(clip[k], cov->num_bins - 1);
|
||
}
|
||
}
|
||
|
||
set_ey_from_clip(cov, clip, ke, ky, size);
|
||
|
||
gns_solve_by_chol(ke, ky, f, size);
|
||
err_best = calculate_error(cov, clip, f);
|
||
|
||
int step = optimize_clip ? (cov->num_bins + 1) / 2 : 0;
|
||
|
||
while (step > 0)
|
||
{
|
||
double err_min = err_best;
|
||
int idx_min = -1;
|
||
int inc_min = 0;
|
||
|
||
for (int k = 0; k < size - 1; ++k)
|
||
{
|
||
if (clip[k] - step >= clip_max[k])
|
||
{
|
||
clip[k] -= step;
|
||
ky[k] = cov->y[clip[k]][k];
|
||
for (int l = 0; l < size; l++)
|
||
{
|
||
ke[k][l] = cov->ee[clip[k]][clip[l]][k][l];
|
||
ke[l][k] = cov->ee[clip[l]][clip[k]][l][k];
|
||
}
|
||
|
||
gns_solve_by_chol(ke, ky, f, size);
|
||
err_last = calculate_error(cov, clip, f);
|
||
|
||
if (err_last < err_min)
|
||
{
|
||
err_min = err_last;
|
||
idx_min = k;
|
||
inc_min = -step;
|
||
}
|
||
clip[k] += step;
|
||
}
|
||
if (clip[k] + step < cov->num_bins)
|
||
{
|
||
clip[k] += step;
|
||
ky[k] = cov->y[clip[k]][k];
|
||
for (int l = 0; l < size; l++)
|
||
{
|
||
ke[k][l] = cov->ee[clip[k]][clip[l]][k][l];
|
||
ke[l][k] = cov->ee[clip[l]][clip[k]][l][k];
|
||
}
|
||
|
||
gns_solve_by_chol(ke, ky, f, size);
|
||
err_last = calculate_error(cov, clip, f);
|
||
|
||
if (err_last < err_min)
|
||
{
|
||
err_min = err_last;
|
||
idx_min = k;
|
||
inc_min = step;
|
||
}
|
||
clip[k] -= step;
|
||
|
||
}
|
||
ky[k] = cov->y[clip[k]][k];
|
||
for (int l = 0; l < size; l++)
|
||
{
|
||
ke[k][l] = cov->ee[clip[k]][clip[l]][k][l];
|
||
ke[l][k] = cov->ee[clip[l]][clip[k]][l][k];
|
||
}
|
||
}
|
||
|
||
if (idx_min >= 0)
|
||
{
|
||
err_best = err_min;
|
||
clip[idx_min] += inc_min;
|
||
ky[idx_min] = cov->y[clip[idx_min]][idx_min];
|
||
for (int l = 0; l < size; l++)
|
||
{
|
||
ke[idx_min][l] = cov->ee[clip[idx_min]][clip[l]][idx_min][l];
|
||
ke[l][idx_min] = cov->ee[clip[l]][clip[idx_min]][l][idx_min];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
--step;
|
||
}
|
||
}
|
||
|
||
if (optimize_clip) {
|
||
// test all max
|
||
for (int k = 0; k < size - 1; ++k)
|
||
{
|
||
clip_max[k] = 0;
|
||
}
|
||
double ke_max[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF];
|
||
double ky_max[MAX_NUM_ALF_LUMA_COEFF];
|
||
set_ey_from_clip(cov, clip_max, ke_max, ky_max, size);
|
||
|
||
gns_solve_by_chol(ke_max, ky_max, f, size);
|
||
err_last = calculate_error(cov, clip_max, f);
|
||
if (err_last < err_best)
|
||
{
|
||
err_best = err_last;
|
||
for (int k = 0; k<size; ++k)
|
||
{
|
||
clip[k] = clip_max[k];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// update clip to reduce coding cost
|
||
reduce_clip_cost(cov, clip);
|
||
|
||
// update f with best solution
|
||
gns_solve_by_chol(ke, ky, f, size);
|
||
}
|
||
}
|
||
|
||
return err_best;
|
||
}
|
||
|
||
double optimize_filter_clip(alf_covariance *cov, int* clip)
|
||
{
|
||
double f[MAX_NUM_ALF_LUMA_COEFF];
|
||
return optimize_filter(cov, clip, f, true);
|
||
}
|
||
|
||
double optimize_filter_gns_calc(alf_covariance *cov, const int* clip, double *f, int size)
|
||
{
|
||
gns_solve_by_chol_clip_gns(cov, clip, f, size);
|
||
return calculate_error(cov, clip, f);
|
||
}
|
||
|
||
void gns_backsubstitution(double r[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF], double* z, int size, double* a)
|
||
{
|
||
size--;
|
||
a[size] = z[size] / r[size][size];
|
||
|
||
for (int i = size - 1; i >= 0; i--)
|
||
{
|
||
double sum = 0;
|
||
|
||
for (int j = i + 1; j <= size; j++)
|
||
{
|
||
sum += r[i][j] * a[j];
|
||
}
|
||
|
||
a[i] = (z[i] - sum) / r[i][i];
|
||
}
|
||
}
|
||
|
||
void gns_transpose_backsubstitution(double u[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF], double* rhs, double* x, int order)
|
||
{
|
||
/* Backsubstitution starts */
|
||
x[0] = rhs[0] / u[0][0]; /* First row of U' */
|
||
for (int i = 1; i < order; i++)
|
||
{ /* For the rows 1..order-1 */
|
||
|
||
double sum = 0; //Holds backsubstitution from already handled rows
|
||
|
||
for (int j = 0; j < i; j++) /* Backsubst already solved unknowns */
|
||
{
|
||
sum += x[j] * u[j][i];
|
||
}
|
||
|
||
x[i] = (rhs[i] - sum) / u[i][i]; /* i'th component of solution vect. */
|
||
}
|
||
}
|
||
|
||
int gns_cholesky_dec(double inp_matr[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF], double out_matr[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF], int num_eq)
|
||
{
|
||
static double inv_diag[MAX_NUM_ALF_LUMA_COEFF]; /* Vector of the inverse of diagonal entries of outMatr */
|
||
|
||
for (int i = 0; i < num_eq; i++)
|
||
{
|
||
for (int j = i; j < num_eq; j++)
|
||
{
|
||
/* Compute the scaling factor */
|
||
double scale = inp_matr[i][j];
|
||
if (i > 0)
|
||
{
|
||
for (int k = i - 1; k >= 0; k--)
|
||
{
|
||
scale -= out_matr[k][j] * out_matr[k][i];
|
||
}
|
||
}
|
||
|
||
/* Compute i'th row of outMatr */
|
||
if (i == j)
|
||
{
|
||
if (scale <= REG_SQR) // if(scale <= 0 ) /* If inpMatr is singular */
|
||
{
|
||
return 0;
|
||
}
|
||
else /* Normal operation */
|
||
inv_diag[i] = 1.0 / (out_matr[i][i] = sqrt(scale));
|
||
}
|
||
else
|
||
{
|
||
out_matr[i][j] = scale * inv_diag[i]; /* Upper triangular part */
|
||
out_matr[j][i] = 0.0; /* Lower triangular part set to 0 */
|
||
}
|
||
}
|
||
}
|
||
return 1; /* Signal that Cholesky factorization is successfully performed */
|
||
}
|
||
|
||
int gns_solve_by_chol(double lhs[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF], double rhs[MAX_NUM_ALF_LUMA_COEFF], double *x, int num_eq)
|
||
{
|
||
static double aux[MAX_NUM_ALF_LUMA_COEFF]; /* Auxiliary vector */
|
||
static double u[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF]; /* Upper triangular Cholesky factor of lhs */
|
||
int res = 1; // Signal that Cholesky factorization is successfully performed
|
||
|
||
/* The equation to be solved is LHSx = rhs */
|
||
|
||
/* Compute upper triangular U such that U'*U = lhs */
|
||
if (gns_cholesky_dec(lhs, u, num_eq)) /* If Cholesky decomposition has been successful */
|
||
{
|
||
/* Now, the equation is U'*U*x = rhs, where U is upper triangular
|
||
* Solve U'*aux = rhs for aux
|
||
*/
|
||
gns_transpose_backsubstitution(u, rhs, aux, num_eq);
|
||
|
||
/* The equation is now U*x = aux, solve it for x (new motion coefficients) */
|
||
gns_backsubstitution(u, aux, num_eq, x);
|
||
|
||
}
|
||
else /* lhs was singular */
|
||
{
|
||
res = 0;
|
||
|
||
/* Regularize lhs */
|
||
for (int i = 0; i < num_eq; i++)
|
||
{
|
||
lhs[i][i] += REG;
|
||
}
|
||
|
||
/* Compute upper triangular U such that U'*U = regularized lhs */
|
||
res = gns_cholesky_dec(lhs, u, num_eq);
|
||
|
||
if (!res)
|
||
{
|
||
memset(x, 0, sizeof(double)*num_eq);
|
||
return 0;
|
||
}
|
||
|
||
/* Solve U'*aux = rhs for aux */
|
||
gns_transpose_backsubstitution(u, rhs, aux, num_eq);
|
||
|
||
/* Solve U*x = aux for x */
|
||
gns_backsubstitution(u, aux, num_eq, x);
|
||
}
|
||
return res;
|
||
}
|
||
|
||
int gns_solve_by_chol_clip_gns(alf_covariance *cov, const int *clip, double *x, int num_eq)
|
||
{
|
||
double lhs[MAX_NUM_ALF_LUMA_COEFF][MAX_NUM_ALF_LUMA_COEFF];
|
||
double rhs[MAX_NUM_ALF_LUMA_COEFF];
|
||
|
||
set_ey_from_clip(cov, clip, lhs, rhs, num_eq);
|
||
return gns_solve_by_chol(lhs, rhs, x, num_eq);
|
||
}
|
||
|
||
double calc_error_for_coeffs(alf_covariance *cov, const int *clip, const int *coeff, const int num_coeff, const int bit_depth)
|
||
{
|
||
double factor = 1 << (bit_depth - 1);
|
||
double error = 0;
|
||
|
||
for (int i = 0; i < num_coeff; i++) //diagonal
|
||
{
|
||
double sum = 0;
|
||
for (int j = i + 1; j < num_coeff; j++)
|
||
{
|
||
sum += cov->ee[clip[i]][clip[j]][i][j] * coeff[j];
|
||
}
|
||
error += ((cov->ee[clip[i]][clip[i]][i][i] * coeff[i] + sum * 2) / factor - 2 * cov->y[clip[i]][i]) * coeff[i];
|
||
}
|
||
|
||
return error / factor;
|
||
}
|
||
|
||
/*#if !JVET_O0216_ALF_COEFF_EG3 || !JVET_O0064_SIMP_ALF_CLIP_CODING
|
||
int get_golomb_k_min(channel_type channel, const int num_filters, int k_min_tab[MAX_NUM_ALF_LUMA_COEFF], int bits_coeff_scan[m_MAX_SCAN_VAL][m_MAX_EXP_GOLOMB])
|
||
{
|
||
int k_start;
|
||
const int max_golomb_idx = channel == CHANNEL_TYPE_LUMA ? 3 : 2;
|
||
|
||
int min_bits_k_start = MAX_INT;
|
||
int min_k_start = -1;
|
||
|
||
for (int k = 1; k < 8; k++)
|
||
{
|
||
int bits_k_start = 0; k_start = k;
|
||
for (int scan_pos = 0; scan_pos < max_golomb_idx; scan_pos++)
|
||
{
|
||
int k_min = k_start;
|
||
int min_bits = bits_coeff_scan[scan_pos][k_min];
|
||
|
||
if (bits_coeff_scan[scan_pos][k_start + 1] < min_bits)
|
||
{
|
||
k_min = k_start + 1;
|
||
min_bits = bits_coeff_scan[scan_pos][k_min];
|
||
}
|
||
k_start = k_min;
|
||
bits_k_start += min_bits;
|
||
}
|
||
if (bits_k_start < min_bits_k_start)
|
||
{
|
||
min_bits_k_start = bits_k_start;
|
||
min_k_start = k;
|
||
}
|
||
}
|
||
|
||
k_start = min_k_start;
|
||
for (int scan_pos = 0; scan_pos < max_golomb_idx; scan_pos++)
|
||
{
|
||
int k_min = k_start;
|
||
int min_bits = bits_coeff_scan[scan_pos][k_min];
|
||
|
||
if (bits_coeff_scan[scan_pos][k_start + 1] < min_bits)
|
||
{
|
||
k_min = k_start + 1;
|
||
min_bits = bits_coeff_scan[scan_pos][k_min];
|
||
}
|
||
|
||
k_min_tab[scan_pos] = k_min;
|
||
k_start = k_min;
|
||
}
|
||
|
||
return min_k_start;
|
||
}*/
|
||
|
||
int length_golomb(int coeff_val, int k, bool signed_coeff)
|
||
{
|
||
int num_bins = 0;
|
||
unsigned int symbol = abs(coeff_val);
|
||
while (symbol >= (unsigned int)(1 << k))
|
||
{
|
||
num_bins++;
|
||
symbol -= 1 << k;
|
||
k++;
|
||
}
|
||
num_bins += (k + 1);
|
||
if (signed_coeff && coeff_val != 0)
|
||
{
|
||
num_bins++;
|
||
}
|
||
return num_bins;
|
||
}
|
||
|
||
int length_uvlc(int ui_code)
|
||
{
|
||
int ui_length = 1;
|
||
int ui_temp = ++ui_code;
|
||
|
||
assert(ui_temp); // "Integer overflow"
|
||
|
||
while (1 != ui_temp)
|
||
{
|
||
ui_temp >>= 1;
|
||
ui_length += 2;
|
||
}
|
||
// Take care of cases where ui_length > 32
|
||
return (ui_length >> 1) + ((ui_length + 1) >> 1);
|
||
}
|
||
|
||
double get_dist_coeff_force_0(bool* coded_var_bins, double error_force_0_coeff_tab[MAX_NUM_ALF_CLASSES][2], int* bits_var_bin, int zero_bits_var_bin, const int num_filters)
|
||
{
|
||
double dist_force_0 = 0;
|
||
memset(coded_var_bins, 0, sizeof(*coded_var_bins) * MAX_NUM_ALF_CLASSES);
|
||
|
||
for (int filt_idx = 0; filt_idx < num_filters; filt_idx++)
|
||
{
|
||
double cost_diff = error_force_0_coeff_tab[filt_idx][0] - (error_force_0_coeff_tab[filt_idx][1] + g_lambda[COMPONENT_Y] * bits_var_bin[filt_idx]);
|
||
coded_var_bins[filt_idx] = cost_diff > 0 ? true : false;
|
||
dist_force_0 += error_force_0_coeff_tab[filt_idx][coded_var_bins[filt_idx] ? 1 : 0];
|
||
}
|
||
|
||
return dist_force_0;
|
||
}
|
||
|
||
double get_dist_force_0(channel_type channel, const int num_filters, double error_tab_force_0_coeff[MAX_NUM_ALF_CLASSES][2], bool* coded_var_bins)
|
||
{
|
||
int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
|
||
static int bits_var_bin[MAX_NUM_ALF_CLASSES];
|
||
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
bits_var_bin[ind] = 0;
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
bits_var_bin[ind] += length_golomb(abs(g_filter_coeff_set[ind][i]), 3, true);
|
||
}
|
||
}
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA][0])
|
||
/*#else
|
||
if (g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA])
|
||
#endif*/
|
||
{
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
if (!abs(g_filter_coeff_set[ind][i]))
|
||
{
|
||
g_filter_clipp_set[ind][i] = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
double dist_force_0 = get_dist_coeff_force_0(coded_var_bins, error_tab_force_0_coeff, bits_var_bin, num_filters);
|
||
|
||
return dist_force_0;
|
||
}
|
||
|
||
int get_cost_filter_coeff_force_0(channel_type channel, int **p_diff_q_filter_coeff_int_pp, const int num_filters, bool* coded_var_bins)
|
||
{
|
||
const int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
int len = num_filters; //filter_coefficient_flag[i]
|
||
|
||
// Filter coefficients
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
if (coded_var_bins[ind])
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
len += length_golomb(abs(p_diff_q_filter_coeff_int_pp[ind][i]), 3, true); // alf_coeff_luma_delta[i][j]
|
||
}
|
||
}
|
||
}
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA][0])
|
||
/*#else
|
||
if (g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA])
|
||
#endif*/
|
||
{
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
if (!abs(p_diff_q_filter_coeff_int_pp[ind][i]))
|
||
{
|
||
g_filter_clipp_set[ind][i] = 0;
|
||
}
|
||
len += 2;
|
||
}
|
||
}
|
||
}
|
||
|
||
return len;
|
||
}
|
||
|
||
int get_cost_filter_coeff(channel_type channel, int **p_diff_q_filter_coeff_int_pp, const int num_filters)
|
||
{
|
||
// #if JVET_O0216_ALF_COEFF_EG3
|
||
return length_filter_coeffs(channel, num_filters, p_diff_q_filter_coeff_int_pp); // alf_coeff_luma_delta[i][j];
|
||
/* #else
|
||
const int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
const int max_golomb_idx = channel == CHANNEL_TYPE_LUMA ? 3 : 2;
|
||
const int *golomb_idx = channel == CHANNEL_TYPE_LUMA ? alf_golomb_idx_7 : alf_golomb_idx_5;
|
||
|
||
memset(g_bits_coeff_scan, 0, sizeof(g_bits_coeff_scan));
|
||
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
int coeff_val = abs(p_diff_q_filter_coeff_int_pp[ind][i]);
|
||
for (int k = 1; k < 15; k++)
|
||
{
|
||
g_bits_coeff_scan[golomb_idx[i]][k] += length_golomb(coeff_val, k);
|
||
}
|
||
}
|
||
}
|
||
|
||
int k_min = get_golomb_k_min(channel, num_filters, g_k_min_tab, g_bits_coeff_scan);
|
||
|
||
// Coding parameters
|
||
int len = k_min //min_golomb_order
|
||
+ max_golomb_idx; //golomb_order_increase_flag
|
||
|
||
// Filter coefficients
|
||
|
||
//len += lengthFilterCoeffs( alfShape, num_filters, p_diff_q_filter_coeff_int_pp, m_kMinTab ); // alf_coeff_luma_delta[i][j]
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
len += length_golomb(abs(p_diff_q_filter_coeff_int_pp[ind][i]), g_k_min_tab[golomb_idx[i]]);
|
||
}
|
||
}
|
||
|
||
return len;
|
||
*/
|
||
}
|
||
|
||
int get_cost_filter_clipp(channel_type channel, int **p_diff_q_filter_coeff_int_pp, const int num_filters)
|
||
{
|
||
int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
for (int filter_idx = 0; filter_idx < num_filters; ++filter_idx)
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
if (!abs(p_diff_q_filter_coeff_int_pp[filter_idx][i]))
|
||
{
|
||
g_filter_clipp_set[filter_idx][i] = 0;
|
||
}
|
||
}
|
||
}
|
||
return (num_filters * (num_coeff - 1)) << 1;
|
||
}
|
||
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
int get_tb_length(int ui_symbol, const int ui_max_symbol)
|
||
{
|
||
int ui_thresh;
|
||
if (ui_max_symbol > 256)
|
||
{
|
||
int ui_thresh_val = 1 << 8;
|
||
ui_thresh = 8;
|
||
while (ui_thresh_val <= ui_max_symbol)
|
||
{
|
||
ui_thresh++;
|
||
ui_thresh_val <<= 1;
|
||
}
|
||
ui_thresh--;
|
||
}
|
||
else
|
||
{
|
||
ui_thresh = kvz_tb_max[ui_max_symbol];
|
||
}
|
||
|
||
int ui_val = 1 << ui_thresh;
|
||
assert(ui_val <= ui_max_symbol);
|
||
assert((ui_val << 1) > ui_max_symbol);
|
||
assert(ui_symbol < ui_max_symbol);
|
||
int b = ui_max_symbol - ui_val;
|
||
assert(b < ui_val);
|
||
if (ui_symbol < ui_val - b)
|
||
{
|
||
return ui_thresh;
|
||
}
|
||
else
|
||
{
|
||
return ui_thresh + 1;
|
||
}
|
||
}*/
|
||
|
||
|
||
|
||
int get_non_filter_coeff_rate(alf_aps *aps)
|
||
{
|
||
//short* filter_coeff_delta_idx = aps->filter_coeff_delta_idx;
|
||
//int fixed_filter_pattern = aps->fixed_filter_pattern;
|
||
//int fixed_filter_set_index = aps->fixed_filter_set_index;
|
||
|
||
int len = 1 // alf_coefficients_delta_flag
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
+ length_truncated_unary(0, 3) // chroma_idc = 0, it is signalled when ALF is enabled for luma
|
||
+ get_tb_length(num_luma_filters - 1, MAX_NUM_ALF_CLASSES); //numLumaFilters*/
|
||
+ 2 // slice_alf_chroma_idc u(2)
|
||
+ length_uvlc(aps->num_luma_filters - 1); // alf_luma_num_filters_signalled_minus1 ue(v)
|
||
|
||
if (aps->num_luma_filters > 1)
|
||
{
|
||
const int coeff_length = kvz_math_ceil_log2(aps->num_luma_filters); //#if JVET_O0491_HLS_CLEANUP
|
||
for (int i = 0; i < MAX_NUM_ALF_CLASSES; i++)
|
||
{
|
||
//len += get_tb_length((int)filter_coeff_delta_idx[i], num_luma_filters); //#if !JVET_O0491_HLS_CLEANUP
|
||
len += coeff_length;
|
||
}
|
||
}
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
len++; //fixed filter set flag
|
||
if (*fixed_filter_set_index > 0)
|
||
{
|
||
len += get_tb_length(*fixed_filter_set_index - 1, ALF_NUM_FIXED_FILTER_SETS);
|
||
len += 1; //fixed filter flag pattern
|
||
if (*fixed_filter_pattern > 0)
|
||
len += MAX_NUM_ALF_CLASSES; //"fixed_filter_flag" for each class
|
||
}*/
|
||
|
||
return len;
|
||
}
|
||
|
||
int length_filter_coeffs(channel_type channel, const int num_filters, int **filter_coeff)
|
||
{
|
||
int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
int bit_cnt = 0;
|
||
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
bit_cnt += length_golomb(abs(filter_coeff[ind][i]), 3, true);
|
||
}
|
||
}
|
||
return bit_cnt;
|
||
}
|
||
|
||
double calculate_error(alf_covariance *cov, const int *clip, const double *coeff)
|
||
{
|
||
double sum = 0;
|
||
for (int i = 0; i < cov->num_coeff; i++)
|
||
{
|
||
sum += coeff[i] * cov->y[clip[i]][i];
|
||
}
|
||
|
||
return cov->pix_acc - sum;
|
||
}
|
||
|
||
double calculate_error_opt_filt(alf_covariance *cov, const int *clip)
|
||
{
|
||
double c[MAX_NUM_ALF_LUMA_COEFF];
|
||
return optimize_filter_gns_calc(cov, clip, c, cov->num_coeff);
|
||
}
|
||
|
||
/*#if !JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
int get_coeff_rate(alf_aps* alf_aps, bool is_chroma)
|
||
{
|
||
int iBits = 0;
|
||
assert(is_chroma);
|
||
int num_coeff = is_chroma ? 7 : 13;
|
||
// Filter coefficients
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
iBits += length_golomb(alf_aps->chroma_coeff[i], 3, true); // alf_coeff_chroma[i], alf_coeff_luma_delta[i][j]
|
||
}
|
||
|
||
if (g_alf_aps_temp.non_linear_flag[is_chroma])
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
if (!abs(alf_aps->chroma_coeff[i]))
|
||
{
|
||
alf_aps->chroma_clipp[i] = 0;
|
||
}
|
||
}
|
||
iBits += ((num_coeff - 1) << 1);
|
||
}
|
||
return iBits;
|
||
}#endif*/
|
||
|
||
int get_chroma_coeff_rate(alf_aps* aps, int alt_idx)
|
||
{
|
||
int i_bits = 0;
|
||
|
||
//AlfFilterShape alfShape(5);
|
||
const int num_coeff = 7;
|
||
// Filter coefficients
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
i_bits += length_golomb(aps->chroma_coeff[alt_idx][i], 3, true); // alf_coeff_chroma[alt_idx][i]
|
||
}
|
||
|
||
if (g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_CHROMA][alt_idx])
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
if (!abs(aps->chroma_coeff[alt_idx][i]))
|
||
{
|
||
aps->chroma_clipp[alt_idx][i] = 0;
|
||
}
|
||
}
|
||
i_bits += ((num_coeff - 1) << 1);
|
||
}
|
||
return i_bits;
|
||
}
|
||
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
int length_truncated_unary(int symbol, int max_symbol)
|
||
{
|
||
if (max_symbol == 0)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
bool code_last = (max_symbol > symbol);
|
||
int num_bins = 0;
|
||
while (symbol--)
|
||
{
|
||
num_bins++;
|
||
}
|
||
if (code_last)
|
||
{
|
||
num_bins++;
|
||
}
|
||
|
||
return num_bins;
|
||
}*/
|
||
|
||
double get_filtered_distortion(alf_covariance* cov, const int num_classes, const int num_filters_minus1, const int num_coeff)
|
||
{
|
||
double dist = 0;
|
||
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
dist += calc_error_for_coeffs(&cov[class_idx], g_filter_clipp_set[class_idx], g_filter_coeff_set[class_idx], num_coeff, ALF_NUM_BITS);
|
||
}
|
||
|
||
return dist;
|
||
}
|
||
|
||
double get_unfiltered_distortion_cov_channel(alf_covariance* cov, channel_type channel)
|
||
{
|
||
double dist = 0;
|
||
if (channel == CHANNEL_TYPE_LUMA)
|
||
{
|
||
dist = get_unfiltered_distortion_cov_classes(cov, MAX_NUM_ALF_CLASSES);
|
||
}
|
||
else
|
||
{
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
dist = get_unfiltered_distortion_cov_classes(cov, 1) + length_truncated_unary(0, 3) * g_lambda[COMPONENT_Cb];*/
|
||
dist = get_unfiltered_distortion_cov_classes(cov, 1);
|
||
}
|
||
return dist;
|
||
}
|
||
|
||
double get_unfiltered_distortion_cov_classes(alf_covariance* cov, const int num_classes)
|
||
{
|
||
double dist = 0;
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
dist += cov[class_idx].pix_acc;
|
||
}
|
||
return dist;
|
||
}
|
||
|
||
void get_frame_stats(channel_type channel, int i_shape_idx, int ctu_idx)
|
||
{
|
||
bool is_luma = channel == CHANNEL_TYPE_LUMA ? true : false;
|
||
int num_classes = is_luma ? MAX_NUM_ALF_CLASSES : 1;
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
int num_alternatives = is_luma ? 1 : g_alf_aps_temp.num_alternatives_chroma;
|
||
// When calling this function m_ctuEnableFlag shall be set to 0 for CTUs using alternative APS
|
||
// Here we compute frame stats for building new alternative filters
|
||
for (int alt_idx = 0; alt_idx < num_alternatives; ++alt_idx)
|
||
{
|
||
for (int i = 0; i < num_classes; i++)
|
||
{
|
||
reset_alf_covariance(&g_alf_covariance_frame[channel][i_shape_idx][is_luma ? i : alt_idx], g_alf_num_clipping_values[channel]);
|
||
}
|
||
if (is_luma)
|
||
{
|
||
get_frame_stat(g_alf_covariance_frame[CHANNEL_TYPE_LUMA][i_shape_idx], g_alf_covariance[COMPONENT_Y][i_shape_idx], g_ctu_enable_flag[COMPONENT_Y], NULL, num_classes, alt_idx, ctu_idx);
|
||
}
|
||
else
|
||
{
|
||
get_frame_stat(g_alf_covariance_frame[CHANNEL_TYPE_CHROMA][i_shape_idx], g_alf_covariance[COMPONENT_Cb][i_shape_idx], g_ctu_enable_flag[COMPONENT_Cb], g_ctu_alternative[COMPONENT_Cb], num_classes, alt_idx, ctu_idx);
|
||
get_frame_stat(g_alf_covariance_frame[CHANNEL_TYPE_CHROMA][i_shape_idx], g_alf_covariance[COMPONENT_Cr][i_shape_idx], g_ctu_enable_flag[COMPONENT_Cr], g_ctu_alternative[COMPONENT_Cr], num_classes, alt_idx, ctu_idx);
|
||
}
|
||
}
|
||
/*#else
|
||
for (int i = 0; i < num_classes; i++)
|
||
{
|
||
reset_alf_covariance(&g_alf_covariance_frame[channel][i_shape_idx][i], g_alf_num_clipping_values[channel]);
|
||
}
|
||
if (channel == CHANNEL_TYPE_LUMA)
|
||
{
|
||
get_frame_stat(g_alf_covariance_frame[CHANNEL_TYPE_LUMA][i_shape_idx], g_alf_covariance[COMPONENT_Y][i_shape_idx], g_ctu_enable_flag[COMPONENT_Y], num_classes);
|
||
}
|
||
else
|
||
{
|
||
get_frame_stat(g_alf_covariance_frame[CHANNEL_TYPE_CHROMA][i_shape_idx], g_alf_covariance[COMPONENT_Cb][i_shape_idx], g_ctu_enable_flag[COMPONENT_Cb], num_classes);
|
||
get_frame_stat(g_alf_covariance_frame[CHANNEL_TYPE_CHROMA][i_shape_idx], g_alf_covariance[COMPONENT_Cr][i_shape_idx], g_ctu_enable_flag[COMPONENT_Cr], num_classes);
|
||
}
|
||
#endif*/
|
||
}
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
void get_frame_stat(alf_covariance* frame_cov, alf_covariance** ctb_cov, uint8_t* ctb_enable_flags, uint8_t* ctb_alt_idx, const int num_classes, int alt_idx, int ctu_idx)
|
||
/*#else
|
||
void get_frame_stat(alf_covariance* frame_cov, alf_covariance** ctb_cov, uint8_t* ctb_enable_flags, const int num_classes)
|
||
#endif*/
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
const channel_type channel = (!ctb_alt_idx ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA);
|
||
bool is_luma = channel == CHANNEL_TYPE_LUMA ? true : false;
|
||
//for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++)
|
||
{
|
||
if (ctb_enable_flags[ctu_idx])
|
||
{
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
if (is_luma || alt_idx == ctb_alt_idx[ctu_idx])
|
||
{
|
||
add_alf_cov(&frame_cov[is_luma ? class_idx : alt_idx], &ctb_cov[ctu_idx][class_idx]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
/*#else
|
||
for (int i = 0; i < g_num_ctus_in_pic; i++)
|
||
{
|
||
if (ctb_enable_flags[i])
|
||
{
|
||
for (int j = 0; j < num_classes; j++)
|
||
{
|
||
add_alf_cov(&frame_cov[j], &ctb_cov[i][j]);
|
||
}
|
||
}
|
||
}
|
||
#endif*/
|
||
}
|
||
|
||
void copy_cov(alf_covariance *dst, alf_covariance *src)
|
||
{
|
||
dst->num_coeff = src->num_coeff;
|
||
dst->num_bins = src->num_bins;
|
||
memcpy(&dst->ee, &src->ee, sizeof(dst->ee));
|
||
memcpy(&dst->y, &src->y, sizeof(dst->y));
|
||
dst->pix_acc = src->pix_acc;
|
||
}
|
||
|
||
void copy_alf_param(alf_aps *dst, alf_aps *src)
|
||
{
|
||
memcpy(dst->enabled_flag, src->enabled_flag, sizeof(dst->enabled_flag));
|
||
memcpy(dst->non_linear_flag, src->non_linear_flag, sizeof(dst->non_linear_flag));
|
||
memcpy(dst->luma_coeff, src->luma_coeff, sizeof(dst->luma_coeff));
|
||
memcpy(dst->luma_clipp, src->luma_clipp, sizeof(dst->luma_clipp));
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
dst->num_alternatives_chroma = src->num_alternatives_chroma;
|
||
//#endif
|
||
memcpy(dst->chroma_coeff, src->chroma_coeff, sizeof(dst->chroma_coeff));
|
||
memcpy(dst->chroma_clipp, src->chroma_clipp, sizeof(dst->chroma_clipp));
|
||
memcpy(dst->filter_coeff_delta_idx, src->filter_coeff_delta_idx, sizeof(dst->filter_coeff_delta_idx));
|
||
memcpy(dst->alf_luma_coeff_flag, src->alf_luma_coeff_flag, sizeof(dst->alf_luma_coeff_flag));
|
||
dst->num_luma_filters = src->num_luma_filters;
|
||
dst->alf_luma_coeff_delta_flag = src->alf_luma_coeff_delta_flag;
|
||
//#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
//dst->alf_luma_coeff_delta_prediction_flag = src->alf_luma_coeff_delta_prediction_flag;
|
||
//#endif
|
||
dst->t_layer = src->t_layer;
|
||
memcpy(dst->new_filter_flag, src->new_filter_flag, sizeof(dst->new_filter_flag));
|
||
//#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
//dst->fixed_filter_pattern = src->fixed_filter_pattern;
|
||
//memcpy(dst->fixed_filter_idx, src->fixed_filter_idx, sizeof(dst->fixed_filter_idx));
|
||
//dst->fixed_filter_set_index = src->fixed_filter_set_index;
|
||
//#endif
|
||
}
|
||
|
||
void copy_alf_param_w_channel(alf_aps* dst, alf_aps* src, channel_type channel)
|
||
{
|
||
if (channel == CHANNEL_TYPE_LUMA)
|
||
{
|
||
copy_alf_param(dst, src);
|
||
}
|
||
else
|
||
{
|
||
/*#if !JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
alfParamDst.nonLinearFlag[channel] = alfParamSrc.nonLinearFlag[channel];
|
||
#endif*/
|
||
dst->enabled_flag[COMPONENT_Cb] = src->enabled_flag[COMPONENT_Cb];
|
||
dst->enabled_flag[COMPONENT_Cr] = src->enabled_flag[COMPONENT_Cr];
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
dst->num_alternatives_chroma = src->num_alternatives_chroma;
|
||
memcpy(dst->non_linear_flag[CHANNEL_TYPE_CHROMA], src->non_linear_flag[CHANNEL_TYPE_CHROMA], sizeof(dst->non_linear_flag[CHANNEL_TYPE_CHROMA]));
|
||
//#endif
|
||
memcpy(dst->chroma_coeff, src->chroma_coeff, sizeof(dst->chroma_coeff));
|
||
memcpy(dst->chroma_clipp, src->chroma_clipp, sizeof(dst->chroma_clipp));
|
||
}
|
||
}
|
||
|
||
void reset_alf_param(alf_aps *src)
|
||
{
|
||
memset(src->enabled_flag, false, sizeof(src->enabled_flag));
|
||
memset(src->non_linear_flag, false, sizeof(src->non_linear_flag));
|
||
memset(src->luma_coeff, 0, sizeof(src->luma_coeff));
|
||
memset(src->luma_clipp, 0, sizeof(src->luma_clipp));
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
src->num_alternatives_chroma = 1;
|
||
//#endif
|
||
memset(src->chroma_coeff, 0, sizeof(src->chroma_coeff));
|
||
memset(src->chroma_clipp, 0, sizeof(src->chroma_clipp));
|
||
memset(src->filter_coeff_delta_idx, 0, sizeof(src->filter_coeff_delta_idx));
|
||
memset(src->alf_luma_coeff_flag, true, sizeof(src->alf_luma_coeff_flag));
|
||
src->num_luma_filters = 1;
|
||
src->alf_luma_coeff_delta_flag = false;
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
alfLumaCoeffDeltaPredictionFlag = false;
|
||
#endif*/
|
||
src->t_layer = 0;
|
||
memset(src->new_filter_flag, 0, sizeof(src->new_filter_flag));
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
fixedFilterPattern = 0;
|
||
std::memset(fixedFilterIdx, 0, sizeof(fixedFilterIdx));
|
||
fixedFilterSetIndex = 0;
|
||
#endif*/
|
||
}
|
||
|
||
void add_alf_cov(alf_covariance *dst, alf_covariance *src)
|
||
{
|
||
int num_bins = dst->num_bins;
|
||
int num_coeff = dst->num_coeff;
|
||
for (int b0 = 0; b0 < num_bins; b0++)
|
||
{
|
||
for (int b1 = 0; b1 < num_bins; b1++)
|
||
{
|
||
for (int j = 0; j < num_coeff; j++)
|
||
{
|
||
for (int i = 0; i < num_coeff; i++)
|
||
{
|
||
dst->ee[b0][b1][j][i] += src->ee[b0][b1][j][i];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
for (int j = 0; j < num_coeff; j++)
|
||
{
|
||
dst->y[b][j] += src->y[b][j];
|
||
}
|
||
}
|
||
dst->pix_acc += src->pix_acc;
|
||
}
|
||
|
||
void add_alf_cov_lhs_rhs(alf_covariance *dst, alf_covariance *lhs, alf_covariance *rhs)
|
||
{
|
||
int num_coeff = lhs->num_coeff;
|
||
int num_bins = lhs->num_bins;
|
||
for (int b0 = 0; b0 < num_bins; b0++)
|
||
{
|
||
for (int b1 = 0; b1 < num_bins; b1++)
|
||
{
|
||
for (int j = 0; j < num_coeff; j++)
|
||
{
|
||
for (int i = 0; i < num_coeff; i++)
|
||
{
|
||
dst->ee[b0][b1][j][i] = lhs->ee[b0][b1][j][i] + rhs->ee[b0][b1][j][i];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
for (int j = 0; j < num_coeff; j++)
|
||
{
|
||
dst->y[b][j] = lhs->y[b][j] + rhs->y[b][j];
|
||
}
|
||
}
|
||
dst->pix_acc = lhs->pix_acc + rhs->pix_acc;
|
||
}
|
||
|
||
void reset_alf_covariance(alf_covariance *alf, int num_bins) {
|
||
if (num_bins > 0) { alf->num_bins = num_bins; }
|
||
alf->pix_acc = 0;
|
||
memset(&alf->y, 0, sizeof(alf->y));
|
||
memset(&alf->ee, 0, sizeof(alf->ee));
|
||
}
|
||
|
||
void adjust_pixels(kvz_pixel *src, int x_start, int x_end, int y_start, int y_end, int stride, int pic_width, int pic_height)
|
||
{
|
||
assert(x_start <= x_end);
|
||
assert(y_start <= y_end);
|
||
assert(x_end <= pic_width);
|
||
assert(y_end <= pic_height);
|
||
|
||
//not on any edge
|
||
if (x_start != 0 && y_start != 0 && x_end != pic_width && y_end != pic_height) {
|
||
return;
|
||
}
|
||
|
||
bool top_left = (x_start == 0 && y_start == 0);
|
||
bool top_right = (x_end == pic_width && y_start == 0);
|
||
bool bottom_left = (x_start == 0 && y_end == pic_height);
|
||
bool bottom_right = (x_end == pic_width && y_end == pic_height);
|
||
|
||
//left side
|
||
if (x_start == 0) {
|
||
for (int y = y_start; y < y_end; y++) {
|
||
src[y * stride - 4] =
|
||
src[y * stride - 3] =
|
||
src[y * stride - 2] =
|
||
src[y * stride - 1] = src[y * stride];
|
||
}
|
||
}
|
||
//right side
|
||
if (x_end == pic_width) {
|
||
const int x_px = x_end - 1;
|
||
for (int y = y_start; y < y_end; y++) {
|
||
src[y * stride + x_px + 4] =
|
||
src[y * stride + x_px + 3] =
|
||
src[y * stride + x_px + 2] =
|
||
src[y * stride + x_px + 1] = src[y * stride + x_px];
|
||
}
|
||
}
|
||
//top
|
||
if (y_start == 0) {
|
||
for (int x = x_start; x < x_end; x++) {
|
||
src[-4 * stride + x] =
|
||
src[-3 * stride + x] =
|
||
src[-2 * stride + x] =
|
||
src[-1 * stride + x] = src[x];
|
||
}
|
||
}
|
||
//bottom
|
||
if (y_end == pic_height) {
|
||
const int y_px = y_end - 1;
|
||
for (int x = x_start; x < x_end; x++) {
|
||
src[x + stride * (4 + y_px)] =
|
||
src[x + stride * (3 + y_px)] =
|
||
src[x + stride * (2 + y_px)] =
|
||
src[x + stride * (1 + y_px)] = src[x + stride * y_px];
|
||
}
|
||
}
|
||
//left top corner
|
||
if (top_left) {
|
||
for (int x = -4; x < 0; x++) {
|
||
src[-4 * stride + x] =
|
||
src[-3 * stride + x] =
|
||
src[-2 * stride + x] =
|
||
src[-1 * stride + x] = src[0];
|
||
}
|
||
}
|
||
//right top corner
|
||
if (top_right) {
|
||
const int x_px = x_end - 1;
|
||
for (int x = pic_width; x < pic_width + 4; x++) {
|
||
src[-4 * stride + x] =
|
||
src[-3 * stride + x] =
|
||
src[-2 * stride + x] =
|
||
src[-1 * stride + x] = src[x_px];
|
||
}
|
||
}
|
||
|
||
//left or right bottom corner
|
||
if (bottom_left) {
|
||
const int y_px = y_end - 1;
|
||
for (int x = -4; x < 0; x++) {
|
||
src[(4 + y_px) * stride + x] =
|
||
src[(3 + y_px) * stride + x] =
|
||
src[(2 + y_px) * stride + x] =
|
||
src[(1 + y_px) * stride + x] = src[stride * y_px];
|
||
}
|
||
}
|
||
if (bottom_right) {
|
||
const int x_px = x_end - 1;
|
||
const int y_px = y_end - 1;
|
||
for (int x = x_end; x < x_end + 4; x++) {
|
||
src[(4 + y_px) * stride + x] =
|
||
src[(3 + y_px) * stride + x] =
|
||
src[(2 + y_px) * stride + x] =
|
||
src[(1 + y_px) * stride + x] = src[stride * y_px + x_px];
|
||
}
|
||
}
|
||
}
|
||
|
||
void adjust_pixels_chroma(kvz_pixel *src, int x_start, int x_end, int y_start, int y_end, int stride, int pic_width, int pic_height)
|
||
{
|
||
assert(x_start <= x_end);
|
||
assert(y_start <= y_end);
|
||
assert(x_end <= pic_width);
|
||
assert(y_end <= pic_height);
|
||
|
||
//not on any edge
|
||
if (x_start != 0 && y_start != 0 && x_end != pic_width && y_end != pic_height) {
|
||
return;
|
||
}
|
||
|
||
bool top_left = (x_start == 0 && y_start == 0);
|
||
bool top_right = (x_end == pic_width && y_start == 0);
|
||
bool bottom_left = (x_start == 0 && y_end == pic_height);
|
||
bool bottom_right = (x_end == pic_width && y_end == pic_height);
|
||
|
||
//left side
|
||
if (x_start == 0) {
|
||
for (int y = y_start; y < y_end; y++) {
|
||
src[y * stride - 2] =
|
||
src[y * stride - 1] = src[y * stride];
|
||
}
|
||
}
|
||
//right side
|
||
if (x_end == pic_width) {
|
||
const int x_px = x_end - 1;
|
||
for (int y = y_start; y < y_end; y++) {
|
||
src[y * stride + x_px + 2] =
|
||
src[y * stride + x_px + 1] = src[y * stride + x_px];
|
||
}
|
||
}
|
||
//top
|
||
if (y_start == 0) {
|
||
for (int x = x_start; x < x_end; x++) {
|
||
src[-2 * stride + x] =
|
||
src[-1 * stride + x] = src[x];
|
||
}
|
||
}
|
||
//bottom
|
||
if (y_end == pic_height) {
|
||
const int y_px = y_end - 1;
|
||
for (int x = x_start; x < x_end; x++) {
|
||
src[x + stride * (2 + y_px)] =
|
||
src[x + stride * (1 + y_px)] = src[x + stride * y_px];
|
||
}
|
||
}
|
||
//left top corner
|
||
if (top_left) {
|
||
for (int x = -2; x < 0; x++) {
|
||
src[-2 * stride + x] =
|
||
src[-1 * stride + x] = src[0];
|
||
}
|
||
}
|
||
//right top corner
|
||
if (top_right) {
|
||
const int x_px = x_end - 1;
|
||
for (int x = pic_width; x < pic_width + 2; x++) {
|
||
src[-2 * stride + x] =
|
||
src[-1 * stride + x] = src[x_px];
|
||
}
|
||
}
|
||
|
||
//left or right bottom corner
|
||
if (bottom_left) {
|
||
const int y_px = y_end - 1;
|
||
for (int x = -2; x < 0; x++) {
|
||
src[(2 + y_px) * stride + x] =
|
||
src[(1 + y_px) * stride + x] = src[stride * y_px];
|
||
}
|
||
}
|
||
if (bottom_right) {
|
||
const int x_px = x_end - 1;
|
||
const int y_px = y_end - 1;
|
||
for (int x = x_end; x < x_end + 2; x++) {
|
||
src[(2 + y_px) * stride + x] =
|
||
src[(1 + y_px) * stride + x] = src[stride * y_px + x_px];
|
||
}
|
||
}
|
||
}
|
||
|
||
void set_ctu_enable_flag(uint8_t **flags, channel_type channel, int ctu_idx, uint8_t value)
|
||
{
|
||
if (channel == CHANNEL_TYPE_LUMA) {
|
||
flags[COMPONENT_Y][ctu_idx] = value;
|
||
}
|
||
else {
|
||
flags[COMPONENT_Cr][ctu_idx] = value;
|
||
flags[COMPONENT_Cb][ctu_idx] = value;
|
||
}
|
||
}
|
||
|
||
void copy_ctu_enable_flag(uint8_t **flags_dst, uint8_t **flags_src, channel_type channel, int ctu_idx)
|
||
{
|
||
if (channel == CHANNEL_TYPE_LUMA) {
|
||
flags_dst[COMPONENT_Y][ctu_idx] = flags_src[COMPONENT_Y][ctu_idx];
|
||
}
|
||
else {
|
||
flags_dst[COMPONENT_Cr][ctu_idx] = flags_src[COMPONENT_Cr][ctu_idx];
|
||
flags_dst[COMPONENT_Cb][ctu_idx] = flags_src[COMPONENT_Cb][ctu_idx];
|
||
}
|
||
}
|
||
|
||
//-------------------------------------------------------------------
|
||
|
||
//-------------------------encoding functions------------------------
|
||
|
||
void kvz_alf_enc_process(encoder_state_t *const state,
|
||
const lcu_order_element_t *const lcu
|
||
//#if ENABLE_QPA
|
||
//const double lambdaChromaWeight
|
||
//#endif
|
||
)
|
||
{
|
||
//const TempCtx ctxStart(m_CtxCache, AlfCtx(m_CABACEstimator->getCtx()));
|
||
memcpy(&cabac_estimator, &state->cabac, sizeof(cabac_estimator));
|
||
memcpy(&ctx_start, &state->cabac, sizeof(ctx_start));
|
||
cabac_estimator.only_count = 1;
|
||
ctx_start.only_count = 1;
|
||
|
||
// derive classification
|
||
//const kvz_pixel rec_luma = state->tile->frame->rec->y;
|
||
//const PreCalcValues& pcv = *cs.pcv;
|
||
|
||
const int lumaHeight = state->tile->frame->height;
|
||
const int lumaWidth = state->tile->frame->width;
|
||
/*const int maxCUHeight = LCU_WIDTH;
|
||
const int maxCUWidth = LCU_WIDTH;*/
|
||
|
||
bool clip_top = false, clip_bottom = false, clip_left = false, clip_right = false;
|
||
int num_hor_vir_bndry = 0, num_ver_vir_bndry = 0;
|
||
int hor_vir_bndry_pos[] = { 0, 0, 0 };
|
||
int ver_vir_bndry_pos[] = { 0, 0, 0 };
|
||
|
||
//turha
|
||
/*for (int y_pos = 0; y_pos < lumaHeight; y_pos += maxCUHeight)
|
||
{
|
||
for (int x_pos = 0; x_pos < lumaWidth; x_pos += maxCUWidth)
|
||
{*/
|
||
const int y_pos = lcu->position_px.y;
|
||
const int x_pos = lcu->position_px.x;
|
||
const int width = lcu->size.x; //(x_pos + maxCUWidth > lumaWidth) ? (lumaWidth - x_pos) : maxCUWidth;
|
||
const int height = lcu->size.y; //(y_pos + maxCUHeight > lumaHeight) ? (lumaHeight - y_pos) : maxCUHeight;
|
||
|
||
//T<>t<EFBFBD> if-lauseen sis<69>ll<6C> olevaa algoritmia pit<69><74> viel<65> viilata
|
||
if (is_crossed_by_virtual_boundaries(x_pos, y_pos, width, height, &clip_top, &clip_bottom, &clip_left, &clip_right, &num_hor_vir_bndry, &num_ver_vir_bndry, hor_vir_bndry_pos, ver_vir_bndry_pos, state))
|
||
{
|
||
int y_start = y_pos;
|
||
for (int i = 0; i <= num_hor_vir_bndry; i++)
|
||
{
|
||
const int y_end = i == num_hor_vir_bndry ? y_pos + height : hor_vir_bndry_pos[i];
|
||
const int h = y_end - y_start;
|
||
const bool clip_t = (i == 0 && clip_top) || (i > 0) || (y_start == 0);
|
||
const bool clip_b = (i == num_hor_vir_bndry && clip_bottom) || (i < num_hor_vir_bndry) || (y_end == lumaHeight);
|
||
|
||
int x_start = x_pos;
|
||
for (int j = 0; j <= num_ver_vir_bndry; j++)
|
||
{
|
||
const int x_end = j == num_ver_vir_bndry ? x_pos + width : ver_vir_bndry_pos[j];
|
||
const int w = x_end - x_start;
|
||
const bool clip_l = (j == 0 && clip_left) || (j > 0) || (x_start == 0);
|
||
const bool clip_r = (j == num_ver_vir_bndry && clip_right) || (j < num_ver_vir_bndry) || (x_end == lumaWidth);
|
||
|
||
//const int w_buf = w + (clip_l ? 0 : MAX_ALF_PADDING_SIZE) + (clip_r ? 0 : MAX_ALF_PADDING_SIZE);
|
||
//const int h_buf = h + (clip_t ? 0 : MAX_ALF_PADDING_SIZE) + (clip_b ? 0 : MAX_ALF_PADDING_SIZE);
|
||
//PelUnitBuf buf = m_tempBuf2.subBuf(UnitArea(cs.area.chromaFormat, Area(0, 0, w_buf, h_buf)));
|
||
//buf.copyFrom(recYuv.subBuf(UnitArea(cs.area.chromaFormat, Area(x_start - (clip_l ? 0 : MAX_ALF_PADDING_SIZE), y_start - (clip_t ? 0 : MAX_ALF_PADDING_SIZE), w_buf, h_buf))));
|
||
//buf.extendBorderPel(MAX_ALF_PADDING_SIZE);
|
||
//buf = buf.subBuf(UnitArea(cs.area.chromaFormat, Area(clip_l ? 0 : MAX_ALF_PADDING_SIZE, clip_t ? 0 : MAX_ALF_PADDING_SIZE, w, h)));
|
||
|
||
//const Area blkSrc(0, 0, w, h);
|
||
//const Area blkDst(xStart, yStart, w, h);
|
||
kvz_alf_derive_classification(state, w, h, x_start, y_start, x_start, y_start);
|
||
/*#if !JVET_O0525_REMOVE_PCM
|
||
//Area blkPCM(xStart, yStart, w, h);
|
||
kvz_alf_reset_pcm_blk_class_info(state, lcu, w, h, x_start, y_start);*/
|
||
|
||
x_start = x_end;
|
||
}
|
||
|
||
y_start = y_end;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
//Area blk(x_pos, y_pos, width, height);
|
||
kvz_alf_derive_classification(state, width, height, x_pos, y_pos, x_pos, y_pos);
|
||
/*#if !JVET_O0525_REMOVE_PCM
|
||
//Area blkPCM(x_pos, y_pos, width, height);
|
||
kvz_alf_reset_pcm_blk_class_info(state, lcu, width, height, x_pos, y_pos);*/
|
||
}
|
||
|
||
// }
|
||
//}
|
||
|
||
// get CTB stats for filtering
|
||
kvz_alf_derive_stats_for_filtering(state, lcu); //checked
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
/*for (int ctbIdx = 0; ctbIdx < m_numCTUsInPic; ctbIdx++)
|
||
{
|
||
cs.slice->getPic()->getAlfCtbFilterIndex()[ctbIdx] = NUM_FIXED_FILTER_SETS;
|
||
}*/
|
||
g_alf_ctb_filter_index[lcu->index] = ALF_NUM_FIXED_FILTER_SETS;
|
||
|
||
//g_classifier
|
||
//g_alf_covariance
|
||
//g_alf_ctb_filter
|
||
|
||
kvz_alf_derive_filter__encode__reconstruct(state, lcu, 0.0);
|
||
}
|
||
|
||
void kvz_alf_derive_filter__encode__reconstruct(encoder_state_t *const state,
|
||
const lcu_order_element_t *lcu
|
||
//#if ENABLE_QPA
|
||
, const double lambda_chroma_weight
|
||
//#endif
|
||
)
|
||
{
|
||
int lcu_index = lcu->index;
|
||
// consider using new filter (only)
|
||
alf_param.new_filter_flag[CHANNEL_TYPE_LUMA] = true;
|
||
alf_param.new_filter_flag[CHANNEL_TYPE_CHROMA] = true;
|
||
state->slice->tile_group_num_aps = 1; // Only new filter for RD cost optimization
|
||
//#endif
|
||
|
||
// derive filter (luma)
|
||
kvz_alf_encoder(state, lcu, &alf_param, CHANNEL_TYPE_LUMA
|
||
//#if ENABLE_QPA
|
||
, lambda_chroma_weight
|
||
//#endif
|
||
); //ulkopuolelle
|
||
// derive filter (chroma)
|
||
kvz_alf_encoder(state, lcu, &alf_param, CHANNEL_TYPE_CHROMA
|
||
//#if ENABLE_QPA
|
||
, lambda_chroma_weight
|
||
//#endif
|
||
); //ulkopuolelle
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
// let alfEncoderCtb decide now
|
||
alf_param.new_filter_flag[CHANNEL_TYPE_LUMA] = false;
|
||
alf_param.new_filter_flag[CHANNEL_TYPE_CHROMA] = false;
|
||
state->slice->tile_group_num_aps = 0;
|
||
//#endif
|
||
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxStart);
|
||
memcpy(&cabac_estimator, &ctx_start, sizeof(cabac_estimator));
|
||
kvz_alf_encoder_ctb(state, &alf_param, lcu_index
|
||
//#if ENABLE_QPA
|
||
, lambda_chroma_weight
|
||
//#endif
|
||
);
|
||
|
||
//memcpy(&state->cabac, &cabac_estimator, sizeof(state->cabac));
|
||
//state->cabac.only_count = 0;
|
||
//kvz_encode_alf(state, lcu->index, &alf_param);
|
||
kvz_encode_alf_bits(state, lcu_index);
|
||
|
||
kvz_alf_reconstructor(state, lcu_index);
|
||
}
|
||
|
||
double kvz_alf_derive_ctb_alf_enable_flags(encoder_state_t * const state,
|
||
channel_type channel,
|
||
const int i_shape_idx,
|
||
double *dist_unfilter,
|
||
const int num_classes,
|
||
int ctu_idx,
|
||
//#if ENABLE_QPA
|
||
const double chroma_weight
|
||
//#endif
|
||
)
|
||
{
|
||
/* TempCtx ctxTempStart(m_CtxCache);
|
||
TempCtx ctxTempBest(m_CtxCache);*/
|
||
cabac_data_t ctx_temp_start;
|
||
cabac_data_t ctx_temp_best;
|
||
|
||
/*#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
TempCtx ctxTempAltStart(m_CtxCache);
|
||
TempCtx ctxTempAltBest(m_CtxCache);*/
|
||
cabac_data_t ctx_temp_alt_start;
|
||
cabac_data_t ctx_temp_alt_best;
|
||
//#endif
|
||
|
||
kvz_config cfg = state->encoder_control->cfg;
|
||
bool is_luma = channel == CHANNEL_TYPE_LUMA ? 1 : 0;
|
||
|
||
const kvz_pixel comp_id_first = is_luma ? COMPONENT_Y : COMPONENT_Cb;
|
||
const kvz_pixel comp_id_last = is_luma ? COMPONENT_Y : COMPONENT_Cr;
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
const int num_alts = is_luma ? 1 : g_alf_aps_temp.num_alternatives_chroma;
|
||
//#endif
|
||
|
||
int num_coeff = is_luma ? 13 : 7;
|
||
|
||
double cost = 0;
|
||
*dist_unfilter = 0;
|
||
|
||
if (is_luma) {
|
||
g_alf_aps_temp.enabled_flag[COMPONENT_Y] = 1;
|
||
}
|
||
else {
|
||
g_alf_aps_temp.enabled_flag[COMPONENT_Cb] = 1;
|
||
g_alf_aps_temp.enabled_flag[COMPONENT_Cr] = 1;
|
||
}
|
||
|
||
//#if ENABLE_QPA
|
||
assert((chroma_weight <= 0.0) && (state->slice->start_in_ts == 0)); //"incompatible start CTU address, must be 0"
|
||
//#endif
|
||
|
||
kvz_alf_reconstruct_coeff(state, &g_alf_aps_temp, channel, true, is_luma);
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
for (int alt_idx = 0; alt_idx < (is_luma ? 1 : MAX_NUM_ALF_ALTERNATIVES_CHROMA); alt_idx++)
|
||
{
|
||
for (int class_idx = 0; class_idx < (is_luma ? MAX_NUM_ALF_CLASSES : 1); class_idx++)
|
||
{
|
||
for (int i = 0; i < (is_luma ? MAX_NUM_ALF_LUMA_COEFF : MAX_NUM_ALF_CHROMA_COEFF); i++)
|
||
{
|
||
g_filter_coeff_set[is_luma ? class_idx : alt_idx][i] = is_luma ? g_coeff_final[class_idx * MAX_NUM_ALF_LUMA_COEFF + i] : g_chroma_coeff_final[alt_idx][i];
|
||
g_filter_clipp_set[is_luma ? class_idx : alt_idx][i] = is_luma ? g_clipp_final[class_idx * MAX_NUM_ALF_LUMA_COEFF + i] : g_chroma_clipp_final[alt_idx][i];
|
||
}
|
||
}
|
||
}
|
||
/*#else
|
||
for (int class_idx = 0; class_idx < (is_luma ? MAX_NUM_ALF_CLASSES : 1); class_idx++)
|
||
{
|
||
for (int i = 0; i < (is_luma ? MAX_NUM_ALF_LUMA_COEFF : MAX_NUM_ALF_CHROMA_COEFF); i++)
|
||
{
|
||
g_filter_coeff_set[class_idx][i] = is_luma ? g_coeff_final[class_idx * MAX_NUM_ALF_LUMA_COEFF + i] : g_chroma_coeff_final[i];
|
||
g_filter_clipp_set[class_idx][i] = is_luma ? g_clipp_final[class_idx * MAX_NUM_ALF_LUMA_COEFF + i] : g_chroma_clipp_final[i];
|
||
}
|
||
}
|
||
#endif*/
|
||
|
||
//for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++)
|
||
{
|
||
for (int comp_id = comp_id_first; comp_id <= comp_id_last; comp_id++)
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
//#if ENABLE_QPA
|
||
const double ctu_lambda = chroma_weight > 0.0 ? (is_luma ? 0/*cs.picture->m_uEnerHpCtu[ctuIdx]*/ : 0/*cs.picture->m_uEnerHpCtu[ctuIdx]*/ / chroma_weight) : g_lambda[comp_id];
|
||
/*#else
|
||
const double ctu_lambda = m_lambda[compID];
|
||
#endif
|
||
#endif*/
|
||
|
||
double dist_unfilter_ctu = get_unfiltered_distortion_cov_classes(g_alf_covariance[comp_id][i_shape_idx][ctu_idx], num_classes);
|
||
|
||
//ctxTempStart = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_temp_start, &cabac_estimator, sizeof(ctx_temp_start));
|
||
//m_CABACEstimator->resetBits();
|
||
kvz_cabac_reset_bits(&cabac_estimator);
|
||
cabac_estimator.only_count = 1;
|
||
g_ctu_enable_flag[comp_id][ctu_idx] = 1;
|
||
code_alf_ctu_enable_flag(state, &cabac_estimator, ctu_idx, comp_id, &g_alf_aps_temp);
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (is_luma)
|
||
{
|
||
// Evaluate cost of signaling filter set index for convergence of filters enabled flag / filter derivation
|
||
assert(g_alf_ctb_filter_index[ctu_idx] == ALF_NUM_FIXED_FILTER_SETS);
|
||
assert(state->slice->tile_group_num_aps == 1);
|
||
code_alf_ctu_filter_index(state, &cabac_estimator, ctu_idx, g_alf_aps_temp.enabled_flag[COMPONENT_Y]);
|
||
}
|
||
double cost_on = dist_unfilter_ctu + ctu_lambda * (23 - cabac_estimator.bits_left) + (cabac_estimator.num_buffered_bytes << 3); //frac_bits_scale * 0 /*m_CABACEstimator->getEstFracBits()*/;
|
||
/*#else
|
||
double costOn = distUnfilterCtu + getFilteredDistortion(m_alfCovariance[compID][iShapeIdx][ctuIdx], numClasses, m_alfParamTemp.numLumaFilters - 1, numCoeff);
|
||
#if ENABLE_QPA
|
||
const double ctu_lambda = chromaWeight > 0.0 ? (isLuma(channel) ? cs.picture->m_uEnerHpCtu[ctuIdx] : cs.picture->m_uEnerHpCtu[ctuIdx] / chromaWeight) : m_lambda[compID];
|
||
#else
|
||
const double ctu_lambda = m_lambda[compID];
|
||
#endif
|
||
costOn += ctu_lambda * FRAC_BITS_SCALE * m_CABACEstimator->getEstFracBits();
|
||
#endif*/
|
||
|
||
//ctxTempBest = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_temp_best, &cabac_estimator, sizeof(ctx_temp_best));
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (is_luma)
|
||
{
|
||
cost_on += get_filtered_distortion(g_alf_covariance[comp_id][i_shape_idx][ctu_idx], num_classes, g_alf_aps_temp.num_luma_filters - 1, num_coeff);
|
||
}
|
||
else
|
||
{
|
||
double best_alt_cost = MAX_DOUBLE;
|
||
int best_alt_idx = -1;
|
||
//ctxTempAltStart = AlfCtx(ctxTempBest);
|
||
memcpy(&ctx_temp_alt_start, &ctx_temp_best, sizeof(ctx_temp_alt_start));
|
||
for (int alt_idx = 0; alt_idx < num_alts; ++alt_idx)
|
||
{
|
||
if (alt_idx) {
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempAltStart);
|
||
memcpy(&cabac_estimator, &ctx_temp_alt_start, sizeof(cabac_estimator));
|
||
}
|
||
//m_CABACEstimator->resetBits();
|
||
kvz_cabac_reset_bits(&cabac_estimator);
|
||
cabac_estimator.only_count = 1;
|
||
g_ctu_alternative[comp_id][ctu_idx] = alt_idx;
|
||
code_alf_ctu_alternative_ctu(state, &cabac_estimator, ctu_idx, comp_id, &g_alf_aps_temp);
|
||
double r_altCost = ctu_lambda * (23 - cabac_estimator.bits_left) + (cabac_estimator.num_buffered_bytes << 3); //frac_bits_scale * 0/*m_CABACEstimator->getEstFracBits()*/;
|
||
|
||
double alt_dist = 0.;
|
||
alt_dist += calc_error_for_coeffs(&g_alf_covariance[comp_id][i_shape_idx][ctu_idx][0], g_filter_clipp_set[alt_idx], g_filter_coeff_set[alt_idx], num_coeff, ALF_NUM_BITS);
|
||
|
||
double alt_cost = alt_dist + r_altCost;
|
||
if (alt_cost < best_alt_cost)
|
||
{
|
||
best_alt_cost = alt_cost;
|
||
best_alt_idx = alt_idx;
|
||
//ctxTempBest = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_temp_best, &cabac_estimator, sizeof(ctx_temp_best));
|
||
}
|
||
}
|
||
g_ctu_alternative[comp_id][ctu_idx] = best_alt_idx;
|
||
cost_on += best_alt_cost;
|
||
}
|
||
//#endif
|
||
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempStart);
|
||
memcpy(&cabac_estimator, &ctx_temp_start, sizeof(cabac_estimator));
|
||
//m_CABACEstimator->resetBits();
|
||
kvz_cabac_reset_bits(&cabac_estimator);
|
||
cabac_estimator.only_count = 1;
|
||
g_ctu_enable_flag[comp_id][ctu_idx] = 0;
|
||
code_alf_ctu_enable_flag(state, &cabac_estimator, ctu_idx, comp_id, &g_alf_aps_temp);
|
||
double cost_off = dist_unfilter_ctu + ctu_lambda * (23 - cabac_estimator.bits_left) + (cabac_estimator.num_buffered_bytes << 3); //frac_bits_scale * 0;// m_CABACEstimator->getEstFracBits();
|
||
|
||
if (cost_on < cost_off)
|
||
{
|
||
cost += cost_on;
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempBest);
|
||
memcpy(&cabac_estimator, &ctx_temp_best, sizeof(cabac_estimator));
|
||
g_ctu_enable_flag[comp_id][ctu_idx] = 1;
|
||
}
|
||
else
|
||
{
|
||
cost += cost_off;
|
||
g_ctu_enable_flag[comp_id][ctu_idx] = 0;
|
||
*dist_unfilter += dist_unfilter_ctu;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!is_luma)
|
||
{
|
||
const alf_component_id compIDFirst = COMPONENT_Cb;
|
||
const alf_component_id compIDLast = COMPONENT_Cr;
|
||
for (int compId = compIDFirst; compId <= compIDLast; compId++)
|
||
{
|
||
g_alf_aps_temp.enabled_flag[compId] = false;
|
||
for (int i = 0; i < g_num_ctus_in_pic; i++)
|
||
{
|
||
if (g_ctu_enable_flag[compId][i])
|
||
{
|
||
g_alf_aps_temp.enabled_flag[compId] = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
const int alf_chroma_idc = g_alf_aps_temp.enabled_flag[COMPONENT_Cb] * 2 + g_alf_aps_temp.enabled_flag[COMPONENT_Cr];
|
||
cost += length_truncated_unary(alf_chroma_idc, 3) * g_lambda[channel];*/
|
||
}
|
||
|
||
return cost;
|
||
}
|
||
|
||
void kvz_alf_enc_create(encoder_state_t const *state,
|
||
const lcu_order_element_t *lcu)
|
||
{
|
||
if (g_curr_frame == g_old_frame) {
|
||
return;
|
||
}
|
||
g_curr_frame = g_old_frame;
|
||
|
||
kvz_alf_create(state, lcu);
|
||
|
||
for (int channel_idx = 0; channel_idx < MAX_NUM_CHANNEL_TYPE; channel_idx++)
|
||
{
|
||
channel_type ch_type = (channel_type)channel_idx;
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
int num_classes = channel_idx ? MAX_NUM_ALF_ALTERNATIVES_CHROMA : MAX_NUM_ALF_CLASSES;
|
||
/*#else
|
||
int num_classes = channel_idx ? 1 : MAX_NUM_ALF_CLASSES;
|
||
#endif*/
|
||
int num_coeffs = channel_idx ? 7 : 13;
|
||
//m_alfCovarianceFrame[ch_type] = new AlfCovariance*[m_filterShapes[ch_type].size()];
|
||
g_alf_covariance_frame[ch_type] = malloc(sizeof(**g_alf_covariance_frame[ch_type]));
|
||
for (int i = 0; i != 1/*m_filterShapes[ch_type].size()*/; i++)
|
||
{
|
||
g_alf_covariance_frame[ch_type][i] = malloc(num_classes * sizeof(alf_covariance));
|
||
for (int k = 0; k < num_classes; k++)
|
||
{
|
||
g_alf_covariance_frame[ch_type][i][k].num_coeff = num_coeffs;
|
||
g_alf_covariance_frame[ch_type][i][k].num_bins = g_max_alf_num_clipping_values;
|
||
memset(g_alf_covariance_frame[ch_type][i][k].y, 0, sizeof(g_alf_covariance_frame[ch_type][i][k].y));
|
||
memset(g_alf_covariance_frame[ch_type][i][k].ee, 0, sizeof(g_alf_covariance_frame[ch_type][i][k].ee));
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int comp_idx = 0; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
g_ctu_enable_flag[comp_idx] = malloc(g_num_ctus_in_pic * sizeof(*g_ctu_enable_flag[comp_idx]));
|
||
g_ctu_enable_flag_tmp[comp_idx] = malloc(g_num_ctus_in_pic * sizeof(*g_ctu_enable_flag_tmp[comp_idx]));
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
// g_ctu_enable_flag_tmp2[comp_idx] = malloc(g_num_ctus_in_pic * sizeof(*g_ctu_enable_flag_tmp2[comp_idx]));
|
||
if (comp_idx == COMPONENT_Y)
|
||
{
|
||
g_ctu_alternative_tmp[comp_idx] = NULL;
|
||
g_ctu_alternative[comp_idx] = NULL;
|
||
}
|
||
else
|
||
{
|
||
g_ctu_alternative_tmp[comp_idx] = malloc(g_num_ctus_in_pic * sizeof(*g_ctu_alternative_tmp[comp_idx]));
|
||
g_ctu_alternative[comp_idx] = malloc(g_num_ctus_in_pic * sizeof(*g_ctu_alternative[comp_idx]));
|
||
|
||
//std::fill_n(m_ctuAlternativeTmp[compIdx], m_numCTUsInPic, 0);
|
||
for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++) {
|
||
g_ctu_alternative_tmp[comp_idx][ctu_idx] = 0;
|
||
g_ctu_alternative[comp_idx][ctu_idx] = 0;
|
||
}
|
||
}
|
||
//#endif
|
||
int num_classes = comp_idx ? 1 : MAX_NUM_ALF_CLASSES;
|
||
int num_coeffs = comp_idx ? 7 : 13;
|
||
|
||
g_alf_covariance[comp_idx] = malloc(sizeof(***g_alf_covariance[comp_idx]));
|
||
|
||
for (int i = 0; i != 1/*m_filterShapes[ch_type].size()*/; i++)
|
||
{
|
||
g_alf_covariance[comp_idx][i] = malloc(g_num_ctus_in_pic * sizeof(**g_alf_covariance[comp_idx][i]));
|
||
for (int j = 0; j < g_num_ctus_in_pic; j++)
|
||
{
|
||
g_alf_covariance[comp_idx][i][j] = malloc(num_classes * sizeof(alf_covariance));
|
||
for (int k = 0; k < num_classes; k++)
|
||
{
|
||
g_alf_covariance[comp_idx][i][j][k].num_coeff = num_coeffs;
|
||
g_alf_covariance[comp_idx][i][j][k].num_bins = g_max_alf_num_clipping_values;
|
||
memset(g_alf_covariance[comp_idx][i][j][k].y, 0, sizeof(g_alf_covariance[comp_idx][i][j][k].y));
|
||
memset(g_alf_covariance[comp_idx][i][j][k].ee, 0, sizeof(g_alf_covariance[comp_idx][i][j][k].ee));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i != 1/*m_filterShapes[COMPONENT_Y].size()*/; i++)
|
||
{
|
||
for (int j = 0; j <= MAX_NUM_ALF_CLASSES + 1; j++)
|
||
{
|
||
g_alf_covariance_merged[i][j].num_coeff = 13;
|
||
g_alf_covariance_merged[i][j].num_bins = g_max_alf_num_clipping_values;
|
||
memset(g_alf_covariance_merged[i][j].y, 0, sizeof(g_alf_covariance_merged[i][j].y));
|
||
memset(g_alf_covariance_merged[i][j].ee, 0, sizeof(g_alf_covariance_merged[i][j].ee));
|
||
}
|
||
}
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
g_filter_coeff_set = malloc(/*MAX(*/MAX_NUM_ALF_CLASSES/*, MAX_NUM_ALF_ALTERNATIVES_CHROMA)*/ * sizeof(int*));
|
||
g_filter_clipp_set = malloc(/*MAX(*/MAX_NUM_ALF_CLASSES/*, MAX_NUM_ALF_ALTERNATIVES_CHROMA)*/ * sizeof(int*));
|
||
/*#else
|
||
g_filter_coeff_set = malloc(MAX_NUM_ALF_CLASSES * sizeof(int*));
|
||
g_filter_clipp_set = malloc(MAX_NUM_ALF_CLASSES * sizeof(int*));
|
||
#endif*/
|
||
g_diff_filter_coeff = malloc(MAX_NUM_ALF_CLASSES * sizeof(int*));
|
||
|
||
for (int i = 0; i < MAX_NUM_ALF_CLASSES; i++)
|
||
{
|
||
g_filter_coeff_set[i] = malloc(MAX_NUM_ALF_LUMA_COEFF * sizeof(int));
|
||
g_filter_clipp_set[i] = malloc(MAX_NUM_ALF_LUMA_COEFF * sizeof(int));
|
||
g_diff_filter_coeff[i] = malloc(MAX_NUM_ALF_LUMA_COEFF * sizeof(int));
|
||
}
|
||
g_aps_id_start = ALF_CTB_MAX_NUM_APS;
|
||
|
||
//g_ctb_distortion_fixed_filter = malloc(g_num_ctus_in_pic * sizeof(double));
|
||
for (int comp = 0; comp < MAX_NUM_COMPONENT; comp++)
|
||
{
|
||
g_ctb_distortion_unfilter[comp] = malloc(g_num_ctus_in_pic * sizeof(double));
|
||
}
|
||
|
||
g_alf_ctb_filter_index = malloc(g_num_ctus_in_pic * sizeof(*g_alf_ctb_filter_index));
|
||
g_alf_ctb_filter_set_index_tmp = malloc(g_num_ctus_in_pic * sizeof(*g_alf_ctb_filter_set_index_tmp));
|
||
|
||
memset(g_clip_default_enc, 0, sizeof(g_clip_default_enc));
|
||
|
||
enum kvz_chroma_format chroma_fmt = state->encoder_control->chroma_format;
|
||
const int number_of_components = (chroma_fmt == KVZ_CSP_400) ? 1 : MAX_NUM_COMPONENT;
|
||
|
||
// init CTU stats buffers
|
||
for (int comp_idx = 0; comp_idx < number_of_components; comp_idx++)
|
||
{
|
||
bool is_luma = comp_idx == 0 ? 1 : 0;
|
||
const int num_classes = is_luma ? MAX_NUM_ALF_CLASSES : 1;
|
||
|
||
for (int shape = 0; shape != 1 /*m_filterShapes[toChannelType(comp_id)].size()*/; shape++)
|
||
{
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++) {
|
||
reset_alf_covariance(&g_alf_covariance[comp_idx][shape][ctu_idx][class_idx],
|
||
g_alf_num_clipping_values[comp_idx == COMPONENT_Y ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// init Frame stats buffers
|
||
const int number_of_channels = (chroma_fmt == KVZ_CSP_400) ? 1 : MAX_NUM_CHANNEL_TYPE;
|
||
for (int channel_idx = 0; channel_idx < number_of_channels; channel_idx++)
|
||
{
|
||
const channel_type channel_id = channel_idx;
|
||
bool is_luma = channel_id == CHANNEL_TYPE_LUMA ? true : false;
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
const int num_alts = is_luma ? 1 : MAX_NUM_ALF_ALTERNATIVES_CHROMA;
|
||
//#endif
|
||
const int num_classes = is_luma ? MAX_NUM_ALF_CLASSES : 1;
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
for (int alt_idx = 0; alt_idx < num_alts; ++alt_idx)
|
||
{
|
||
//#endif
|
||
for (int shape = 0; shape != 1/*m_filterShapes[channel_idx].size()*/; shape++)
|
||
{
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
reset_alf_covariance(&g_alf_covariance_frame[channel_idx][shape][is_luma ? class_idx : alt_idx], g_alf_num_clipping_values[channel_id]);
|
||
/*#else
|
||
reset_alf_covariance(&g_alf_covariance_frame[channel_idx][shape][class_idx], g_alf_num_clipping_values[channel_id]);
|
||
#endif*/
|
||
}
|
||
}
|
||
}
|
||
}
|
||
// init alf enable flags
|
||
for (int comp_idx = 0; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++) {
|
||
g_ctu_enable_flag[comp_idx][ctu_idx] = 0; //cs.picture->getAlfCtuEnableFlag( compIdx );
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (comp_idx != 0) {
|
||
g_ctu_alternative[comp_idx][ctu_idx] = 0; //cs.picture->getAlfCtuAlternativeData(compIdx);
|
||
}
|
||
//#endif
|
||
}
|
||
}
|
||
|
||
const size_t simd_padding_width = 64;
|
||
int width = state->tile->frame->width;
|
||
int height = state->tile->frame->height;
|
||
int stride = state->tile->frame->source->stride;
|
||
unsigned int luma_size = (width + 8) * (height + 8);
|
||
unsigned chroma_sizes[] = { 0, luma_size / 4, luma_size / 2, luma_size };
|
||
unsigned chroma_size = chroma_sizes[chroma_fmt];
|
||
|
||
alf_fulldata = MALLOC_SIMD_PADDED(kvz_pixel, (luma_size + 2 * chroma_size), simd_padding_width * 2);
|
||
alf_fulldata = &alf_fulldata[4 * (width + 8) + 4] + simd_padding_width / sizeof(kvz_pixel);
|
||
alf_tmp_y = &alf_fulldata[0];
|
||
alf_ctb_tmp_y = malloc((64 + 8)*(64 + 8) * sizeof(kvz_pixel));
|
||
alf_ctb_tmp_y = &alf_ctb_tmp_y[(64 + 8) * 4 + 4];
|
||
|
||
if (chroma_fmt == KVZ_CSP_400) {
|
||
alf_tmp_u = NULL;
|
||
alf_tmp_v = NULL;
|
||
alf_ctb_tmp_u = NULL;
|
||
alf_ctb_tmp_v = NULL;
|
||
}
|
||
else {
|
||
alf_tmp_u = &alf_fulldata[luma_size - (4 * (width + 8) + 4) + (2 * (stride / 2) + 2)];
|
||
alf_tmp_v = &alf_fulldata[luma_size - (4 * (width + 8) + 4) + chroma_size + (2 * (stride / 2) + 2)];
|
||
|
||
alf_ctb_tmp_u = malloc((32 + 4)*(32 + 4) * sizeof(kvz_pixel));
|
||
alf_ctb_tmp_u = &alf_ctb_tmp_u[(32 + 4) * 2 + 2];
|
||
alf_ctb_tmp_v = malloc((32 + 4)*(32 + 4) * sizeof(kvz_pixel));
|
||
alf_ctb_tmp_v = &alf_ctb_tmp_v[(32 + 4) * 2 + 2];
|
||
}
|
||
|
||
//kvz_alf_encoder_ctb
|
||
for (int i = 0; i < ALF_CTB_MAX_NUM_APS; i++) {
|
||
best_aps_ids[i] = -1;
|
||
aps_ids[i] = -1;
|
||
}
|
||
size_of_aps_ids = 0;
|
||
}
|
||
|
||
void kvz_frame_end(encoder_state_t const *state,
|
||
videoframe_t * const frame,
|
||
const lcu_order_element_t *const lcu)
|
||
{
|
||
if (lcu->index != g_num_ctus_in_pic - 1) {
|
||
return;
|
||
}
|
||
|
||
if (!g_created)
|
||
{
|
||
return;
|
||
}
|
||
|
||
g_curr_frame += 1;
|
||
|
||
const int width = frame->width;
|
||
const int height = frame->height;
|
||
int height_in_lcu = frame->height_in_lcu;
|
||
int width_in_lcu = frame->width_in_lcu;
|
||
int luma_stride = frame->rec->stride;
|
||
int chroma_stride = luma_stride >> chroma_scale_x;
|
||
int h_end = 0;
|
||
int h_start = 0;
|
||
int h_end_chroma = 0;
|
||
int h_start_chroma = 0;
|
||
int w_end = 0;
|
||
int w_start = 0;
|
||
int w_end_chroma = 0;
|
||
int w_start_chroma = 0;
|
||
int cur_ctb = 0;
|
||
{
|
||
if (state->slice->tile_group_alf_enabled_flag[COMPONENT_Y])
|
||
{
|
||
for (int h_lcu = 0; h_lcu < height_in_lcu; h_lcu++)
|
||
{
|
||
h_end = MIN(h_end + LCU_WIDTH, height);
|
||
h_end_chroma = h_end >> chroma_scale_y;
|
||
|
||
for (int w_lcu = 0; w_lcu < width_in_lcu; w_lcu++)
|
||
{
|
||
w_end = MIN(w_end + LCU_WIDTH, width);
|
||
w_end_chroma = w_end >> chroma_scale_x;
|
||
|
||
if (g_ctu_enable_flag[COMPONENT_Y][cur_ctb])
|
||
{
|
||
for (int h = h_start; h < h_end; h++)
|
||
{
|
||
for (int w = w_start; w < w_end; w++)
|
||
{
|
||
frame->rec->y[h * luma_stride + w] = alf_tmp_y[h * luma_stride + w];
|
||
}
|
||
}
|
||
}
|
||
if (state->slice->tile_group_alf_enabled_flag[COMPONENT_Cb] || state->slice->tile_group_alf_enabled_flag[COMPONENT_Cr])
|
||
{
|
||
if (g_ctu_enable_flag[COMPONENT_Cb][cur_ctb] && g_ctu_enable_flag[COMPONENT_Cr][cur_ctb])
|
||
{
|
||
for (int h = h_start_chroma; h < h_end_chroma; h++)
|
||
{
|
||
for (int w = w_start_chroma; w < w_end_chroma; w++)
|
||
{
|
||
frame->rec->u[h * chroma_stride + w] = alf_tmp_u[h * chroma_stride + w];
|
||
frame->rec->v[h * chroma_stride + w] = alf_tmp_v[h * chroma_stride + w];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
cur_ctb += 1;
|
||
w_start = w_end;
|
||
w_start_chroma = w_end_chroma;
|
||
}
|
||
w_start = w_end = 0;
|
||
w_start_chroma = w_end_chroma = 0;
|
||
h_start = h_end;
|
||
h_start_chroma = h_end_chroma;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void kvz_alf_enc_destroy(videoframe_t * const frame)
|
||
{
|
||
/*if (lcu->index != g_num_ctus_in_pic - 1) {
|
||
return;
|
||
}
|
||
|
||
if (!g_created)
|
||
{
|
||
return;
|
||
}
|
||
|
||
g_curr_frame += 1;*/
|
||
|
||
/*const int width = frame->width;
|
||
const int height = frame->height;
|
||
int height_in_lcu = frame->height_in_lcu;
|
||
int width_in_lcu = frame->width_in_lcu;
|
||
int luma_stride = frame->rec->stride;
|
||
int chroma_stride = luma_stride >> chroma_scale_x;
|
||
int h_end = 0;
|
||
int h_start = 0;
|
||
int h_end_chroma = 0;
|
||
int h_start_chroma = 0;
|
||
int w_end = 0;
|
||
int w_start = 0;
|
||
int w_end_chroma = 0;
|
||
int w_start_chroma = 0;
|
||
int cur_ctb = 0;
|
||
{
|
||
if (state->slice->tile_group_alf_enabled_flag[COMPONENT_Y])
|
||
{
|
||
for (int h_lcu = 0; h_lcu < height_in_lcu; h_lcu++)
|
||
{
|
||
h_end = MIN(h_end + LCU_WIDTH, height);
|
||
h_end_chroma = h_end >> chroma_scale_y;
|
||
|
||
for (int w_lcu = 0; w_lcu < width_in_lcu; w_lcu++)
|
||
{
|
||
w_end = MIN(w_end + LCU_WIDTH, width);
|
||
w_end_chroma = w_end >> chroma_scale_x;
|
||
|
||
if (g_ctu_enable_flag[COMPONENT_Y][cur_ctb])
|
||
{
|
||
for (int h = h_start; h < h_end; h++)
|
||
{
|
||
for (int w = w_start; w < w_end; w++)
|
||
{
|
||
frame->rec->y[h * luma_stride + w] = alf_tmp_y[h * luma_stride + w];
|
||
}
|
||
}
|
||
}
|
||
if (state->slice->tile_group_alf_enabled_flag[COMPONENT_Cb] || state->slice->tile_group_alf_enabled_flag[COMPONENT_Cr])
|
||
{
|
||
if (g_ctu_enable_flag[COMPONENT_Cb][cur_ctb] && g_ctu_enable_flag[COMPONENT_Cr][cur_ctb])
|
||
{
|
||
for (int h = h_start_chroma; h < h_end_chroma; h++)
|
||
{
|
||
for (int w = w_start_chroma; w < w_end_chroma; w++)
|
||
{
|
||
frame->rec->u[h * chroma_stride + w] = alf_tmp_u[h * chroma_stride + w];
|
||
frame->rec->v[h * chroma_stride + w] = alf_tmp_v[h * chroma_stride + w];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
cur_ctb += 1;
|
||
w_start = w_end;
|
||
w_start_chroma = w_end_chroma;
|
||
}
|
||
w_start = w_end = 0;
|
||
w_start_chroma = w_end_chroma = 0;
|
||
h_start = h_end;
|
||
h_start_chroma = h_end_chroma;
|
||
}
|
||
}
|
||
}*/
|
||
|
||
for (int channel_idx = 0; channel_idx < MAX_NUM_CHANNEL_TYPE; channel_idx++)
|
||
{
|
||
if (g_alf_covariance_frame[channel_idx])
|
||
{
|
||
channel_type chType = channel_idx ? CHANNEL_TYPE_CHROMA : CHANNEL_TYPE_LUMA;
|
||
int numClasses = channel_idx ? 1 : MAX_NUM_ALF_CLASSES;
|
||
int num_coeff = channel_idx ? 7 : 13;
|
||
for (int i = 0; i != 1/*m_filterShapes[ch_type].size()*/; i++)
|
||
{
|
||
FREE_POINTER(g_alf_covariance_frame[channel_idx][i]);
|
||
}
|
||
FREE_POINTER(g_alf_covariance_frame[channel_idx]);
|
||
}
|
||
}
|
||
|
||
for (int comp_idx = 0; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
|
||
if (g_ctu_enable_flag[comp_idx])
|
||
{
|
||
FREE_POINTER(g_ctu_enable_flag[comp_idx]);
|
||
}
|
||
|
||
if (g_ctu_enable_flag_tmp[comp_idx])
|
||
{
|
||
FREE_POINTER(g_ctu_enable_flag_tmp[comp_idx]);
|
||
}
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
/*if (g_ctu_enable_flag_tmp2[comp_idx])
|
||
{
|
||
FREE_POINTER(g_ctu_enable_flag_tmp2[comp_idx]);
|
||
}*/
|
||
|
||
if (g_ctu_alternative_tmp[comp_idx])
|
||
{
|
||
FREE_POINTER(g_ctu_alternative_tmp[comp_idx]);
|
||
}
|
||
if (g_ctu_alternative[comp_idx])
|
||
{
|
||
FREE_POINTER(g_ctu_alternative[comp_idx]);
|
||
}
|
||
//#endif
|
||
|
||
if (g_alf_covariance[comp_idx])
|
||
{
|
||
channel_type chType = comp_idx ? CHANNEL_TYPE_CHROMA : CHANNEL_TYPE_LUMA;
|
||
int numClasses = comp_idx ? 1 : MAX_NUM_ALF_CLASSES;
|
||
|
||
for (int i = 0; i != 1/*m_filterShapes[ch_type].size()*/; i++)
|
||
{
|
||
for (int j = 0; j < g_num_ctus_in_pic; j++)
|
||
{
|
||
FREE_POINTER(g_alf_covariance[comp_idx][i][j]);
|
||
}
|
||
FREE_POINTER(g_alf_covariance[comp_idx][i]);
|
||
}
|
||
FREE_POINTER(g_alf_covariance[comp_idx]);
|
||
}
|
||
}
|
||
|
||
if (g_filter_coeff_set)
|
||
{
|
||
for (int i = 0; i < MAX_NUM_ALF_CLASSES; i++)
|
||
{
|
||
FREE_POINTER(g_filter_coeff_set[i]);
|
||
}
|
||
FREE_POINTER(g_filter_coeff_set);
|
||
}
|
||
|
||
if (g_filter_clipp_set)
|
||
{
|
||
for (int i = 0; i < MAX_NUM_ALF_CLASSES; i++)
|
||
{
|
||
FREE_POINTER(g_filter_clipp_set[i]);
|
||
}
|
||
FREE_POINTER(g_filter_clipp_set);
|
||
}
|
||
|
||
if (g_diff_filter_coeff)
|
||
{
|
||
for (int i = 0; i < MAX_NUM_ALF_CLASSES; i++)
|
||
{
|
||
FREE_POINTER(g_diff_filter_coeff[i]);
|
||
}
|
||
FREE_POINTER(g_diff_filter_coeff);
|
||
}
|
||
|
||
/*if (g_ctb_distortion_fixed_filter != NULL) {
|
||
FREE_POINTER(g_ctb_distortion_fixed_filter);
|
||
}*/
|
||
|
||
for (int comp = 0; comp < MAX_NUM_COMPONENT; comp++)
|
||
{
|
||
if (g_ctb_distortion_unfilter[comp] != NULL) {
|
||
FREE_POINTER(g_ctb_distortion_unfilter[comp]);
|
||
}
|
||
}
|
||
|
||
if (g_alf_ctb_filter_index)
|
||
{
|
||
FREE_POINTER(g_alf_ctb_filter_index);
|
||
}
|
||
|
||
if (g_alf_ctb_filter_set_index_tmp)
|
||
{
|
||
FREE_POINTER(g_alf_ctb_filter_set_index_tmp);
|
||
}
|
||
|
||
//if (tmp_rec_pic)
|
||
/*{
|
||
memcpy(&frame->rec->y, &tmp_rec_pic->y, sizeof(frame->rec->y));
|
||
memcpy(&frame->rec->u, &tmp_rec_pic->u, sizeof(frame->rec->u));
|
||
memcpy(&frame->rec->v, &tmp_rec_pic->v, sizeof(frame->rec->v));
|
||
memcpy(&frame->rec->data[0], &tmp_rec_pic->data[0], sizeof(frame->rec->data[0]));
|
||
memcpy(&frame->rec->data[1], &tmp_rec_pic->data[1], sizeof(frame->rec->data[1]));
|
||
memcpy(&frame->rec->data[2], &tmp_rec_pic->data[2], sizeof(frame->rec->data[2]));
|
||
tmp_rec_pic = NULL;
|
||
}*/
|
||
|
||
|
||
/*
|
||
for (int h = 0; h < height; h++) {
|
||
for (int w = 0; w < width; w++) {
|
||
frame->rec->y[h * stride + w] = alf_tmp_y[h * stride + w];
|
||
}
|
||
}
|
||
|
||
stride = stride >> 1;
|
||
for (int h = 0; h < height >> 1; h++) {
|
||
for (int w = 0; w < width >> 1; w++) {
|
||
frame->rec->u[h * stride + w] = alf_tmp_u[h * stride + w];
|
||
frame->rec->v[h * stride + w] = alf_tmp_v[h * stride + w];
|
||
}
|
||
}
|
||
|
||
}
|
||
}*/
|
||
|
||
//memcpy(&frame->rec->y, &alf_tmp_y, sizeof(frame->rec->y));
|
||
//memcpy(&frame->rec->u, &alf_tmp_u, sizeof(frame->rec->u));
|
||
//memcpy(&frame->rec->v, &alf_tmp_v, sizeof(frame->rec->v));
|
||
|
||
kvz_alf_destroy(frame);
|
||
}
|
||
|
||
|
||
void kvz_alf_encoder(encoder_state_t *const state,
|
||
const lcu_order_element_t *lcu,
|
||
alf_aps *aps,
|
||
channel_type channel,
|
||
//#if ENABLE_QPA
|
||
const double lambda_chroma_weight // = 0.0
|
||
//#endif
|
||
)
|
||
{
|
||
int ctu_idx = lcu->index;
|
||
//const TempCtx ctxStart(m_CtxCache, AlfCtx(m_CABACEstimator->getCtx()));
|
||
const cabac_data_t ctx_start;
|
||
memcpy(&ctx_start, &cabac_estimator, sizeof(ctx_start));
|
||
//TempCtx ctxBest(m_CtxCache);
|
||
cabac_data_t ctx_best;
|
||
|
||
bool is_luma = channel == CHANNEL_TYPE_LUMA ? 1 : 0;
|
||
kvz_config cfg = state->encoder_control->cfg;
|
||
|
||
double cost_min = MAX_DOUBLE;
|
||
g_bits_new_filter[channel] = 0;
|
||
const int num_classes = is_luma ? MAX_NUM_ALF_CLASSES : 1;
|
||
int ui_coeff_bits = 0;
|
||
|
||
for (int i_shape_idx = 0; i_shape_idx < 1/*alfFilterShape.size()*/; i_shape_idx++)
|
||
{
|
||
//m_alfSliceParamTemp = alfSliceParam;
|
||
copy_alf_param(&g_alf_aps_temp, aps);
|
||
|
||
//1. get unfiltered distortion
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (!is_luma) g_alf_aps_temp.num_alternatives_chroma = 1;
|
||
//#endif
|
||
double cost = get_unfiltered_distortion_cov_channel(g_alf_covariance_frame[channel][i_shape_idx], channel);
|
||
cost /= 1.001; // slight preference for unfiltered choice
|
||
|
||
if (cost < cost_min)
|
||
{
|
||
cost_min = cost;
|
||
if (is_luma) {
|
||
aps->enabled_flag[COMPONENT_Y] = 0;
|
||
}
|
||
else {
|
||
aps->enabled_flag[COMPONENT_Cb] = 0;
|
||
aps->enabled_flag[COMPONENT_Cr] = 0;
|
||
}
|
||
// no CABAC signalling
|
||
//ctxBest = AlfCtx(ctxStart);
|
||
memcpy(&ctx_best, &ctx_start, sizeof(ctx_best));
|
||
//setCtuEnableFlag(m_ctuEnableFlagTmp, channel, 0);
|
||
/*if (is_luma) {
|
||
memset(g_ctu_enable_flag_tmp[COMPONENT_Y], 0, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}
|
||
else {
|
||
memset(g_ctu_enable_flag_tmp[COMPONENT_Cb], 0, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
memset(g_ctu_enable_flag_tmp[COMPONENT_Cr], 0, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}*/
|
||
set_ctu_enable_flag(g_ctu_enable_flag_tmp, channel, ctu_idx, 0);
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (!is_luma) {
|
||
//for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++) {
|
||
g_ctu_alternative_tmp[COMPONENT_Cb][ctu_idx] = 0;
|
||
g_ctu_alternative_tmp[COMPONENT_Cr][ctu_idx] = 0;
|
||
//}
|
||
}
|
||
//#endif
|
||
}
|
||
|
||
const int non_linear_flag_max =
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
(is_luma ? cfg.alf_non_linear_luma : 0) // For Chroma non linear flag is check for each alternative filter
|
||
/*#else
|
||
(isLuma(channel) ? m_encCfg->getUseNonLinearAlfLuma() : m_encCfg->getUseNonLinearAlfChroma())
|
||
#endif*/
|
||
? 2 : 1;
|
||
|
||
for (int non_linear_flag = 0; non_linear_flag < non_linear_flag_max; non_linear_flag++)
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
for (int num_alternatives = is_luma ? 1 : MIN(g_num_ctus_in_pic * 2, MAX_NUM_ALF_ALTERNATIVES_CHROMA); num_alternatives > 0; num_alternatives--)
|
||
{
|
||
if (!is_luma)
|
||
g_alf_aps_temp.num_alternatives_chroma = num_alternatives;
|
||
//#endif
|
||
|
||
//2. all CTUs are on
|
||
//setEnableFlag(m_alfSliceParamTemp, channel, true);
|
||
if (is_luma) {
|
||
g_alf_aps_temp.enabled_flag[COMPONENT_Y] = 1;
|
||
}
|
||
else {
|
||
g_alf_aps_temp.enabled_flag[COMPONENT_Cb] = 1;
|
||
g_alf_aps_temp.enabled_flag[COMPONENT_Cr] = 1;
|
||
}
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (is_luma)
|
||
g_alf_aps_temp.non_linear_flag[channel][0] = non_linear_flag;
|
||
/*#else
|
||
m_alfParamTemp.nonLinearFlag[channel] = nonLinearFlag;
|
||
#endif*/
|
||
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxStart);
|
||
memcpy(&cabac_estimator, &ctx_start, sizeof(cabac_estimator));
|
||
//setCtuEnableFlag(m_ctuEnableFlag, channel, 1);
|
||
/*if (is_luma) {
|
||
memset(g_ctu_enable_flag[COMPONENT_Y], 1, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}
|
||
else {
|
||
memset(g_ctu_enable_flag[COMPONENT_Cb], 1, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
memset(g_ctu_enable_flag[COMPONENT_Cr], 1, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}*/
|
||
set_ctu_enable_flag(g_ctu_enable_flag, channel, ctu_idx, 1);
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
// all alternatives are on
|
||
if (!is_luma) init_ctu_alternative_chroma(g_ctu_alternative);
|
||
cost = kvz_alf_get_filter_coeff_and_cost(state, channel, 0, &ui_coeff_bits, i_shape_idx, true, false, ctu_idx);
|
||
/*#else
|
||
cost = kvz_alf_get_filter_coeff_and_cost(state, channel, 0, &ui_coeff_bits, i_shape_idx, non_linear_flag != 0, false);
|
||
#endif*/
|
||
|
||
if (cost < cost_min)
|
||
{
|
||
g_bits_new_filter[channel] = ui_coeff_bits;
|
||
cost_min = cost;
|
||
copy_alf_param_w_channel(aps, &g_alf_aps_temp, channel);
|
||
//ctxBest = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_best, &cabac_estimator, sizeof(ctx_best));
|
||
//setCtuEnableFlag(m_ctuEnableFlagTmp, channel, 1);
|
||
/*if (is_luma) {
|
||
memset(g_ctu_enable_flag_tmp[COMPONENT_Y], 1, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}
|
||
else {
|
||
memset(g_ctu_enable_flag_tmp[COMPONENT_Cb], 1, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
memset(g_ctu_enable_flag_tmp[COMPONENT_Cr], 1, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}*/
|
||
set_ctu_enable_flag(g_ctu_enable_flag_tmp, channel, ctu_idx, 1);
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (!is_luma) {
|
||
//memcpy(g_ctu_alternative_tmp[COMPONENT_Cb], g_ctu_alternative[COMPONENT_Cb], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
//memcpy(g_ctu_alternative_tmp[COMPONENT_Cr], g_ctu_alternative[COMPONENT_Cr], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
g_ctu_alternative_tmp[COMPONENT_Cb][ctu_idx] = g_ctu_alternative[COMPONENT_Cb][ctu_idx];
|
||
g_ctu_alternative_tmp[COMPONENT_Cr][ctu_idx] = g_ctu_alternative[COMPONENT_Cr][ctu_idx];
|
||
}
|
||
//#endif
|
||
}
|
||
|
||
//3. CTU decision
|
||
double dist_unfilter = 0;
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
double prev_it_cost = MAX_DOUBLE;
|
||
//#endif
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
const int iter_num = is_luma ? (2 * 4 + 1) : (2 * (2 + g_alf_aps_temp.num_alternatives_chroma - 1) + 1);
|
||
/*#else
|
||
const int iterNum = isLuma(channel) ? (2 * 4 + 1) : (2 * 2 + 1);
|
||
#endif*/
|
||
|
||
for (int iter = 0; iter < iter_num; iter++)
|
||
{
|
||
if ((iter & 0x01) == 0)
|
||
{
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxStart);
|
||
memcpy(&cabac_estimator, &ctx_start, sizeof(cabac_estimator));
|
||
cost = g_lambda[channel] * ui_coeff_bits;
|
||
cost += kvz_alf_derive_ctb_alf_enable_flags(state, channel, i_shape_idx, &dist_unfilter, num_classes, ctu_idx,
|
||
//#if ENABLE_QPA
|
||
lambda_chroma_weight
|
||
//#endif
|
||
);
|
||
if (cost < cost_min)
|
||
{
|
||
g_bits_new_filter[channel] = ui_coeff_bits;
|
||
|
||
cost_min = cost;
|
||
//ctxBest = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_best, &cabac_estimator, sizeof(ctx_best));
|
||
//copyCtuEnableFlag(m_ctuEnableFlagTmp, m_ctuEnableFlag, channel);
|
||
/*if (is_luma) {
|
||
memcpy(g_ctu_enable_flag_tmp[COMPONENT_Y], g_ctu_enable_flag[COMPONENT_Y], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}
|
||
else {
|
||
memcpy(g_ctu_enable_flag_tmp[COMPONENT_Cr], g_ctu_enable_flag[COMPONENT_Cr], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
memcpy(g_ctu_enable_flag_tmp[COMPONENT_Cb], g_ctu_enable_flag[COMPONENT_Cb], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}*/
|
||
copy_ctu_enable_flag(g_ctu_enable_flag_tmp, g_ctu_enable_flag, channel, ctu_idx);
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (!is_luma) {
|
||
//for (int idx_ctu = 0; idx_ctu < g_num_ctus_in_pic; idx_ctu++) {
|
||
g_ctu_alternative_tmp[COMPONENT_Cb][ctu_idx] = g_ctu_alternative[COMPONENT_Cb][ctu_idx];
|
||
g_ctu_alternative_tmp[COMPONENT_Cr][ctu_idx] = g_ctu_alternative[COMPONENT_Cr][ctu_idx];
|
||
//}
|
||
}
|
||
//#endif
|
||
copy_alf_param_w_channel(aps, &g_alf_aps_temp, channel);
|
||
}
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
else if (cost >= prev_it_cost)
|
||
{
|
||
// High probability that we have converged or we are diverging
|
||
break;
|
||
}
|
||
prev_it_cost = cost;
|
||
//#endif
|
||
}
|
||
else
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
// no need to reset CABAC here, since uiCoeffBits is not affected
|
||
/*cost = */kvz_alf_get_filter_coeff_and_cost(state, channel, dist_unfilter, &ui_coeff_bits, i_shape_idx, true, false, ctu_idx);
|
||
/*#else
|
||
cost = kvz_alf_get_filter_coeff_and_cost(state, channel, dist_unfilter, &ui_coeff_bits, i_shape_idx, true, false);
|
||
#endif*/
|
||
}
|
||
}//for iter
|
||
// Decrease number of alternatives and reset ctu params and filters
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
}
|
||
//#endif
|
||
}//for non_linea_flag
|
||
}//for shape_idx
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxBest);
|
||
memcpy(&cabac_estimator, &ctx_best, sizeof(cabac_estimator));
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (!is_luma) {
|
||
//memcpy(g_ctu_alternative[COMPONENT_Cb], g_ctu_alternative_tmp[COMPONENT_Cb], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
//memcpy(g_ctu_alternative[COMPONENT_Cr], g_ctu_alternative_tmp[COMPONENT_Cr], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
g_ctu_alternative[COMPONENT_Cb][ctu_idx] = g_ctu_alternative_tmp[COMPONENT_Cb][ctu_idx];
|
||
g_ctu_alternative[COMPONENT_Cr][ctu_idx] = g_ctu_alternative_tmp[COMPONENT_Cr][ctu_idx];
|
||
}
|
||
/*if (is_luma)
|
||
{
|
||
memcpy(g_ctu_enable_flag[COMPONENT_Y], g_ctu_enable_flag_tmp[COMPONENT_Y], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}
|
||
else
|
||
{
|
||
memcpy(g_ctu_enable_flag[COMPONENT_Cb], g_ctu_enable_flag_tmp[COMPONENT_Cb], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
memcpy(g_ctu_enable_flag[COMPONENT_Cr], g_ctu_enable_flag_tmp[COMPONENT_Cr], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
}*/
|
||
copy_ctu_enable_flag(g_ctu_enable_flag, g_ctu_enable_flag_tmp, channel, ctu_idx);
|
||
//#endif
|
||
}
|
||
|
||
void kvz_alf_get_avai_aps_ids_luma(encoder_state_t *const state,
|
||
int *new_aps_id,
|
||
int *aps_ids,
|
||
int *size_of_aps_ids)
|
||
{
|
||
param_set_map *aps_set = state->slice->param_set_map;
|
||
for (int i = 0; i < ALF_CTB_MAX_NUM_APS; i++)
|
||
{
|
||
state->slice->apss[i] = aps_set[i + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set;
|
||
}
|
||
|
||
//std::vector<int> result;
|
||
int aps_id_checked = 0, cur_aps_id = g_aps_id_start;
|
||
if (cur_aps_id < ALF_CTB_MAX_NUM_APS)
|
||
{
|
||
while (aps_id_checked < ALF_CTB_MAX_NUM_APS && (state->frame->slicetype == KVZ_SLICE_I) && *size_of_aps_ids < ALF_CTB_MAX_NUM_APS /*&& /*!cs.slice->getPendingRasInit()*/ && (state->frame->pictype == KVZ_NAL_IDR_W_RADL || state->frame->pictype == KVZ_NAL_IDR_N_LP))
|
||
{
|
||
alf_aps *cur_aps = &state->slice->apss[cur_aps_id];
|
||
bool aps_found = aps_set[cur_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].b_changed;
|
||
|
||
if (aps_found/*cur_aps*/ && cur_aps->t_layer/*cur_aps->getTemporalId()*/ <= state->slice->id/*cs.slice->getTLayer()*/ && cur_aps->new_filter_flag[CHANNEL_TYPE_LUMA])
|
||
{
|
||
//result.push_back(cur_aps_id);
|
||
bool add_aps = true;
|
||
for (int aps_idx = 0; aps_idx < (*size_of_aps_ids); aps_idx++)
|
||
{
|
||
if (aps_ids[aps_idx] == cur_aps_id)
|
||
{
|
||
add_aps = false;
|
||
continue;
|
||
}
|
||
}
|
||
if (add_aps)
|
||
{
|
||
aps_ids[*size_of_aps_ids] = cur_aps_id;
|
||
(*size_of_aps_ids)++;
|
||
}
|
||
}
|
||
aps_id_checked++;
|
||
cur_aps_id = (cur_aps_id + 1) % ALF_CTB_MAX_NUM_APS;
|
||
}
|
||
}
|
||
state->slice->tile_group_num_aps = *size_of_aps_ids;
|
||
for (int i = 0; i < state->slice->tile_group_num_aps; i++)
|
||
{
|
||
state->slice->tile_group_luma_aps_id[i] = aps_ids[i];
|
||
}
|
||
|
||
//*new_aps_id = g_aps_id_start - 1;
|
||
*new_aps_id = ALF_CTB_MAX_NUM_APS - *size_of_aps_ids - 1;
|
||
if (*new_aps_id < 0)
|
||
{
|
||
*new_aps_id = (int)ALF_CTB_MAX_NUM_APS - 1;
|
||
}
|
||
assert(*new_aps_id < (int)MAX_NUM_APS); //Wrong APS index assignment in getAvaiApsIdsLuma
|
||
}
|
||
|
||
void kvz_alf_derive_stats_for_filtering(encoder_state_t *const state,
|
||
const lcu_order_element_t *const lcu)
|
||
{
|
||
enum kvz_chroma_format chroma_fmt = state->encoder_control->chroma_format;
|
||
//alf_classifier **g_classifier = state->tile->frame->alf_info->g_classifier;
|
||
|
||
int32_t pic_width = state->tile->frame->rec->width;
|
||
int32_t pic_height = state->tile->frame->rec->height;
|
||
//int ctu_rs_addr = 0;
|
||
|
||
const int number_of_components = (chroma_fmt == KVZ_CSP_400) ? 1 : MAX_NUM_COMPONENT;
|
||
|
||
/*// init CTU stats buffers
|
||
for (int comp_idx = 0; comp_idx < number_of_components; comp_idx++)
|
||
{
|
||
bool is_luma = comp_idx == 0 ? 1 : 0;
|
||
const int num_classes = is_luma ? MAX_NUM_ALF_CLASSES : 1;
|
||
|
||
for (int shape = 0; shape != 1 /*m_filterShapes[toChannelType(comp_id)].size()*//*; shape++)
|
||
{
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
//t<>m<EFBFBD> luup pois
|
||
/*for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++)
|
||
{*//*
|
||
|
||
reset_alf_covariance(&g_alf_covariance[comp_idx][shape][lcu->index][class_idx],
|
||
g_alf_num_clipping_values[comp_idx == COMPONENT_Y ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA]);
|
||
|
||
//}
|
||
}
|
||
}
|
||
}
|
||
|
||
//kerran jossain muualla (kai?)
|
||
// init Frame stats buffers
|
||
const int number_of_channels = (chroma_fmt == KVZ_CSP_400) ? 1 : MAX_NUM_CHANNEL_TYPE;
|
||
for (int channel_idx = 0; channel_idx < number_of_channels; channel_idx++)
|
||
{
|
||
const channel_type channel_id = channel_idx;
|
||
const int num_classes = channel_id == CHANNEL_TYPE_LUMA ? MAX_NUM_ALF_CLASSES : 1;
|
||
for (int shape = 0; shape != 1/*m_filterShapes[channel_idx].size()*//*; shape++)
|
||
{
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
reset_alf_covariance(&g_alf_covariance_frame[channel_idx][shape][class_idx], g_alf_num_clipping_values[channel_id]);
|
||
}
|
||
}
|
||
}*/
|
||
|
||
bool clip_top = false, clip_bottom = false, clip_left = false, clip_right = false;
|
||
int num_hor_vir_bndry = 0, num_ver_vir_bndry = 0;
|
||
int hor_vir_bndry_pos[] = { 0, 0, 0 };
|
||
int ver_vir_bndry_pos[] = { 0, 0, 0 };
|
||
|
||
int max_cu_height = LCU_WIDTH;
|
||
|
||
//turhat
|
||
/*for (int y_pos = 0; y_pos < pic_height; y_pos += max_cu_height)
|
||
{
|
||
for (int x_pos = 0; x_pos < pic_width; x_pos += max_cu_width)
|
||
{*/
|
||
|
||
//lcu->size
|
||
const int x_pos = lcu->position_px.x;
|
||
const int y_pos = lcu->position_px.y;
|
||
const int width = lcu->size.x; //(x_pos + max_cu_width > pic_width) ? (pic_width - x_pos) : max_cu_width;
|
||
const int height = lcu->size.y; //(y_pos + max_cu_height > pic_height) ? (pic_height - y_pos) : max_cu_height;
|
||
|
||
if (is_crossed_by_virtual_boundaries(x_pos, y_pos, width, height, &clip_top, &clip_bottom, &clip_left, &clip_right, &num_hor_vir_bndry, &num_ver_vir_bndry, hor_vir_bndry_pos, ver_vir_bndry_pos, state))
|
||
{
|
||
int y_start = y_pos;
|
||
for (int i = 0; i <= num_hor_vir_bndry; i++)
|
||
{
|
||
const int y_end = i == num_hor_vir_bndry ? y_pos + height : hor_vir_bndry_pos[i];
|
||
const int h = y_end - y_start;
|
||
const bool clip_t = (i == 0 && clip_top) || (i > 0) || (y_start == 0);
|
||
const bool clip_b = (i == num_hor_vir_bndry && clip_bottom) || (i < num_hor_vir_bndry) || (y_end == pic_height);
|
||
|
||
int x_start = x_pos;
|
||
for (int j = 0; j <= num_ver_vir_bndry; j++)
|
||
{
|
||
const int x_end = j == num_ver_vir_bndry ? x_pos + width : ver_vir_bndry_pos[j];
|
||
const int w = x_end - x_start;
|
||
const bool clip_l = (j == 0 && clip_left) || (j > 0) || (x_start == 0);
|
||
const bool clip_r = (j == num_ver_vir_bndry && clip_right) || (j < num_ver_vir_bndry) || (x_end == pic_width);
|
||
|
||
const int w_buf = w + (clip_l ? 0 : MAX_ALF_PADDING_SIZE) + (clip_r ? 0 : MAX_ALF_PADDING_SIZE);
|
||
const int h_buf = h + (clip_t ? 0 : MAX_ALF_PADDING_SIZE) + (clip_b ? 0 : MAX_ALF_PADDING_SIZE);
|
||
//PelUnitBuf recBuf = m_tempBuf2.subBuf(UnitArea(cs.area.chromaFormat, Area(0, 0, w_buf, h_buf)));
|
||
//recBuf.copyFrom(recYuv.subBuf(UnitArea(cs.area.chromaFormat, Area(x_start - (clip_l ? 0 : MAX_ALF_PADDING_SIZE), y_start - (clip_t ? 0 : MAX_ALF_PADDING_SIZE), w_buf, h_buf))));
|
||
//recBuf.extendBorderPel(MAX_ALF_PADDING_SIZE);
|
||
//recBuf = recBuf.subBuf(UnitArea(cs.area.chromaFormat, Area(clip_l ? 0 : MAX_ALF_PADDING_SIZE, clip_t ? 0 : MAX_ALF_PADDING_SIZE, w, h)));
|
||
|
||
//const UnitArea area(m_chromaFormat, Area(0, 0, w, h));
|
||
//const UnitArea areaDst(m_chromaFormat, Area(x_start, y_start, w, h));
|
||
for (int comp_idx = 0; comp_idx < number_of_components; comp_idx++)
|
||
{
|
||
const bool is_luma = comp_idx == COMPONENT_Y ? 1 : 0;
|
||
channel_type ch_type = is_luma ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA;
|
||
|
||
int blk_w = is_luma ? w : w >> chroma_scale_x;
|
||
int blk_h = is_luma ? h : h >> chroma_scale_y;
|
||
int pos_x = is_luma ? x_start : x_start >> chroma_scale_x;
|
||
int pos_y = is_luma ? y_start : y_start >> chroma_scale_y;
|
||
|
||
int32_t org_stride = is_luma ? state->tile->frame->source->stride : state->tile->frame->source->stride >> chroma_scale_x;
|
||
int32_t rec_stride = is_luma ? state->tile->frame->rec->stride : state->tile->frame->rec->stride >> chroma_scale_x;
|
||
|
||
kvz_pixel *org = comp_idx ? (comp_idx - 1 ? &state->tile->frame->source->v[pos_x + pos_y * org_stride] : &state->tile->frame->source->u[pos_x + pos_y * org_stride]) : &state->tile->frame->source->y[pos_x + pos_y * org_stride];
|
||
kvz_pixel *rec = comp_idx ? (comp_idx - 1 ? &state->tile->frame->rec->v[pos_x + pos_y * org_stride] : &state->tile->frame->rec->u[pos_x + pos_y * org_stride]) : &state->tile->frame->rec->y[pos_x + pos_y * org_stride];
|
||
|
||
for (int shape = 0; shape !=1/*m_filterShapes[ch_type].size()*/; shape++)
|
||
{
|
||
kvz_alf_get_blk_stats(state, lcu, ch_type, &g_alf_covariance[comp_idx][shape][lcu->index], comp_idx ? NULL : g_classifier,
|
||
org, org_stride, rec, rec_stride, pos_x, pos_y, pos_x, pos_y, blk_w, blk_h,
|
||
((comp_idx == 0) ? g_alf_vb_luma_ctu_height : g_alf_vb_chma_ctu_height),
|
||
((y_pos + max_cu_height >= pic_height) ? pic_height : ((comp_idx == 0) ? g_alf_vb_luma_pos : g_alf_vb_chma_pos))
|
||
);
|
||
}
|
||
}
|
||
|
||
x_start = x_end;
|
||
}
|
||
|
||
y_start = y_end;
|
||
}
|
||
|
||
for (int comp_idx = 0; comp_idx < number_of_components; comp_idx++)
|
||
{
|
||
const bool is_luma = comp_idx == COMPONENT_Y ? 1 : 0;
|
||
channel_type ch_type = is_luma ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA;
|
||
|
||
for (int shape = 0; shape != 1/*m_filterShapes[chType].size()*/; shape++)
|
||
{
|
||
const int num_classes = is_luma ? MAX_NUM_ALF_CLASSES : 1;
|
||
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
add_alf_cov(&g_alf_covariance_frame[ch_type][shape][is_luma ? class_idx : 0], &g_alf_covariance[comp_idx][shape][lcu->index][class_idx]);
|
||
/*#else
|
||
add_alf_cov(&g_alf_covariance_frame[ch_type][shape][class_idx], &g_alf_covariance[comp_idx][shape][lcu->index][class_idx]);
|
||
#endif*/
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (int comp_idx = 0; comp_idx < number_of_components; comp_idx++)
|
||
{
|
||
const bool is_luma = comp_idx == COMPONENT_Y ? 1 : 0;
|
||
channel_type ch_type = is_luma ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA;
|
||
|
||
int blk_w = is_luma ? width : width >> chroma_scale_x;
|
||
int blk_h = is_luma ? height : height >> chroma_scale_y;
|
||
int pos_x = is_luma ? x_pos : x_pos >> chroma_scale_x;
|
||
int pos_y = is_luma ? y_pos : y_pos >> chroma_scale_y;
|
||
|
||
int32_t org_stride = is_luma ? state->tile->frame->source->stride : state->tile->frame->source->stride >> chroma_scale_x;
|
||
int32_t rec_stride = is_luma ? state->tile->frame->rec->stride : state->tile->frame->rec->stride >> chroma_scale_x;
|
||
|
||
kvz_pixel *org = comp_idx ? (comp_idx - 1 ? &state->tile->frame->source->v[pos_x + pos_y * org_stride] : &state->tile->frame->source->u[pos_x + pos_y * org_stride]) : &state->tile->frame->source->y[pos_x + pos_y * org_stride];
|
||
kvz_pixel *rec = comp_idx ? (comp_idx - 1 ? &state->tile->frame->rec->v[pos_x + pos_y * rec_stride] : &state->tile->frame->rec->u[pos_x + pos_y * rec_stride]) : &state->tile->frame->rec->y[pos_x + pos_y * rec_stride];
|
||
|
||
for (int shape = 0; shape != 1/*m_filterShapes[ch_type].size()*/; shape++)
|
||
{
|
||
kvz_alf_get_blk_stats(state, lcu, ch_type, &g_alf_covariance[comp_idx][shape][lcu->index], comp_idx ? NULL : g_classifier, org, org_stride, rec, rec_stride, pos_x, pos_y, pos_x, pos_y, blk_w, blk_h
|
||
, (is_luma ? g_alf_vb_luma_ctu_height : g_alf_vb_chma_ctu_height)
|
||
, ((y_pos + max_cu_height >= pic_height) ? pic_height : ((is_luma) ? g_alf_vb_luma_pos : g_alf_vb_chma_pos)));
|
||
|
||
const int num_classes = is_luma ? MAX_NUM_ALF_CLASSES : 1;
|
||
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
add_alf_cov(&g_alf_covariance_frame[ch_type][shape][is_luma ? class_idx : 0], &g_alf_covariance[comp_idx][shape][lcu->index][class_idx]);
|
||
/*#else
|
||
add_alf_cov(&g_alf_covariance_frame[ch_type][shape][class_idx], &g_alf_covariance[comp_idx][shape][lcu->index][class_idx]);
|
||
#endif*/
|
||
}
|
||
}
|
||
}
|
||
}
|
||
//turhat
|
||
/*ctu_rs_addr++;
|
||
}
|
||
}*/
|
||
}
|
||
|
||
void kvz_alf_get_blk_stats(encoder_state_t *const state,
|
||
const lcu_order_element_t *const lcu,
|
||
channel_type channel,
|
||
alf_covariance **alf_covariance,
|
||
alf_classifier **g_classifier,
|
||
kvz_pixel *org,
|
||
int32_t org_stride,
|
||
kvz_pixel *rec,
|
||
int32_t rec_stride,
|
||
const int x_pos,
|
||
const int y_pos,
|
||
const int x_dst,
|
||
const int y_dst,
|
||
const int width,
|
||
const int height,
|
||
int vb_ctu_height,
|
||
int vb_pos)
|
||
{
|
||
static int e_local[MAX_NUM_ALF_LUMA_COEFF][MAX_ALF_NUM_CLIPPING_VALUES];
|
||
|
||
const int num_bins = g_alf_num_clipping_values[channel];
|
||
|
||
int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
int transpose_idx = 0;
|
||
int class_idx = 0;
|
||
|
||
for (int i = 0; i < height; i++)
|
||
{
|
||
int vb_distance = ((y_dst + i) % vb_ctu_height) - vb_pos;
|
||
for (int j = 0; j < width; j++)
|
||
{
|
||
if (g_classifier && g_classifier[y_dst + i][x_dst + j].class_idx == ALF_UNUSED_CLASS_IDX && g_classifier[y_dst + i][x_dst + j].transpose_idx == ALF_UNUSED_TRANSPOSE_IDX)
|
||
{
|
||
continue;
|
||
}
|
||
memset(e_local, 0, sizeof(e_local));
|
||
if (g_classifier)
|
||
{
|
||
alf_classifier* cl = &g_classifier[y_dst + i][x_dst + j];
|
||
transpose_idx = cl->transpose_idx;
|
||
class_idx = cl->class_idx;
|
||
}
|
||
|
||
double weight = 1.0;
|
||
if (0/*m_alfWSSD*/)
|
||
{
|
||
weight = g_luma_level_to_weight_plut[org[j]];
|
||
}
|
||
int y_local = org[j] - rec[j];
|
||
kvz_alf_calc_covariance(e_local, rec + j, rec_stride, channel, transpose_idx, vb_distance);
|
||
for (int k = 0; k < num_coeff; k++)
|
||
{
|
||
for (int l = k; l < num_coeff; l++)
|
||
{
|
||
for (int b0 = 0; b0 < num_bins; b0++)
|
||
{
|
||
for (int b1 = 0; b1 < num_bins; b1++)
|
||
{
|
||
if (0/*m_alfWSSD*/)
|
||
{
|
||
(*alf_covariance)[class_idx].ee[b0][b1][k][l] += weight * (double)(e_local[k][b0] * e_local[l][b1]);
|
||
}
|
||
else
|
||
{
|
||
(*alf_covariance)[class_idx].ee[b0][b1][k][l] += e_local[k][b0] * e_local[l][b1];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
if (0/*m_alfWSSD*/)
|
||
{
|
||
(*alf_covariance)[class_idx].y[b][k] += weight * (double)(e_local[k][b] * y_local);
|
||
}
|
||
else
|
||
{
|
||
(*alf_covariance)[class_idx].y[b][k] += e_local[k][b] * y_local;
|
||
}
|
||
}
|
||
}
|
||
if (0/*m_alfWSSD*/)
|
||
{
|
||
(*alf_covariance)[class_idx].pix_acc += weight * (double)(y_local * y_local);
|
||
}
|
||
else
|
||
{
|
||
(*alf_covariance)[class_idx].pix_acc += y_local * y_local;
|
||
}
|
||
}
|
||
org += org_stride;
|
||
rec += rec_stride;
|
||
}
|
||
|
||
int num_classes = g_classifier ? MAX_NUM_ALF_CLASSES : 1;
|
||
for (class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
for (int k = 1; k < num_coeff; k++)
|
||
{
|
||
for (int l = 0; l < k; l++)
|
||
{
|
||
for (int b0 = 0; b0 < num_bins; b0++)
|
||
{
|
||
for (int b1 = 0; b1 < num_bins; b1++)
|
||
{
|
||
(*alf_covariance)[class_idx].ee[b0][b1][k][l] = (*alf_covariance)[class_idx].ee[b1][b0][l][k];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void kvz_alf_calc_covariance(int e_local[MAX_NUM_ALF_LUMA_COEFF][MAX_ALF_NUM_CLIPPING_VALUES],
|
||
const kvz_pixel *rec,
|
||
const int stride,
|
||
const channel_type channel,
|
||
const int transpose_idx,
|
||
int vb_distance)
|
||
{
|
||
int clip_top_row = -4;
|
||
int clip_bot_row = 4;
|
||
if (vb_distance >= -3 && vb_distance < 0)
|
||
{
|
||
clip_bot_row = -vb_distance - 1;
|
||
clip_top_row = -clip_bot_row; // symmetric
|
||
}
|
||
else if (vb_distance >= 0 && vb_distance < 3)
|
||
{
|
||
clip_top_row = -vb_distance;
|
||
clip_bot_row = -clip_top_row; // symmetric
|
||
}
|
||
|
||
const bool is_luma = channel == CHANNEL_TYPE_LUMA;
|
||
const int *filter_pattern = is_luma ? alf_pattern_7 : alf_pattern_5;
|
||
const int half_filter_length = (is_luma ? 7 : 5) >> 1;
|
||
const short* clip = g_alf_clipping_values[channel];
|
||
const int num_bins = g_alf_num_clipping_values[channel];
|
||
|
||
int k = 0;
|
||
|
||
const short curr = rec[0];
|
||
|
||
if (transpose_idx == 0)
|
||
{
|
||
for (int i = -half_filter_length; i < 0; i++)
|
||
{
|
||
const kvz_pixel* rec0 = rec + MAX(i, clip_top_row) * stride;
|
||
const kvz_pixel* rec1 = rec - MAX(i, -clip_bot_row) * stride;
|
||
for (int j = -half_filter_length - i; j <= half_filter_length + i; j++, k++)
|
||
{
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
e_local[filter_pattern[k]][b] += clip_alf(clip[b], curr, rec0[j], rec1[-j]);
|
||
}
|
||
}
|
||
}
|
||
for (int j = -half_filter_length; j < 0; j++, k++)
|
||
{
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
e_local[filter_pattern[k]][b] += clip_alf(clip[b], curr, rec[j], rec[-j]);
|
||
}
|
||
}
|
||
}
|
||
else if (transpose_idx == 1)
|
||
{
|
||
for (int j = -half_filter_length; j < 0; j++)
|
||
{
|
||
const kvz_pixel* rec0 = rec + j;
|
||
const kvz_pixel* rec1 = rec - j;
|
||
|
||
for (int i = -half_filter_length - j; i <= half_filter_length + j; i++, k++)
|
||
{
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
e_local[filter_pattern[k]][b] += clip_alf(clip[b], curr, rec0[MAX(i, clip_top_row) * stride], rec1[-MAX(i, -clip_bot_row) * stride]);
|
||
}
|
||
}
|
||
}
|
||
for (int i = -half_filter_length; i < 0; i++, k++)
|
||
{
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
e_local[filter_pattern[k]][b] += clip_alf(clip[b], curr, rec[MAX(i, clip_top_row) * stride], rec[-MAX(i, -clip_bot_row) * stride]);
|
||
}
|
||
}
|
||
}
|
||
else if (transpose_idx == 2)
|
||
{
|
||
for (int i = -half_filter_length; i < 0; i++)
|
||
{
|
||
const kvz_pixel* rec0 = rec + MAX(i, clip_top_row) * stride;
|
||
const kvz_pixel* rec1 = rec - MAX(i, -clip_bot_row) * stride;
|
||
|
||
for (int j = half_filter_length + i; j >= -half_filter_length - i; j--, k++)
|
||
{
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
e_local[filter_pattern[k]][b] += clip_alf(clip[b], curr, rec0[j], rec1[-j]);
|
||
}
|
||
}
|
||
}
|
||
for (int j = -half_filter_length; j < 0; j++, k++)
|
||
{
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
e_local[filter_pattern[k]][b] += clip_alf(clip[b], curr, rec[j], rec[-j]);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (int j = -half_filter_length; j < 0; j++)
|
||
{
|
||
const kvz_pixel* rec0 = rec + j;
|
||
const kvz_pixel* rec1 = rec - j;
|
||
|
||
for (int i = half_filter_length + j; i >= -half_filter_length - j; i--, k++)
|
||
{
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
e_local[filter_pattern[k]][b] += clip_alf(clip[b], curr, rec0[MAX(i, clip_top_row) * stride], rec1[-MAX(i, -clip_bot_row) * stride]);
|
||
}
|
||
}
|
||
}
|
||
for (int i = -half_filter_length; i < 0; i++, k++)
|
||
{
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
e_local[filter_pattern[k]][b] += clip_alf(clip[b], curr, rec[MAX(i, clip_top_row) * stride], rec[-MAX(i, -clip_bot_row) * stride]);
|
||
}
|
||
}
|
||
|
||
}
|
||
for (int b = 0; b < num_bins; b++)
|
||
{
|
||
e_local[filter_pattern[k]][b] += curr;
|
||
}
|
||
}
|
||
|
||
double kvz_alf_get_filter_coeff_and_cost(encoder_state_t *const state,
|
||
channel_type channel,
|
||
double dist_unfilter,
|
||
int *ui_coeff_bits,
|
||
int i_shape_idx,
|
||
bool b_re_collect_stat,
|
||
bool only_filter_cost,
|
||
int ctu_idx)
|
||
{
|
||
bool is_luma = channel == CHANNEL_TYPE_LUMA ? 1 : 0;
|
||
const int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
|
||
//collect stat based on CTU decision
|
||
if (b_re_collect_stat)
|
||
{
|
||
get_frame_stats(channel, i_shape_idx, ctu_idx);
|
||
}
|
||
|
||
double dist = dist_unfilter;
|
||
*ui_coeff_bits = 0;
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
int ui_slice_flag = 0;*/
|
||
|
||
//AlfFilterShape& alfFilterShape = m_alfSliceParamTemp.filterShapes[channel][iShapeIdx];
|
||
//get filter coeff
|
||
if (is_luma)
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
//Tarvitaanko t<>t<EFBFBD> alustusta ollenkaan?
|
||
const int fill_val = g_alf_aps_temp.non_linear_flag[channel][0] ? g_alf_num_clipping_values[CHANNEL_TYPE_LUMA] / 2 : 0;
|
||
for (int i = 0; i < MAX_NUM_ALF_CLASSES; i++) {
|
||
for (int j = 0; j < MAX_NUM_ALF_CLASSES; j++) {
|
||
for (int k = 0; k < MAX_NUM_ALF_LUMA_COEFF; k++) {
|
||
g_alf_clip_merged[i_shape_idx][i][j][k] = fill_val;
|
||
}
|
||
}
|
||
}
|
||
/*#else
|
||
std::fill_n(m_alfClipMerged[iShapeIdx][0][0], MAX_NUM_ALF_LUMA_COEFF*MAX_NUM_ALF_CLASSES*MAX_NUM_ALF_CLASSES, m_alfParamTemp.nonLinearFlag[channel] ? AlfNumClippingValues[CHANNEL_TYPE_LUMA] / 2 : 0);
|
||
#endif*/
|
||
|
||
// Reset Merge Tmp Cov
|
||
reset_alf_covariance(&g_alf_covariance_merged[i_shape_idx][MAX_NUM_ALF_CLASSES], g_alf_num_clipping_values[channel]);
|
||
reset_alf_covariance(&g_alf_covariance_merged[i_shape_idx][MAX_NUM_ALF_CLASSES + 1], g_alf_num_clipping_values[channel]);
|
||
//distortion
|
||
//clip_merged:i<> ei tarvitse nollata ennen
|
||
dist += kvz_alf_merge_filters_and_cost(state, &g_alf_aps_temp, channel, ui_coeff_bits, g_alf_covariance_frame[channel][i_shape_idx], g_alf_covariance_merged[i_shape_idx], g_alf_clip_merged[i_shape_idx]);
|
||
}
|
||
else
|
||
{
|
||
//distortion
|
||
/*#if !JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
assert(num_coeff == g_alf_covariance_frame[channel][i_shape_idx][0].num_coeff);
|
||
//std::fill_n(m_filterClippSet[0], MAX_NUM_ALF_CHROMA_COEFF, m_alfParamTemp.non_linear_flag[channel] ? AlfNumClippingValues[CHANNEL_TYPE_CHROMA] / 2 : 0);
|
||
const int fill_val = g_alf_aps_temp.non_linear_flag[channel] ? g_alf_num_clipping_values[CHANNEL_TYPE_CHROMA] / 2 : 0;
|
||
for (int i = 0; i < MAX_NUM_ALF_CHROMA_COEFF; i++) {
|
||
g_filter_clipp_set[0][i] = fill_val;
|
||
}
|
||
dist += g_alf_covariance_frame[channel][i_shape_idx][0].pix_acc + kvz_alf_derive_coeff_quant(channel, g_filter_clipp_set[0], g_filter_coeff_set[0], &g_alf_covariance_frame[channel][i_shape_idx][0], ALF_NUM_BITS, g_alf_aps_temp.non_linear_flag[channel]);
|
||
#endif*/
|
||
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
//setEnableFlag( m_alfSliceParamTemp, channel, m_ctuEnableFlag );
|
||
const int alf_chroma_idc = g_alf_aps_temp.enabled_flag[COMPONENT_Cb] * 2 + g_alf_aps_temp.enabled_flag[COMPONENT_Cr];
|
||
#endif*/
|
||
|
||
for (int alt_idx = 0; alt_idx < g_alf_aps_temp.num_alternatives_chroma; ++alt_idx)
|
||
{
|
||
assert(num_coeff == g_alf_covariance_frame[channel][i_shape_idx][alt_idx].num_coeff);
|
||
alf_aps best_slice_param;
|
||
double best_cost = MAX_DOUBLE;
|
||
double best_dist = MAX_DOUBLE;
|
||
int best_coeff_bits = 0;
|
||
const int non_linear_flag_max = state->encoder_control->cfg.alf_non_linear_chroma ? 2 : 1;
|
||
|
||
for (int non_linear_flag = 0; non_linear_flag < non_linear_flag_max; non_linear_flag++)
|
||
{
|
||
g_alf_aps_temp.non_linear_flag[channel][alt_idx] = non_linear_flag;
|
||
//std::fill_n(m_filterClippSet[alt_idx], MAX_NUM_ALF_CHROMA_COEFF, non_linear_flag ? AlfNumClippingValues[CHANNEL_TYPE_CHROMA] / 2 : 0);
|
||
int fill_val = non_linear_flag ? g_alf_num_clipping_values[CHANNEL_TYPE_CHROMA] / 2 : 0;
|
||
for (int i = 0; i < MAX_NUM_ALF_CHROMA_COEFF; i++) {
|
||
g_filter_clipp_set[alt_idx][i] = fill_val;
|
||
}
|
||
|
||
double dist = g_alf_covariance_frame[channel][i_shape_idx][alt_idx].pix_acc + kvz_alf_derive_coeff_quant(channel, g_filter_clipp_set[alt_idx], g_filter_coeff_set[alt_idx], &g_alf_covariance_frame[channel][i_shape_idx][alt_idx], ALF_NUM_BITS, non_linear_flag);
|
||
for (int i = 0; i < MAX_NUM_ALF_CHROMA_COEFF; i++)
|
||
{
|
||
g_alf_aps_temp.chroma_coeff[alt_idx][i] = g_filter_coeff_set[alt_idx][i];
|
||
g_alf_aps_temp.chroma_clipp[alt_idx][i] = g_filter_clipp_set[alt_idx][i];
|
||
}
|
||
int coeff_bits = get_chroma_coeff_rate(&g_alf_aps_temp, alt_idx);
|
||
double cost = dist + g_lambda[channel] * coeff_bits;
|
||
if (cost < best_cost)
|
||
{
|
||
best_cost = cost;
|
||
best_dist = dist;
|
||
best_coeff_bits = coeff_bits;
|
||
copy_alf_param(&best_slice_param, &g_alf_aps_temp);
|
||
}
|
||
}
|
||
*ui_coeff_bits += best_coeff_bits;
|
||
dist += best_dist;
|
||
copy_alf_param(&g_alf_aps_temp, &best_slice_param);
|
||
}
|
||
*ui_coeff_bits += length_uvlc(g_alf_aps_temp.num_alternatives_chroma - 1);
|
||
*ui_coeff_bits += g_alf_aps_temp.num_alternatives_chroma; // non-linear flags
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
uiSliceFlag = lengthTruncatedUnary(alfChromaIdc, 3)
|
||
- lengthTruncatedUnary(0, 3); // rate already put on Luma
|
||
#endif*/
|
||
/*#else
|
||
for (int i = 0; i < MAX_NUM_ALF_CHROMA_COEFF; i++)
|
||
{
|
||
g_alf_aps_temp.chroma_coeff[i] = g_filter_coeff_set[0][i];
|
||
g_alf_aps_temp.chroma_clipp[i] = g_filter_clipp_set[0][i];
|
||
}
|
||
#endif*/
|
||
}
|
||
|
||
if (only_filter_cost)
|
||
{
|
||
return dist + g_lambda[channel] * *ui_coeff_bits;
|
||
}
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
double rate = *ui_coeff_bits + ui_slice_flag;*/
|
||
double rate = *ui_coeff_bits;
|
||
//m_CABACEstimator->resetBits();
|
||
kvz_cabac_reset_bits(&cabac_estimator);
|
||
//m_CABACEstimator->codeAlfCtuEnableFlags(cs, channel, &m_alfParamTemp);
|
||
code_alf_ctu_enable_flags_channel(state, &cabac_estimator, channel, &g_alf_aps_temp);
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
//for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++)
|
||
{
|
||
if (is_luma)
|
||
{
|
||
// Evaluate cost of signaling filter set index for convergence of filters enabled flag / filter derivation
|
||
assert(g_alf_ctb_filter_index[ctu_idx] == ALF_NUM_FIXED_FILTER_SETS);
|
||
assert(state->slice->tile_group_num_aps == 1);
|
||
//m_CABACEstimator->codeAlfCtuFilterIndex(cs, ctu_idx, &m_alfParamTemp.enabledFlag[COMPONENT_Y]);
|
||
code_alf_ctu_filter_index(state, &cabac_estimator, ctu_idx, g_alf_aps_temp.enabled_flag[COMPONENT_Y]);
|
||
}
|
||
}
|
||
//m_CABACEstimator->codeAlfCtuAlternatives(cs, channel, &m_alfParamTemp);
|
||
code_alf_ctu_alternatives_channel(state, &cabac_estimator, channel, &g_alf_aps_temp, ctu_idx);
|
||
//#endif
|
||
|
||
rate += (23 - cabac_estimator.bits_left) + (cabac_estimator.num_buffered_bytes << 3); //frac_bits_scale * 0;/*(double)m_CABACEstimator->getEstFracBits();*/
|
||
return dist + g_lambda[channel] * rate;
|
||
}
|
||
|
||
//#if JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
int kvz_alf_derive_filter_coefficients_prediction_mode(channel_type channel,
|
||
int **filter_set,
|
||
int **filter_coeff_diff,
|
||
const int num_filters)
|
||
{
|
||
return (g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA] ? get_cost_filter_clipp(channel, filter_set, num_filters) : 0) + get_cost_filter_coeff(channel, filter_set, num_filters);
|
||
/* #else
|
||
int kvz_alf_derive_filter_coefficients_prediction_mode(channel_type channel,
|
||
int **filter_set,
|
||
int** filter_coeff_diff,
|
||
const int num_filters)
|
||
{
|
||
int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
|
||
int rate_pred_mode0 = get_cost_filter_coeff(channel, filter_set, num_filters);
|
||
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
if (ind == 0)
|
||
{
|
||
memcpy(filter_coeff_diff[ind], filter_set[ind], sizeof(int) * num_coeff);
|
||
}
|
||
else
|
||
{
|
||
for (int i = 0; i < num_coeff; i++)
|
||
{
|
||
filter_coeff_diff[ind][i] = filter_set[ind][i] - filter_set[ind - 1][i];
|
||
}
|
||
}
|
||
}
|
||
|
||
int rate_pred_mode1 = get_cost_filter_coeff(channel, filter_coeff_diff, num_filters);
|
||
|
||
*pred_mode = (rate_pred_mode1 < rate_pred_mode0 && num_filters > 1) ? 1 : 0;
|
||
|
||
return (num_filters > 1 ? 1 : 0) // coeff_delta_pred_mode_flag
|
||
+ (pred_mode ? rate_pred_mode1 : rate_pred_mode0); // min_golomb_order, golomb_order_increase_flag, alf_coeff_luma_delta
|
||
*/
|
||
}
|
||
|
||
void kvz_alf_merge_classes(channel_type channel,
|
||
alf_covariance* cov,
|
||
alf_covariance* cov_merged,
|
||
int clip_merged[MAX_NUM_ALF_CLASSES][MAX_NUM_ALF_CLASSES][MAX_NUM_ALF_LUMA_COEFF],
|
||
const int num_classes,
|
||
short filter_indices[MAX_NUM_ALF_CLASSES][MAX_NUM_ALF_CLASSES])
|
||
{
|
||
const int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
|
||
static int tmp_clip[MAX_NUM_ALF_LUMA_COEFF];
|
||
static int best_merge_clip[MAX_NUM_ALF_LUMA_COEFF];
|
||
static double err[MAX_NUM_ALF_CLASSES];
|
||
static double best_merge_err;
|
||
static bool available_class[MAX_NUM_ALF_CLASSES];
|
||
static uint8_t index_list[MAX_NUM_ALF_CLASSES];
|
||
static uint8_t index_list_temp[MAX_NUM_ALF_CLASSES];
|
||
int num_remaining = num_classes;
|
||
|
||
memset(filter_indices, 0, sizeof(short) * MAX_NUM_ALF_CLASSES * MAX_NUM_ALF_CLASSES);
|
||
|
||
for (int i = 0; i < num_classes; i++)
|
||
{
|
||
filter_indices[num_remaining - 1][i] = i;
|
||
index_list[i] = i;
|
||
available_class[i] = true;
|
||
//cov_merged[i] = cov[i];
|
||
copy_cov(&cov_merged[i], &cov[i]);
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
cov_merged[i].num_bins = g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA][0] ? g_alf_num_clipping_values[COMPONENT_Y] : 1;
|
||
/*#else
|
||
cov_merged[i].num_bins = g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA] ? g_alf_num_clipping_values[COMPONENT_Y] : 1;
|
||
#endif*/
|
||
}
|
||
|
||
// Try merging different covariance matrices
|
||
|
||
// temporal AlfCovariance structure is allocated as the last element in covMerged array, the size of covMerged is MAX_NUM_ALF_CLASSES + 1
|
||
alf_covariance* tmp_cov = &cov_merged[MAX_NUM_ALF_CLASSES];
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
tmp_cov->num_bins = g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA][0] ? g_alf_num_clipping_values[COMPONENT_Y] : 1;
|
||
/*#else
|
||
tmp_cov->num_bins = g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA] ? g_alf_num_clipping_values[COMPONENT_Y] : 1;
|
||
#endif*/
|
||
|
||
// init Clip
|
||
for (int i = 0; i < num_classes; i++)
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
for (int val = 0; val < MAX_NUM_ALF_LUMA_COEFF; val++) {
|
||
clip_merged[num_remaining - 1][i][val] = g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA][0] ? g_alf_num_clipping_values[CHANNEL_TYPE_LUMA] / 2 : 0;
|
||
}
|
||
if (g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA][0])
|
||
/*#else
|
||
for (int val = 0; val < MAX_NUM_ALF_LUMA_COEFF; val++) {
|
||
clip_merged[num_remaining - 1][i][val] = g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA] ? g_alf_num_clipping_values[CHANNEL_TYPE_LUMA] / 2 : 0;
|
||
}
|
||
if (g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA])
|
||
#endif*/
|
||
{
|
||
err[i] = optimize_filter_clip(&cov_merged[i], clip_merged[num_remaining - 1][i]);
|
||
}
|
||
else
|
||
{
|
||
err[i] = calculate_error_opt_filt(&cov_merged[i], clip_merged[num_remaining - 1][i]);
|
||
}
|
||
}
|
||
|
||
while (num_remaining > 2)
|
||
{
|
||
double error_min = MAX_DOUBLE; //std::numeric_limits<double>::max();
|
||
int best_to_merge_idx1 = 0, best_to_merge_idx2 = 1;
|
||
|
||
for (int i = 0; i < num_classes - 1; i++)
|
||
{
|
||
if (available_class[i])
|
||
{
|
||
for (int j = i + 1; j < num_classes; j++)
|
||
{
|
||
if (available_class[j])
|
||
{
|
||
double error1 = err[i];
|
||
double error2 = err[j];
|
||
|
||
add_alf_cov_lhs_rhs(tmp_cov, &cov_merged[i], &cov_merged[j]);
|
||
for (int l = 0; l < MAX_NUM_ALF_LUMA_COEFF; ++l)
|
||
{
|
||
tmp_clip[l] = (clip_merged[num_remaining - 1][i][l] + clip_merged[num_remaining - 1][j][l] + 1) >> 1;
|
||
}
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
double error_merged = g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA][0] ? optimize_filter_clip(tmp_cov, tmp_clip) : calculate_error_opt_filt(tmp_cov, tmp_clip);
|
||
/*#else
|
||
double error_merged = g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA] ? optimize_filter_clip(tmp_cov, tmp_clip) : calculate_error_opt_filt(tmp_cov, tmp_clip);
|
||
#endif*/
|
||
double error = error_merged - error1 - error2;
|
||
|
||
if (error < error_min)
|
||
{
|
||
best_merge_err = error_merged;
|
||
memcpy(best_merge_clip, tmp_clip, sizeof(best_merge_clip));
|
||
error_min = error;
|
||
best_to_merge_idx1 = i;
|
||
best_to_merge_idx2 = j;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
add_alf_cov(&cov_merged[best_to_merge_idx1], &cov_merged[best_to_merge_idx2]);
|
||
memcpy(clip_merged[num_remaining - 2], clip_merged[num_remaining - 1], sizeof(int[MAX_NUM_ALF_CLASSES][MAX_NUM_ALF_LUMA_COEFF]));
|
||
memcpy(clip_merged[num_remaining - 2][best_to_merge_idx1], best_merge_clip, sizeof(best_merge_clip));
|
||
err[best_to_merge_idx1] = best_merge_err;
|
||
available_class[best_to_merge_idx2] = false;
|
||
|
||
for (int i = 0; i < num_classes; i++)
|
||
{
|
||
if (index_list[i] == best_to_merge_idx2)
|
||
{
|
||
index_list[i] = best_to_merge_idx1;
|
||
}
|
||
}
|
||
|
||
num_remaining--;
|
||
if (num_remaining <= num_classes)
|
||
{
|
||
memcpy(index_list_temp, index_list, sizeof(uint8_t) * num_classes);
|
||
|
||
bool exist = false;
|
||
int ind = 0;
|
||
|
||
for (int j = 0; j < num_classes; j++)
|
||
{
|
||
exist = false;
|
||
for (int i = 0; i < num_classes; i++)
|
||
{
|
||
if (index_list_temp[i] == j)
|
||
{
|
||
exist = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (exist)
|
||
{
|
||
for (int i = 0; i < num_classes; i++)
|
||
{
|
||
if (index_list_temp[i] == j)
|
||
{
|
||
filter_indices[num_remaining - 1][i] = ind;
|
||
index_list_temp[i] = -1;
|
||
}
|
||
}
|
||
ind++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
double kvz_alf_merge_filters_and_cost(encoder_state_t *const state,
|
||
alf_aps *alf_aps,
|
||
channel_type channel,
|
||
int *ui_coeff_bits,
|
||
alf_covariance *cov_frame,
|
||
alf_covariance *cov_merged,
|
||
int clip_merged[MAX_NUM_ALF_CLASSES][MAX_NUM_ALF_CLASSES][MAX_NUM_ALF_LUMA_COEFF])
|
||
{
|
||
const int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
int num_filters_best = 0;
|
||
int num_filters = MAX_NUM_ALF_CLASSES;
|
||
static bool coded_var_bins[MAX_NUM_ALF_CLASSES];
|
||
static double error_force_0_coeff_tab[MAX_NUM_ALF_CLASSES][2];
|
||
|
||
double cost, cost0, dist, dist_force0, cost_min = MAX_DOUBLE;
|
||
int coeff_bits, coeff_bits_force0;
|
||
|
||
//clip_merged:i<> ei tarvitse nollata ennen
|
||
kvz_alf_merge_classes(channel, cov_frame, cov_merged, clip_merged, MAX_NUM_ALF_CLASSES, g_filter_indices);
|
||
|
||
while (num_filters >= 1)
|
||
{
|
||
dist = kvz_alf_derive_filter_coeffs(alf_aps, channel, cov_frame, cov_merged, g_filter_indices[num_filters-1], num_filters, error_force_0_coeff_tab, clip_merged);
|
||
|
||
// filter coeffs are stored in m_filterCoeffSet
|
||
dist_force0 = get_dist_force_0(channel, num_filters, error_force_0_coeff_tab, coded_var_bins);
|
||
coeff_bits = kvz_alf_derive_filter_coefficients_prediction_mode(channel, g_filter_coeff_set, g_diff_filter_coeff, num_filters);
|
||
coeff_bits_force0 = get_cost_filter_coeff_force_0(channel, g_filter_coeff_set, num_filters, coded_var_bins);
|
||
|
||
cost = dist + g_lambda[COMPONENT_Y] * coeff_bits;
|
||
cost0 = dist_force0 + g_lambda[COMPONENT_Y] * coeff_bits_force0;
|
||
|
||
if (cost0 < cost)
|
||
{
|
||
cost = cost0;
|
||
}
|
||
/* #if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
if (*fixed_filter_set_index > 0)
|
||
{
|
||
int len = 0;
|
||
len += get_tb_length(*fixed_filter_set_index - 1, ALF_NUM_FIXED_FILTER_SETS);
|
||
len += 1; //fixed filter flag pattern
|
||
if (*fixed_filter_pattern > 0)
|
||
{
|
||
len += MAX_NUM_ALF_CLASSES; //"fixed_filter_flag" for each class
|
||
}
|
||
cost += g_lambda[COMPONENT_Y] * len;
|
||
}*/
|
||
|
||
if (cost <= cost_min)
|
||
{
|
||
cost_min = cost;
|
||
num_filters_best = num_filters;
|
||
//best_pred_mode = pred_mode; #if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
}
|
||
num_filters--;
|
||
}
|
||
|
||
dist = kvz_alf_derive_filter_coeffs(alf_aps, channel, cov_frame, cov_merged, g_filter_indices[num_filters_best - 1], num_filters_best, error_force_0_coeff_tab, clip_merged);
|
||
|
||
coeff_bits = kvz_alf_derive_filter_coefficients_prediction_mode(channel, g_filter_coeff_set, g_diff_filter_coeff, num_filters_best);
|
||
dist_force0 = get_dist_force_0(channel, num_filters_best, error_force_0_coeff_tab, coded_var_bins);
|
||
coeff_bits_force0 = get_cost_filter_coeff_force_0(channel, g_filter_coeff_set, num_filters_best, coded_var_bins);
|
||
|
||
cost = dist + g_lambda[COMPONENT_Y] * coeff_bits;
|
||
cost0 = dist_force0 + g_lambda[COMPONENT_Y] * coeff_bits_force0;
|
||
|
||
alf_aps->num_luma_filters = num_filters_best;
|
||
double dist_return;
|
||
if (cost <= cost0)
|
||
{
|
||
dist_return = dist;
|
||
alf_aps->alf_luma_coeff_delta_flag = 0;
|
||
*ui_coeff_bits = coeff_bits;
|
||
//alf_aps->alf_luma_coeff_delta_prediction_flag = best_pred_mode; #if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
}
|
||
else
|
||
{
|
||
dist_return = dist_force0;
|
||
alf_aps->alf_luma_coeff_delta_flag = 1;
|
||
*ui_coeff_bits = coeff_bits_force0;
|
||
memcpy(alf_aps->alf_luma_coeff_flag, coded_var_bins, sizeof(coded_var_bins));
|
||
//*alf_luma_coeff_delta_prediction_flag = 0; #if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
|
||
for (int var_ind = 0; var_ind < num_filters_best; var_ind++)
|
||
{
|
||
if (coded_var_bins[var_ind] == 0)
|
||
{
|
||
memset(g_filter_coeff_set[var_ind], 0, sizeof(int) * MAX_NUM_ALF_LUMA_COEFF);
|
||
memset(g_filter_clipp_set[var_ind], 0, sizeof(int) * MAX_NUM_ALF_LUMA_COEFF);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int ind = 0; ind < alf_aps->num_luma_filters; ++ind)
|
||
{
|
||
for (int i = 0; i < num_coeff; i++)
|
||
{
|
||
// #if JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
alf_aps->luma_coeff[ind * MAX_NUM_ALF_LUMA_COEFF + i] = g_filter_coeff_set[ind][i];
|
||
/* #else
|
||
if (alf_aps->alf_luma_coeff_delta_prediction_flag)
|
||
{
|
||
alf_aps->luma_coeff[ind * MAX_NUM_ALF_LUMA_COEFF + i] = g_diff_filter_coeff[ind][i];
|
||
}
|
||
else
|
||
{
|
||
alf_aps->luma_coeff[ind * MAX_NUM_ALF_LUMA_COEFF + i] = g_filter_coeff_set[ind][i];
|
||
}*/
|
||
alf_aps->luma_clipp[ind * MAX_NUM_ALF_LUMA_COEFF + i] = g_filter_clipp_set[ind][i];
|
||
}
|
||
}
|
||
|
||
memcpy(alf_aps->filter_coeff_delta_idx, g_filter_indices[num_filters_best - 1], sizeof(short) * MAX_NUM_ALF_CLASSES);
|
||
*ui_coeff_bits += get_non_filter_coeff_rate(alf_aps);
|
||
return dist_return;
|
||
}
|
||
|
||
double kvz_alf_derive_filter_coeffs(alf_aps *aps,
|
||
channel_type channel,
|
||
alf_covariance *cov,
|
||
alf_covariance *covMerged,
|
||
short* filter_indices,
|
||
int num_filters,
|
||
double error_tab_force_0_coeff[MAX_NUM_ALF_CLASSES][2],
|
||
int clip_merged[MAX_NUM_ALF_CLASSES][MAX_NUM_ALF_CLASSES][MAX_NUM_ALF_LUMA_COEFF])
|
||
{
|
||
// #if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
//int *fixed_filter_pattern = &aps->fixed_filter_pattern;
|
||
//int *fixed_filter_idx = aps->fixed_filter_idx;
|
||
//int *fixed_filter_set_index = &aps->fixed_filter_set_index;
|
||
|
||
int num_coeff = channel == CHANNEL_TYPE_LUMA ? 13 : 7;
|
||
int *weights = channel == CHANNEL_TYPE_LUMA ? alf_weights_7 : alf_weights_5;
|
||
|
||
double error = 0.0;
|
||
alf_covariance *tmp_cov = &covMerged[MAX_NUM_ALF_CLASSES];
|
||
|
||
/* #if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
|
||
*fixed_filter_set_index = 0;
|
||
alf_covariance tmp_cov_ff = covMerged[MAX_NUM_ALF_CLASSES + 1];
|
||
double factor = 1 << (ALF_NUM_BITS - 1);
|
||
double error_min = 0;
|
||
double error_min_per_class[MAX_NUM_ALF_CLASSES] = { 0 };
|
||
double error_cur_set_per_class[MAX_NUM_ALF_CLASSES] = { 0 };
|
||
int fixed_filter_flag_per_class[MAX_NUM_ALF_CLASSES] = { 0 };
|
||
|
||
for (int filter_set_idx = 0; filter_set_idx < ALF_NUM_FIXED_FILTER_SETS; filter_set_idx++)
|
||
{
|
||
double error_cur = 0;
|
||
for (int class_idx = 0; class_idx < MAX_NUM_ALF_CLASSES; class_idx++)
|
||
{
|
||
int fixed_filter_idx = g_class_to_filter_mapping[filter_set_idx][class_idx];
|
||
error_cur_set_per_class[class_idx] = calc_error_for_coeffs(cov[class_idx].ee, cov[class_idx].y, g_fixed_filter_set_coeff[fixed_filter_idx], MAX_NUM_ALF_LUMA_COEFF, ALF_NUM_BITS);
|
||
|
||
if (error_cur_set_per_class[class_idx] >= 0)
|
||
{
|
||
error_cur_set_per_class[class_idx] = 0;
|
||
fixed_filter_flag_per_class[class_idx] = 0;
|
||
}
|
||
else
|
||
{
|
||
error_cur += error_cur_set_per_class[class_idx];
|
||
fixed_filter_flag_per_class[class_idx] = 1;
|
||
}
|
||
}
|
||
|
||
if (error_cur < error_min)
|
||
{
|
||
memcpy(fixed_filter_idx, fixed_filter_flag_per_class, sizeof(fixed_filter_flag_per_class));
|
||
*fixed_filter_set_index = filter_set_idx + 1;
|
||
error_min = error_cur;
|
||
memcpy(error_min_per_class, error_cur_set_per_class, sizeof(error_min_per_class));
|
||
}
|
||
}
|
||
|
||
*fixed_filter_pattern = 0;
|
||
if (*fixed_filter_set_index > 0)
|
||
{
|
||
for (int class_idx = 0; class_idx < MAX_NUM_ALF_CLASSES; class_idx++)
|
||
{
|
||
if (fixed_filter_idx[class_idx] == 0)
|
||
{
|
||
*fixed_filter_pattern = 1;
|
||
break;
|
||
}
|
||
}
|
||
}*/
|
||
|
||
for( int filt_idx = 0; filt_idx < num_filters; filt_idx++ )
|
||
{
|
||
reset_alf_covariance(tmp_cov, -1);
|
||
|
||
bool found_clip = false;
|
||
for( int class_idx = 0; class_idx < MAX_NUM_ALF_CLASSES; class_idx++ )
|
||
{
|
||
if( filter_indices[class_idx] == filt_idx )
|
||
{
|
||
//tmp_cov += cov[class_idx];
|
||
add_alf_cov(tmp_cov, &cov[class_idx]);
|
||
|
||
/* #if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
//adjust stat
|
||
tmp_cov_ff = cov[class_idx];
|
||
if (*fixed_filter_set_index > 0 && fixed_filter_idx[class_idx] > 0)
|
||
{
|
||
int fixed_filter_idx = g_class_to_filter_mapping[*fixed_filter_set_index - 1][class_idx];
|
||
tmp_cov_ff.pix_acc += error_min_per_class[class_idx];
|
||
for (int i = 0; i < MAX_NUM_ALF_LUMA_COEFF; i++)
|
||
{
|
||
double sum = 0;
|
||
for (int j = 0; j < MAX_NUM_ALF_LUMA_COEFF; j++)
|
||
{
|
||
sum += tmp_cov_ff.ee[i][j] * g_fixed_filter_set_coeff[fixed_filter_idx][j];
|
||
}
|
||
sum /= factor;
|
||
tmp_cov_ff.y[i] -= sum;
|
||
}
|
||
}
|
||
|
||
//tmp_cov += tmp_cov_ff;
|
||
for (int j = 0; j < tmp_cov.num_coeff; j++)
|
||
{
|
||
for (int i = 0; i < tmp_cov.num_coeff; i++)
|
||
{
|
||
tmp_cov.ee[j][i] += tmp_cov_ff.ee[j][i];
|
||
}
|
||
tmp_cov.y[j] += tmp_cov_ff.y[j];
|
||
}
|
||
tmp_cov.pix_acc += tmp_cov_ff.pix_acc;
|
||
*/
|
||
if (!found_clip)
|
||
{
|
||
found_clip = true; // clip should be at the adress of shortest one
|
||
memcpy(g_filter_clipp_set[filt_idx], clip_merged[num_filters - 1][class_idx], sizeof(int[MAX_NUM_ALF_LUMA_COEFF]));
|
||
}
|
||
}
|
||
}
|
||
|
||
// Find coeffcients
|
||
assert(num_coeff == tmp_cov->num_coeff);
|
||
error_tab_force_0_coeff[filt_idx][1] = tmp_cov->pix_acc + kvz_alf_derive_coeff_quant(channel, g_filter_clipp_set[filt_idx], g_filter_coeff_set[filt_idx], tmp_cov, ALF_NUM_BITS, false);
|
||
error_tab_force_0_coeff[filt_idx][0] = tmp_cov->pix_acc;
|
||
error += error_tab_force_0_coeff[filt_idx][1];
|
||
}
|
||
return error;
|
||
}
|
||
|
||
double kvz_alf_derive_coeff_quant(channel_type channel,
|
||
int *filter_clipp,
|
||
int *filter_coeff_quant,
|
||
const alf_covariance* cov,
|
||
const int bit_depth,
|
||
const bool optimize_clip)
|
||
{
|
||
const bool is_luma = channel == CHANNEL_TYPE_LUMA ? true : false;
|
||
const int num_coeff = is_luma ? 13 : 7;
|
||
int *weights = is_luma ? alf_weights_7 : alf_weights_5;
|
||
const int factor = 1 << (ALF_NUM_BITS - 1);
|
||
const int max_value = factor - 1;
|
||
const int min_value = -factor + 1;
|
||
|
||
static double filter_coeff[MAX_NUM_ALF_LUMA_COEFF];
|
||
|
||
optimize_filter(cov, filter_clipp, filter_coeff, optimize_clip);
|
||
|
||
//roundFiltCoeff(filterCoeffQuant, filter_coeff, num_coeff, factor);
|
||
for (int i = 0; i < num_coeff; i++)
|
||
{
|
||
int sign = filter_coeff[i] > 0 ? 1 : -1;
|
||
filter_coeff_quant[i] = (int)(filter_coeff[i] * sign * factor + 0.5) * sign;
|
||
}
|
||
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
filter_coeff_quant[i] = MIN(max_value, MAX(min_value, filter_coeff_quant[i]));
|
||
}
|
||
filter_coeff_quant[num_coeff - 1] = 0;
|
||
|
||
int modified = 1;
|
||
|
||
double err_ref = calc_error_for_coeffs(cov, filter_clipp, filter_coeff_quant, num_coeff, bit_depth);
|
||
int sign;
|
||
while (modified)
|
||
{
|
||
modified = 0;
|
||
for (int sign_count = 0; sign_count <= 1; sign_count++)
|
||
{
|
||
sign = sign_count == 0 ? 1 : -1;
|
||
double err_min = MAX_DOUBLE;
|
||
int min_ind = -1;
|
||
|
||
for (int k = 0; k < num_coeff - 1; k++)
|
||
{
|
||
if (filter_coeff_quant[k] - sign > max_value || filter_coeff_quant[k] - sign < min_value)
|
||
continue;
|
||
|
||
filter_coeff_quant[k] -= sign;
|
||
|
||
double error = calc_error_for_coeffs(cov, filter_clipp, filter_coeff_quant, num_coeff, bit_depth);
|
||
if (error < err_min)
|
||
{
|
||
err_min = error;
|
||
min_ind = k;
|
||
}
|
||
filter_coeff_quant[k] += sign;
|
||
}
|
||
if (err_min < err_ref)
|
||
{
|
||
filter_coeff_quant[min_ind] -= sign;
|
||
modified++;
|
||
err_ref = err_min;
|
||
}
|
||
}
|
||
}
|
||
|
||
return err_ref;
|
||
}
|
||
|
||
void kvz_alf_encoder_ctb(encoder_state_t *const state,
|
||
alf_aps *aps,
|
||
int ctu_idx,
|
||
//#if ENABLE_QPA
|
||
const double lambda_chroma_weight
|
||
//#endif
|
||
)
|
||
{
|
||
//TempCtx ctxStart(m_CtxCache, AlfCtx(m_CABACEstimator->getCtx()));
|
||
cabac_data_t ctx_start;
|
||
memcpy(&ctx_start, &cabac_estimator, sizeof(ctx_start));
|
||
//TempCtx ctxBest(m_CtxCache);
|
||
cabac_data_t ctx_best;
|
||
//TempCtx ctxTempStart(m_CtxCache);
|
||
cabac_data_t ctx_temp_start;
|
||
//TempCtx ctxTempBest(m_CtxCache);*/
|
||
cabac_data_t ctx_temp_best;
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
/*TempCtx ctxTempAltStart(m_CtxCache);
|
||
TempCtx ctxTempAltBest(m_CtxCache);*/
|
||
cabac_data_t ctx_temp_alt_start;
|
||
cabac_data_t ctx_temp_alt_best;
|
||
//#endif
|
||
|
||
//AlfSliceParam alfSliceParamNewFiltersBest = alfSliceParamNewFilters;
|
||
alf_aps alf_aps_new_filters_best;
|
||
copy_alf_param(&alf_aps_new_filters_best, aps);
|
||
alf_aps* apss = state->slice->apss;
|
||
|
||
bool has_new_filters[2] = { aps->enabled_flag[COMPONENT_Y] , aps->enabled_flag[COMPONENT_Cb] || aps->enabled_flag[COMPONENT_Cr] };
|
||
|
||
//initDistortion();
|
||
for (int comp = 0; comp < MAX_NUM_COMPONENT; comp++)
|
||
{
|
||
//for (int ctb_idx = 0; ctb_idx < g_num_ctus_in_pic; ctb_idx++)
|
||
{
|
||
g_ctb_distortion_unfilter[comp][ctu_idx] = get_unfiltered_distortion_cov_classes(g_alf_covariance[comp][0][ctu_idx], comp == 0 ? MAX_NUM_ALF_CLASSES : 1);
|
||
}
|
||
}
|
||
|
||
//luma
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
copy_alf_param(&g_alf_aps_temp, aps);
|
||
//#endif
|
||
//memset(g_ctu_enable_flag[COMPONENT_Y], 1, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
g_ctu_enable_flag[COMPONENT_Y][ctu_idx] = 1;
|
||
get_frame_stats(CHANNEL_TYPE_LUMA, 0, ctu_idx);
|
||
//memset(g_ctu_enable_flag[COMPONENT_Y], 0, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
g_ctu_enable_flag[COMPONENT_Y][ctu_idx] = 0;
|
||
double cost_off = get_unfiltered_distortion_cov_channel(g_alf_covariance_frame[CHANNEL_TYPE_LUMA][0], CHANNEL_TYPE_LUMA);
|
||
|
||
kvz_alf_get_avai_aps_ids_luma(state, &new_aps_id, aps_ids, &size_of_aps_ids);
|
||
|
||
double cost_min = MAX_DOUBLE;
|
||
kvz_alf_reconstruct_coeff_aps(state, true, false, true);
|
||
|
||
int num_loops = has_new_filters[CHANNEL_TYPE_LUMA] ? 2 : 1;
|
||
for (int use_new_filter = 0; use_new_filter < num_loops; use_new_filter++)
|
||
{
|
||
int bits_new_filter = 0;
|
||
if (use_new_filter == 1)
|
||
{
|
||
if (!has_new_filters[CHANNEL_TYPE_LUMA])
|
||
{
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
bits_new_filter = g_bits_new_filter[CHANNEL_TYPE_LUMA];
|
||
kvz_alf_reconstruct_coeff(state, aps, CHANNEL_TYPE_LUMA, true, true);
|
||
}
|
||
}
|
||
int num_iter = use_new_filter ? 2 : 1;
|
||
for (int num_temporal_aps = 0; num_temporal_aps <= size_of_aps_ids/*apsIds.size()*/; num_temporal_aps++)
|
||
{
|
||
if (num_temporal_aps + use_new_filter >= ALF_CTB_MAX_NUM_APS)
|
||
{
|
||
continue;
|
||
}
|
||
//cs.slice->setTileGroupNumAps(numTemporalAps + useNewFilter);
|
||
state->slice->tile_group_num_aps = num_temporal_aps + use_new_filter;
|
||
|
||
int num_filter_set = ALF_NUM_FIXED_FILTER_SETS + num_temporal_aps + use_new_filter;
|
||
if (num_temporal_aps == size_of_aps_ids && num_temporal_aps > 0 && use_new_filter && new_aps_id == aps_ids[size_of_aps_ids - 1] /*apsIds.back()*/) //last temporalAPS is occupied by new filter set and this temporal APS becomes unavailable
|
||
{
|
||
continue;
|
||
}
|
||
for (int iter = 0; iter < num_iter; iter++)
|
||
{
|
||
//g_alf_aps_temp = aps;
|
||
copy_alf_param(&g_alf_aps_temp, aps);
|
||
g_alf_aps_temp.enabled_flag[CHANNEL_TYPE_LUMA] = true;
|
||
double cur_cost = 3 * g_lambda[CHANNEL_TYPE_LUMA];
|
||
|
||
if (iter > 0) //re-derive new filter-set
|
||
{
|
||
double d_dist_org_new_filter = 0;
|
||
int blocks_using_new_filter = 0;
|
||
//for (int ctb_idx = 0; ctb_idx < g_num_ctus_in_pic; ctb_idx++)
|
||
{
|
||
if (g_ctu_enable_flag[COMPONENT_Y][ctu_idx] && g_alf_ctb_filter_index[ctu_idx] != ALF_NUM_FIXED_FILTER_SETS)
|
||
{
|
||
g_ctu_enable_flag[COMPONENT_Y][ctu_idx] = 0;
|
||
}
|
||
else if (g_ctu_enable_flag[COMPONENT_Y][ctu_idx] && g_alf_ctb_filter_index[ctu_idx] == ALF_NUM_FIXED_FILTER_SETS)
|
||
{
|
||
blocks_using_new_filter++;
|
||
d_dist_org_new_filter += g_ctb_distortion_unfilter[COMPONENT_Y][ctu_idx];
|
||
for (int class_idx = 0; class_idx < MAX_NUM_ALF_CLASSES; class_idx++)
|
||
{
|
||
short* p_coeff = g_coeff_final;
|
||
short* p_clipp = g_clipp_final;
|
||
for (int i = 0; i < MAX_NUM_ALF_LUMA_COEFF; i++)
|
||
{
|
||
g_filter_tmp[i] = p_coeff[class_idx * MAX_NUM_ALF_LUMA_COEFF + i];
|
||
g_clip_tmp[i] = p_clipp[class_idx * MAX_NUM_ALF_LUMA_COEFF + i];
|
||
}
|
||
d_dist_org_new_filter += calc_error_for_coeffs(&g_alf_covariance[COMPONENT_Y][0][ctu_idx][class_idx], g_clip_tmp, g_filter_tmp, MAX_NUM_ALF_LUMA_COEFF, ALF_NUM_BITS);
|
||
}
|
||
}
|
||
}
|
||
if (blocks_using_new_filter > 0 && blocks_using_new_filter < g_num_ctus_in_pic)
|
||
{
|
||
int bit_nl[2] = { 0, 0 };
|
||
double err_nl[2] = { 0.0, 0.0 };
|
||
err_nl[1] = MAX_DOUBLE;
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA][0] = 1;
|
||
/*#else
|
||
g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA] = 1;
|
||
#endif*/
|
||
if (state->encoder_control->cfg.alf_non_linear_luma)
|
||
{
|
||
err_nl[1] = kvz_alf_get_filter_coeff_and_cost(state, CHANNEL_TYPE_LUMA, 0, &bit_nl[1], 0, true, true, ctu_idx);
|
||
copy_alf_param(&g_alf_aps_temp_nl, &g_alf_aps_temp);
|
||
}
|
||
else
|
||
{
|
||
err_nl[1] = MAX_DOUBLE;
|
||
}
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA][0] = 0;
|
||
/*#else
|
||
g_alf_aps_temp.non_linear_flag[CHANNEL_TYPE_LUMA] = 0;
|
||
#endif*/
|
||
//errNL[0] = getFilterCoeffAndCost(cs, 0, CHANNEL_TYPE_LUMA, true, 0, bitNL[0], true);
|
||
err_nl[0] = kvz_alf_get_filter_coeff_and_cost(state, CHANNEL_TYPE_LUMA, 0, &bit_nl[0], 0, true, true, ctu_idx);
|
||
|
||
int bitsNewFilterTempLuma = bit_nl[0];
|
||
int bits_new_filter_temp_luma = bit_nl[0];
|
||
double err = err_nl[0];
|
||
if (err_nl[1] < err_nl[0])
|
||
{
|
||
err = err_nl[1];
|
||
bits_new_filter_temp_luma = bit_nl[1];
|
||
copy_alf_param(&g_alf_aps_temp, &g_alf_aps_temp_nl);
|
||
}
|
||
if (d_dist_org_new_filter + g_lambda[CHANNEL_TYPE_LUMA] * g_bits_new_filter[CHANNEL_TYPE_LUMA] < err) //re-derived filter is not good, skip
|
||
{
|
||
continue;
|
||
}
|
||
kvz_alf_reconstruct_coeff(state, &g_alf_aps_temp, CHANNEL_TYPE_LUMA, true, true);
|
||
bits_new_filter = bits_new_filter_temp_luma;
|
||
}
|
||
else //no blocks using new filter, skip
|
||
{
|
||
continue;
|
||
}
|
||
}
|
||
|
||
//m_CABACEstimator->getCtx() = ctxStart;
|
||
memcpy(&cabac_estimator, &ctx_start, sizeof(cabac_estimator));
|
||
//for (int ctb_idx = 0; ctb_idx < g_num_ctus_in_pic; ctb_idx++)
|
||
{
|
||
double dist_unfilter_ctb = g_ctb_distortion_unfilter[COMPONENT_Y][ctu_idx];
|
||
//ctb on
|
||
g_ctu_enable_flag[COMPONENT_Y][ctu_idx] = 1;
|
||
double cost_on = MAX_DOUBLE;
|
||
//ctxTempStart = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_temp_start, &cabac_estimator, sizeof(ctx_temp_start));
|
||
ctx_temp_start.only_count = 1;
|
||
int i_best_filter_set_idx = 0;
|
||
for (int filter_set_idx = 0; filter_set_idx < num_filter_set; filter_set_idx++)
|
||
{
|
||
//rate
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempStart);
|
||
memcpy(&cabac_estimator, &ctx_temp_start, sizeof(cabac_estimator));
|
||
//m_CABACEstimator->resetBits();
|
||
kvz_cabac_reset_bits(&cabac_estimator);
|
||
//m_CABACEstimator->codeAlfCtuEnableFlag(cs, ctbIdx, COMPONENT_Y, &m_alfSliceParamTemp);
|
||
code_alf_ctu_enable_flag(state, &cabac_estimator, ctu_idx, COMPONENT_Y, &g_alf_aps_temp);
|
||
g_alf_ctb_filter_index[ctu_idx] = filter_set_idx;
|
||
code_alf_ctu_filter_index(state, &cabac_estimator, ctu_idx, g_alf_aps_temp.enabled_flag[COMPONENT_Y]);
|
||
|
||
double rate_on = (23 - cabac_estimator.bits_left) + (cabac_estimator.num_buffered_bytes << 3); //frac_bits_scale * 0; /*(double)m_CABACEstimator->getEstFracBits()*/ ;
|
||
//distortion
|
||
double dist = dist_unfilter_ctb;
|
||
for (int class_idx = 0; class_idx < MAX_NUM_ALF_CLASSES; class_idx++)
|
||
{
|
||
if (filter_set_idx < ALF_NUM_FIXED_FILTER_SETS)
|
||
{
|
||
int filter_idx = g_class_to_filter_mapping[filter_set_idx][class_idx];
|
||
dist += calc_error_for_coeffs(&g_alf_covariance[COMPONENT_Y][0][ctu_idx][class_idx], g_clip_default_enc, g_fixed_filter_set_coeff[filter_idx], MAX_NUM_ALF_LUMA_COEFF, ALF_NUM_BITS);
|
||
}
|
||
else
|
||
{
|
||
short *p_coeff;
|
||
short *p_clipp;
|
||
if (use_new_filter && filter_set_idx == ALF_NUM_FIXED_FILTER_SETS)
|
||
{
|
||
p_coeff = g_coeff_final;
|
||
p_clipp = g_clipp_final;
|
||
}
|
||
else if (use_new_filter)
|
||
{
|
||
p_coeff = g_coeff_aps_luma[filter_set_idx - 1 - ALF_NUM_FIXED_FILTER_SETS];
|
||
p_clipp = g_clipp_aps_luma[filter_set_idx - 1 - ALF_NUM_FIXED_FILTER_SETS];
|
||
}
|
||
else
|
||
{
|
||
p_coeff = g_coeff_aps_luma[filter_set_idx - ALF_NUM_FIXED_FILTER_SETS];
|
||
p_clipp = g_clipp_aps_luma[filter_set_idx - ALF_NUM_FIXED_FILTER_SETS];
|
||
}
|
||
for (int i = 0; i < MAX_NUM_ALF_LUMA_COEFF; i++)
|
||
{
|
||
g_filter_tmp[i] = p_coeff[class_idx * MAX_NUM_ALF_LUMA_COEFF + i];
|
||
g_clip_tmp[i] = p_clipp[class_idx * MAX_NUM_ALF_LUMA_COEFF + i];
|
||
}
|
||
dist += calc_error_for_coeffs(&g_alf_covariance[COMPONENT_Y][0][ctu_idx][class_idx], g_clip_tmp, g_filter_tmp, MAX_NUM_ALF_LUMA_COEFF, ALF_NUM_BITS);
|
||
}
|
||
}
|
||
//cost
|
||
double cost_on_tmp = dist + g_lambda[COMPONENT_Y] * rate_on;
|
||
if (cost_on_tmp < cost_on)
|
||
{
|
||
//ctxTempBest = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_temp_best, &cabac_estimator, sizeof(ctx_temp_best));
|
||
ctx_temp_best.only_count = 1;
|
||
cost_on = cost_on_tmp;
|
||
i_best_filter_set_idx = filter_set_idx;
|
||
}
|
||
}
|
||
//ctb off
|
||
g_ctu_enable_flag[COMPONENT_Y][ctu_idx] = 0;
|
||
//rate
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempStart);
|
||
memcpy(&cabac_estimator, &ctx_temp_start, sizeof(cabac_estimator));
|
||
//m_CABACEstimator->resetBits();
|
||
kvz_cabac_reset_bits(&cabac_estimator);
|
||
//m_CABACEstimator->codeAlfCtuEnableFlag(cs, ctbIdx, COMPONENT_Y, &m_alfSliceParamTemp);
|
||
code_alf_ctu_enable_flag(state, &cabac_estimator, ctu_idx, COMPONENT_Y, &g_alf_aps_temp);
|
||
|
||
//cost
|
||
double cost_off = dist_unfilter_ctb + g_lambda[COMPONENT_Y] * (23 - cabac_estimator.bits_left) + (cabac_estimator.num_buffered_bytes << 3);// frac_bits_scale * 0; /* (double)m_CABACEstimator->getEstFracBits()*/ ;
|
||
if (cost_on < cost_off)
|
||
{
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempBest);
|
||
memcpy(&cabac_estimator, &ctx_temp_best, sizeof(cabac_estimator));
|
||
g_ctu_enable_flag[COMPONENT_Y][ctu_idx] = 1;
|
||
g_alf_ctb_filter_index[ctu_idx] = i_best_filter_set_idx;
|
||
cur_cost += cost_on;
|
||
}
|
||
else
|
||
{
|
||
g_ctu_enable_flag[COMPONENT_Y][ctu_idx] = 0;
|
||
cur_cost += cost_off;
|
||
}
|
||
} //for(ctbIdx)
|
||
|
||
int tmp_bits = bits_new_filter + 3 * (num_filter_set - ALF_NUM_FIXED_FILTER_SETS);
|
||
cur_cost += tmp_bits * g_lambda[COMPONENT_Y];
|
||
if (cur_cost < cost_min)
|
||
{
|
||
cost_min = cur_cost;
|
||
//bestApsIds.resize(numFilterSet - alf_num_fixed_filter_sets);
|
||
for (int i = 0; i < num_filter_set - ALF_NUM_FIXED_FILTER_SETS/*bestApsIds.size()*/; i++)
|
||
{
|
||
if (i == 0 && use_new_filter)
|
||
{
|
||
best_aps_ids[i] = new_aps_id;
|
||
}
|
||
else
|
||
{
|
||
best_aps_ids[i] = aps_ids[i - use_new_filter];
|
||
}
|
||
}
|
||
//alfSliceParamNewFiltersBest = m_alfSliceParamTemp;
|
||
copy_alf_param(&alf_aps_new_filters_best, &g_alf_aps_temp);
|
||
|
||
//ctxBest = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_best, &cabac_estimator, sizeof(ctx_best));
|
||
//copyCtuEnableFlag(m_ctuEnableFlagTmp, m_ctuEnableFlag, CHANNEL_TYPE_LUMA);
|
||
//memcpy(g_ctu_enable_flag_tmp[COMPONENT_Y], g_ctu_enable_flag[COMPONENT_Y], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
copy_ctu_enable_flag(g_ctu_enable_flag_tmp, g_ctu_enable_flag, COMPONENT_Y, ctu_idx);
|
||
|
||
//for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++)
|
||
{
|
||
g_alf_ctb_filter_set_index_tmp[ctu_idx] = g_alf_ctb_filter_index[ctu_idx];
|
||
}
|
||
alf_aps_new_filters_best.new_filter_flag[CHANNEL_TYPE_LUMA] = use_new_filter;
|
||
}
|
||
}//for (int iter = 0; iter < numIter; iter++)
|
||
}// for (int numTemporalAps = 0; numTemporalAps < apsIds.size(); numTemporalAps++)
|
||
}//for (int useNewFilter = 0; useNewFilter <= 1; useNewFilter++)
|
||
|
||
if (cost_off <= cost_min)
|
||
{
|
||
memset(state->slice->tile_group_alf_enabled_flag, 0, sizeof(state->slice->tile_group_alf_enabled_flag));
|
||
state->slice->tile_group_num_aps = 0;
|
||
for (int i = 0; i < MAX_NUM_COMPONENT; i++) {
|
||
//memset(g_ctu_enable_flag[i], 0, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
g_ctu_enable_flag[i][ctu_idx] = 0;
|
||
}
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
//alfSliceParamNewFiltersBest.tLayer = cs.slice->getTLayer();
|
||
alf_aps_new_filters_best.t_layer = state->slice->id;
|
||
//cs.slice->setTileGroupAlfEnabledFlag(COMPONENT_Y, true);
|
||
state->slice->tile_group_alf_enabled_flag[COMPONENT_Y] = true;
|
||
//cs.slice->setTileGroupNumAps((int)bestApsIds.size());
|
||
int size_of_best_aps_ids = 0;
|
||
for (int i = 0; i < 8; i++) {
|
||
if (best_aps_ids[i] != -1) {
|
||
size_of_best_aps_ids++;
|
||
}
|
||
}
|
||
state->slice->tile_group_num_aps = size_of_best_aps_ids;
|
||
//cs.slice->setAPSs(bestApsIds);
|
||
for (int i = 0; i < size_of_best_aps_ids; i++)
|
||
{
|
||
state->slice->tile_group_luma_aps_id[i] = best_aps_ids[i];
|
||
}
|
||
|
||
//copyCtuEnableFlag(m_ctuEnableFlag, m_ctuEnableFlagTmp, CHANNEL_TYPE_LUMA);
|
||
//memcpy(g_ctu_enable_flag[COMPONENT_Y], g_ctu_enable_flag_tmp[COMPONENT_Y], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
copy_ctu_enable_flag(g_ctu_enable_flag, g_ctu_enable_flag_tmp, CHANNEL_TYPE_LUMA, ctu_idx);
|
||
//for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++)
|
||
{
|
||
g_alf_ctb_filter_index[ctu_idx] = g_alf_ctb_filter_set_index_tmp[ctu_idx];
|
||
}
|
||
|
||
if (alf_aps_new_filters_best.new_filter_flag[CHANNEL_TYPE_LUMA])
|
||
{
|
||
//APS* newAPS = m_apsMap->getPS((new_aps_id << NUM_APS_TYPE_LEN) + T_ALF_APS);
|
||
alf_aps* new_aps = &state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set;
|
||
if (new_aps->aps_id < 0 || new_aps->aps_id >= ALF_CTB_MAX_NUM_APS) // new_aps == NULL
|
||
{
|
||
//newAPS = m_apsMap->allocatePS(new_aps_id);
|
||
assert(new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS < MAX_NUM_APS); //Invalid PS id
|
||
bool found = false;
|
||
for (int i = 0; i < ALF_CTB_MAX_NUM_APS; i++) {
|
||
if (state->slice->param_set_map[i].parameter_set.aps_id == new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS) {
|
||
found = true;
|
||
}
|
||
}
|
||
if (!found) {
|
||
state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].b_changed = true;
|
||
//state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN+ T_ALF_APS].p_nalu_data = 0;
|
||
//state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set = malloc(sizeof(alf_aps));
|
||
state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set.aps_id = new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS;
|
||
}
|
||
copy_alf_param(new_aps, &state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set);
|
||
|
||
new_aps->aps_id = new_aps_id;
|
||
new_aps->aps_type = T_ALF_APS;
|
||
}
|
||
copy_alf_param(new_aps, &alf_aps_new_filters_best);
|
||
new_aps->new_filter_flag[CHANNEL_TYPE_CHROMA] = false;
|
||
state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].b_changed = true;
|
||
g_aps_id_start = new_aps_id;
|
||
}
|
||
|
||
//std::vector<int> apsIds = cs.slice->getTileGroupApsIdLuma();
|
||
int* aps_ids = state->slice->tile_group_luma_aps_id;
|
||
for (int i = 0; i < state->slice->tile_group_num_aps; i++)
|
||
{
|
||
//apss[apsIds[i]] = m_apsMap->getPS((apsIds[i] << NUM_APS_TYPE_LEN) + T_ALF_APS);
|
||
state->slice->apss[aps_ids[i]].aps_id = state->slice->param_set_map[aps_ids[i + NUM_APS_TYPE_LEN + T_ALF_APS]].parameter_set.aps_id;
|
||
state->slice->apss[aps_ids[i]].aps_type = state->slice->param_set_map[aps_ids[i + NUM_APS_TYPE_LEN + T_ALF_APS]].parameter_set.aps_type;
|
||
copy_alf_param(&state->slice->apss[aps_ids[i]], &state->slice->param_set_map[aps_ids[i + NUM_APS_TYPE_LEN + T_ALF_APS]].parameter_set);
|
||
}
|
||
}
|
||
|
||
//chroma
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
copy_alf_param(&g_alf_aps_temp, &alf_aps_new_filters_best);
|
||
if (g_alf_aps_temp.num_alternatives_chroma < 1)
|
||
{
|
||
g_alf_aps_temp.num_alternatives_chroma = 1;
|
||
}
|
||
//set_ctu_alternative_chroma(m_ctuAlternative, 0);
|
||
//for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++)
|
||
{
|
||
g_ctu_alternative[COMPONENT_Cb][ctu_idx] = 0;
|
||
g_ctu_alternative[COMPONENT_Cr][ctu_idx] = 0;
|
||
}
|
||
//#endif
|
||
//memset(g_ctu_enable_flag[COMPONENT_Cb], 1, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
//memset(g_ctu_enable_flag[COMPONENT_Cr], 1, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
set_ctu_enable_flag(g_ctu_enable_flag, CHANNEL_TYPE_CHROMA, ctu_idx, 1);
|
||
get_frame_stats(CHANNEL_TYPE_CHROMA, 0, ctu_idx);
|
||
cost_off = get_unfiltered_distortion_cov_channel(g_alf_covariance_frame[CHANNEL_TYPE_CHROMA][0], CHANNEL_TYPE_CHROMA);
|
||
cost_min = MAX_DOUBLE;
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxBest);
|
||
memcpy(&cabac_estimator, &ctx_best, sizeof(cabac_estimator));
|
||
//ctxStart = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_start, &cabac_estimator, sizeof(ctx_start));
|
||
ctx_start.only_count = 1;
|
||
int new_aps_id_chroma = -1;
|
||
if (alf_aps_new_filters_best.new_filter_flag[CHANNEL_TYPE_LUMA] && (alf_aps_new_filters_best.enabled_flag[COMPONENT_Cb] || alf_aps_new_filters_best.enabled_flag[COMPONENT_Cr]))
|
||
{
|
||
new_aps_id_chroma = new_aps_id;
|
||
}
|
||
else if (alf_aps_new_filters_best.enabled_flag[COMPONENT_Cb] || alf_aps_new_filters_best.enabled_flag[COMPONENT_Cr])
|
||
{
|
||
int cur_id = g_aps_id_start;
|
||
while (new_aps_id_chroma < 0)
|
||
{
|
||
cur_id--;
|
||
if (cur_id < 0)
|
||
{
|
||
cur_id = ALF_CTB_MAX_NUM_APS - 1;
|
||
}
|
||
|
||
bool found = false;
|
||
for (int i = 0; i < 8; i++) {
|
||
if (cur_id == best_aps_ids[i]) {
|
||
found = true;
|
||
}
|
||
}
|
||
if (!found)
|
||
{
|
||
new_aps_id_chroma = cur_id;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int cur_aps_id = 0; cur_aps_id < ALF_CTB_MAX_NUM_APS; cur_aps_id++)
|
||
{
|
||
if ((/*(cs.slice->getPendingRasInit() ||*/ (state->frame->pictype == KVZ_NAL_IDR_W_RADL || state->frame->pictype == KVZ_NAL_IDR_N_LP) || (state->frame->slicetype == KVZ_SLICE_I)) && cur_aps_id != new_aps_id_chroma)
|
||
{
|
||
continue;
|
||
}
|
||
//APS* cur_aps = m_apsMap->getPS(cur_aps_id);
|
||
alf_aps* cur_aps = &state->slice->param_set_map[cur_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set;
|
||
double cur_cost = g_lambda[CHANNEL_TYPE_CHROMA]/*981.62883931057581*/ * 3;
|
||
|
||
if (cur_aps_id == new_aps_id_chroma)
|
||
{
|
||
copy_alf_param(&g_alf_aps_temp, aps);
|
||
cur_cost += g_lambda[CHANNEL_TYPE_CHROMA] * g_bits_new_filter[CHANNEL_TYPE_CHROMA];
|
||
}
|
||
else if (cur_aps && cur_aps->t_layer <= state->slice->id && cur_aps->new_filter_flag[CHANNEL_TYPE_CHROMA])
|
||
{
|
||
//g_alf_slice_aps_temp = cur_aps;
|
||
copy_alf_param(&g_alf_aps_temp, cur_aps);
|
||
}
|
||
else
|
||
{
|
||
continue;
|
||
}
|
||
kvz_alf_reconstruct_coeff(state, &g_alf_aps_temp, CHANNEL_TYPE_CHROMA, true, true);
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxStart);
|
||
memcpy(&cabac_estimator, &ctx_start, sizeof(cabac_estimator));
|
||
for (int comp_id = 1; comp_id < MAX_NUM_COMPONENT; comp_id++)
|
||
{
|
||
g_alf_aps_temp.enabled_flag[comp_id] = true;
|
||
//for (int ctb_idx = 0; ctb_idx < g_num_ctus_in_pic; ctb_idx++)
|
||
{
|
||
double dist_unfilter_ctu = g_ctb_distortion_unfilter[comp_id][ctu_idx];
|
||
//cost on
|
||
g_ctu_enable_flag[comp_id][ctu_idx] = 1;
|
||
//ctxTempStart = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_temp_start, &cabac_estimator, sizeof(ctx_temp_start));
|
||
ctx_temp_start.only_count = 1;
|
||
//rate
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempStart);
|
||
memcpy(&cabac_estimator, &ctx_temp_start, sizeof(cabac_estimator));
|
||
//m_CABACEstimator->resetBits();
|
||
kvz_cabac_reset_bits(&cabac_estimator);
|
||
//ctb flag
|
||
code_alf_ctu_enable_flag(state, &cabac_estimator, ctu_idx, comp_id, &g_alf_aps_temp);
|
||
double rate_on = (23 - cabac_estimator.bits_left) + (cabac_estimator.num_buffered_bytes << 3); //frac_bits_scale*(double)838/*m_CABACEstimator->getEstFracBits()*/;
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
//#if ENABLE_QPA
|
||
const double ctu_lambda = lambda_chroma_weight > 0.0 ? 0/*cs.picture->m_uEnerHpCtu[ctbIdx]*/ / lambda_chroma_weight : g_lambda[comp_id];
|
||
/*#else
|
||
const double ctu_lambda = m_lambda[compId];
|
||
#endif*/
|
||
double dist = MAX_DOUBLE;
|
||
int num_alts = g_alf_aps_temp.num_alternatives_chroma;
|
||
//ctxTempBest = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_temp_best, &cabac_estimator, sizeof(ctx_temp_best));
|
||
ctx_temp_best.only_count = 1;
|
||
double best_alt_rate = 0;
|
||
double best_alt_cost = MAX_DOUBLE;
|
||
int best_alt_idx = -1;
|
||
//ctxTempAltStart = AlfCtx(ctxTempBest);
|
||
memcpy(&ctx_temp_alt_start, &ctx_temp_best, sizeof(ctx_temp_alt_start));
|
||
for (int alt_idx = 0; alt_idx < num_alts; ++alt_idx)
|
||
{
|
||
if (alt_idx) {
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempAltStart);
|
||
memcpy(&cabac_estimator, &ctx_temp_alt_start, sizeof(cabac_estimator));
|
||
}
|
||
//m_CABACEstimator->resetBits();
|
||
kvz_cabac_reset_bits(&cabac_estimator);
|
||
g_ctu_alternative[comp_id][ctu_idx] = alt_idx;
|
||
//m_CABACEstimator->codeAlfCtuAlternative(cs, ctbIdx, compId, &m_alfParamTemp);
|
||
code_alf_ctu_alternative_ctu(state, &cabac_estimator, ctu_idx, comp_id, &g_alf_aps_temp);
|
||
double alt_rate = (23 - cabac_estimator.bits_left) + (cabac_estimator.num_buffered_bytes << 3); //frac_bits_scale * 0/*m_CABACEstimator->getEstFracBits()*/;
|
||
double r_alt_cost = ctu_lambda * alt_rate;
|
||
|
||
//distortion
|
||
for (int i = 0; i < MAX_NUM_ALF_CHROMA_COEFF; i++)
|
||
{
|
||
g_filter_tmp[i] = g_chroma_coeff_final[alt_idx][i];
|
||
g_clip_tmp[i] = g_chroma_clipp_final[alt_idx][i];
|
||
}
|
||
double alt_dist = calc_error_for_coeffs(&g_alf_covariance[comp_id][0][ctu_idx][0], g_clip_tmp, g_filter_tmp, MAX_NUM_ALF_CHROMA_COEFF, ALF_NUM_BITS);
|
||
double alt_cost = alt_dist + r_alt_cost;
|
||
if (alt_cost < best_alt_cost)
|
||
{
|
||
best_alt_cost = alt_cost;
|
||
best_alt_idx = alt_idx;
|
||
best_alt_rate = alt_rate;
|
||
//ctxTempBest = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_temp_best, &cabac_estimator, sizeof(ctx_temp_best));
|
||
ctx_temp_best.only_count = 1;
|
||
dist = alt_dist;
|
||
}
|
||
}
|
||
g_ctu_alternative[comp_id][ctu_idx] = best_alt_idx;
|
||
rate_on += best_alt_rate;
|
||
dist += dist_unfilter_ctu;
|
||
//cost
|
||
double cost_on = dist + ctu_lambda * rate_on;
|
||
|
||
/*#else
|
||
//distortion
|
||
for (int i = 0; i < MAX_NUM_ALF_CHROMA_COEFF; i++)
|
||
{
|
||
g_filter_tmp[i] = g_chroma_coeff_final[i];
|
||
g_clip_tmp[i] = g_chroma_clipp_final[i];
|
||
}
|
||
double dist = dist_unfilter_ctu + calc_error_for_coeffs(&g_alf_covariance[comp_id][0][ctb_idx][0], g_clip_tmp, g_filter_tmp, MAX_NUM_ALF_CHROMA_COEFF, ALF_NUM_BITS);
|
||
double cost_on = dist + g_lambda[comp_id] * rate_on;
|
||
//ctxTempBest = AlfCtx(m_CABACEstimator->getCtx());
|
||
memcpy(&ctx_temp_best, &cabac_estimator, sizeof(ctx_temp_best));
|
||
#endif*/
|
||
|
||
//cost off
|
||
g_ctu_enable_flag[comp_id][ctu_idx] = 0;
|
||
//rate
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempStart);
|
||
memcpy(&cabac_estimator, &ctx_temp_start, sizeof(cabac_estimator));
|
||
//m_CABACEstimator->resetBits();
|
||
kvz_cabac_reset_bits(&cabac_estimator);
|
||
code_alf_ctu_enable_flag(state, &cabac_estimator, ctu_idx, comp_id, &g_alf_aps_temp);
|
||
//cost
|
||
double cost_off = dist_unfilter_ctu + g_lambda[comp_id] * (23 - cabac_estimator.bits_left) + (cabac_estimator.num_buffered_bytes << 3); //frac_bits_scale*(double)838/*m_CABACEstimator->getEstFracBits()*/;
|
||
if (cost_on < cost_off)
|
||
{
|
||
//m_CABACEstimator->getCtx() = AlfCtx(ctxTempBest);
|
||
memcpy(&cabac_estimator, &ctx_temp_best, sizeof(cabac_estimator));
|
||
g_ctu_enable_flag[comp_id][ctu_idx] = 1;
|
||
cur_cost += cost_on;
|
||
}
|
||
else
|
||
{
|
||
g_ctu_enable_flag[comp_id][ctu_idx] = 0;
|
||
cur_cost += cost_off;
|
||
}
|
||
}//ctb_idx
|
||
}//comp_id
|
||
//chroma idc
|
||
//setEnableFlag(m_alfSliceParamTemp, CHANNEL_TYPE_CHROMA, m_ctuEnableFlag);
|
||
for (int comp_id = COMPONENT_Cb; comp_id <= COMPONENT_Cr; comp_id++)
|
||
{
|
||
g_alf_aps_temp.enabled_flag[comp_id] = false;
|
||
//for (int i = 0; i < g_num_ctus_in_pic; i++)
|
||
{
|
||
if (g_ctu_enable_flag[comp_id][ctu_idx])
|
||
{
|
||
g_alf_aps_temp.enabled_flag[comp_id] = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
/*#if !JVET_O0491_HLS_CLEANUP
|
||
curCost += (lengthTruncatedUnary(alfChromaIdc, 3) - lengthTruncatedUnary(0, 3)) * m_lambda[CHANNEL_TYPE_CHROMA];
|
||
#endif
|
||
#else
|
||
cur_cost += length_truncated_unary(alf_chroma_idc, 3) * g_lambda[CHANNEL_TYPE_CHROMA];
|
||
#endif*/
|
||
if (cur_cost < cost_min)
|
||
{
|
||
cost_min = cur_cost;
|
||
state->slice->tile_group_chroma_aps_id = cur_aps_id;
|
||
state->slice->tile_group_alf_enabled_flag[COMPONENT_Cb] = g_alf_aps_temp.enabled_flag[COMPONENT_Cb];
|
||
state->slice->tile_group_alf_enabled_flag[COMPONENT_Cr] = g_alf_aps_temp.enabled_flag[COMPONENT_Cr];
|
||
//memcpy(g_ctu_enable_flag_tmp[COMPONENT_Cb], g_ctu_enable_flag[COMPONENT_Cb], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
//memcpy(g_ctu_enable_flag_tmp[COMPONENT_Cr], g_ctu_enable_flag[COMPONENT_Cr], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
copy_ctu_enable_flag(g_ctu_enable_flag_tmp, g_ctu_enable_flag, CHANNEL_TYPE_CHROMA, ctu_idx);
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
//for (int idx = 0; idx < g_num_ctus_in_pic; idx++)
|
||
{
|
||
g_ctu_alternative_tmp[COMPONENT_Cb][ctu_idx] = g_ctu_alternative[COMPONENT_Cb][ctu_idx];
|
||
g_ctu_alternative_tmp[COMPONENT_Cr][ctu_idx] = g_ctu_alternative[COMPONENT_Cr][ctu_idx];
|
||
}
|
||
//#endif
|
||
}
|
||
}
|
||
if (cost_off < cost_min)
|
||
{
|
||
state->slice->tile_group_alf_enabled_flag[COMPONENT_Cb] = false;
|
||
state->slice->tile_group_alf_enabled_flag[COMPONENT_Cr] = false;
|
||
//memset(g_ctu_enable_flag[COMPONENT_Cb], 0, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
//memset(g_ctu_enable_flag[COMPONENT_Cr], 0, sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
set_ctu_enable_flag(g_ctu_enable_flag, CHANNEL_TYPE_CHROMA, ctu_idx, 0);
|
||
}
|
||
else
|
||
{
|
||
//memcpy(g_ctu_enable_flag[COMPONENT_Cb], g_ctu_enable_flag_tmp[COMPONENT_Cb], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
//memcpy(g_ctu_enable_flag[COMPONENT_Cr], g_ctu_enable_flag_tmp[COMPONENT_Cr], sizeof(uint8_t) * g_num_ctus_in_pic);
|
||
copy_ctu_enable_flag(g_ctu_enable_flag, g_ctu_enable_flag_tmp, CHANNEL_TYPE_CHROMA, ctu_idx);
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
//for (int idx = 0; idx < g_num_ctus_in_pic; idx++)
|
||
{
|
||
g_ctu_alternative[COMPONENT_Cb][ctu_idx] = g_ctu_alternative_tmp[COMPONENT_Cb][ctu_idx];
|
||
g_ctu_alternative[COMPONENT_Cr][ctu_idx] = g_ctu_alternative_tmp[COMPONENT_Cr][ctu_idx];
|
||
}
|
||
//#endif
|
||
if (state->slice->tile_group_chroma_aps_id == new_aps_id_chroma) //new filter
|
||
{
|
||
//APS* newAPS = m_apsMap->getPS(new_aps_id_chroma);
|
||
alf_aps* new_aps = &state->slice->param_set_map[new_aps_id_chroma + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set;
|
||
if (new_aps->aps_id < 0 || new_aps->aps_id >= ALF_CTB_MAX_NUM_APS) //new_aps == NULL
|
||
{
|
||
//newAPS = m_apsMap->allocatePS(new_aps_id);
|
||
assert(new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS < MAX_NUM_APS); //Invalid PS id
|
||
bool found = false;
|
||
for (int i = 0; i < (sizeof(state->slice->param_set_map) / sizeof(state->slice->param_set_map[0])); i++) {
|
||
if (state->slice->param_set_map[i].parameter_set.aps_id == new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS) {
|
||
found = true;
|
||
}
|
||
}
|
||
if (!found) {
|
||
state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].b_changed = true;
|
||
//state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].p_nalu_data = 0;
|
||
//state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set = malloc(sizeof(alf_aps));
|
||
state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set.aps_id = new_aps_id + T_ALF_APS;
|
||
}
|
||
copy_alf_param(new_aps, &state->slice->param_set_map[new_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set);
|
||
new_aps->aps_id = new_aps_id;
|
||
new_aps->aps_type = T_ALF_APS;
|
||
reset_alf_param(new_aps);
|
||
}
|
||
new_aps->new_filter_flag[CHANNEL_TYPE_CHROMA] = true;
|
||
if (!alf_aps_new_filters_best.new_filter_flag[CHANNEL_TYPE_LUMA]) {
|
||
new_aps->new_filter_flag[CHANNEL_TYPE_LUMA] = false;
|
||
}
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
new_aps->num_alternatives_chroma = aps->num_alternatives_chroma;
|
||
for (int alt_idx = 0; alt_idx < MAX_NUM_ALF_ALTERNATIVES_CHROMA; ++alt_idx)
|
||
new_aps->non_linear_flag[CHANNEL_TYPE_CHROMA][alt_idx] = aps->non_linear_flag[CHANNEL_TYPE_CHROMA][alt_idx];
|
||
/*#else
|
||
new_aps->non_linear_flag[CHANNEL_TYPE_CHROMA] = aps->non_linear_flag[CHANNEL_TYPE_CHROMA];
|
||
#endif*/
|
||
new_aps->t_layer = state->slice->id;
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
for (int alt_idx = 0; alt_idx < MAX_NUM_ALF_ALTERNATIVES_CHROMA; ++alt_idx)
|
||
{
|
||
for (int i = 0; i < MAX_NUM_ALF_CHROMA_COEFF; i++)
|
||
{
|
||
new_aps->chroma_coeff[alt_idx][i] = aps->chroma_coeff[alt_idx][i];
|
||
new_aps->chroma_clipp[alt_idx][i] = aps->chroma_clipp[alt_idx][i];
|
||
}
|
||
}
|
||
/*#else
|
||
for (int i = 0; i < MAX_NUM_ALF_CHROMA_COEFF; i++)
|
||
{
|
||
new_aps->chroma_coeff[i] = aps->chroma_coeff[i];
|
||
new_aps->chroma_clipp[i] = aps->chroma_clipp[i];
|
||
}
|
||
#endif*/
|
||
state->slice->param_set_map[new_aps_id_chroma + NUM_APS_TYPE_LEN + T_ALF_APS].b_changed = true;
|
||
g_aps_id_start = new_aps_id_chroma;
|
||
}
|
||
apss[state->slice->tile_group_chroma_aps_id].aps_id = state->slice->param_set_map[state->slice->tile_group_chroma_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set.aps_id;
|
||
apss[state->slice->tile_group_chroma_aps_id].aps_type = state->slice->param_set_map[state->slice->tile_group_chroma_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set.aps_type;
|
||
copy_alf_param(&apss[state->slice->tile_group_chroma_aps_id], &state->slice->param_set_map[state->slice->tile_group_chroma_aps_id + NUM_APS_TYPE_LEN + T_ALF_APS].parameter_set);
|
||
}
|
||
}
|
||
|
||
void kvz_alf_reconstructor(encoder_state_t const *state,
|
||
int ctu_idx)
|
||
{
|
||
enum kvz_chroma_format chroma_fmt = state->encoder_control->chroma_format;
|
||
|
||
if (!state->slice->tile_group_alf_enabled_flag[COMPONENT_Y])
|
||
{
|
||
return;
|
||
}
|
||
|
||
kvz_alf_reconstruct_coeff_aps(state, true, state->slice->tile_group_alf_enabled_flag[COMPONENT_Cb] || state->slice->tile_group_alf_enabled_flag[COMPONENT_Cr], false);
|
||
|
||
int luma_height = state->tile->frame->height;
|
||
int luma_width = state->tile->frame->width;
|
||
const int max_cu_width = LCU_WIDTH;
|
||
const int max_cu_height = LCU_WIDTH;
|
||
|
||
//int ctu_idx = 0;
|
||
bool clip_top = false, clip_bottom = false, clip_left = false, clip_right = false;
|
||
int num_hor_vir_bndry = 0, num_ver_vir_bndry = 0;
|
||
int hor_vir_bndry_pos[] = { 0, 0, 0 };
|
||
int ver_vir_bndry_pos[] = { 0, 0, 0 };
|
||
|
||
/*for (int y_pos = 0; y_pos < luma_height; y_pos += max_cu_height)
|
||
{
|
||
for (int x_pos = 0; x_pos < luma_width; x_pos += max_cu_width)
|
||
{*/
|
||
//for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++)
|
||
{
|
||
const lcu_order_element_t lcu = state->lcu_order[ctu_idx];
|
||
const int width = lcu.size.x; //(x_pos + max_cu_width > luma_width) ? (luma_width - x_pos) : max_cu_width;
|
||
const int height = lcu.size.y; //(y_pos + max_cu_height > luma_height) ? (luma_height - y_pos) : max_cu_height;
|
||
const int x_pos = lcu.position_px.x;
|
||
const int y_pos = lcu.position_px.y;
|
||
|
||
bool ctu_enable_flag = g_ctu_enable_flag[COMPONENT_Y][ctu_idx];
|
||
for (int comp_idx = 1; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
ctu_enable_flag |= g_ctu_enable_flag[comp_idx][ctu_idx] > 0;
|
||
}
|
||
int x_start = x_pos;
|
||
for (int j = 0; j <= num_ver_vir_bndry; j++)
|
||
{
|
||
const int x_end = j == num_ver_vir_bndry ? x_pos + width : ver_vir_bndry_pos[j];
|
||
const int w = x_end - x_start;
|
||
const bool clip_l = (j == 0 && clip_left) || (j > 0) || (x_start == 0);
|
||
const bool clip_r = (j == num_ver_vir_bndry && clip_right) || (j < num_ver_vir_bndry) || (x_end == luma_width);
|
||
|
||
const int w_buf = w + (clip_l ? 0 : MAX_ALF_PADDING_SIZE) + (clip_r ? 0 : MAX_ALF_PADDING_SIZE);
|
||
const int h_buf = h + (clip_t ? 0 : MAX_ALF_PADDING_SIZE) + (clip_b ? 0 : MAX_ALF_PADDING_SIZE);
|
||
//PelUnitBuf buf = m_tempBuf2.subBuf(UnitArea(cs.area.chromaFormat, Area(0, 0, w_buf, h_buf)));
|
||
//buf.copyFrom(recExtBuf.subBuf(UnitArea(cs.area.chromaFormat, Area(x_start - (clip_l ? 0 : MAX_ALF_PADDING_SIZE), y_start - (clip_t ? 0 : MAX_ALF_PADDING_SIZE), w_buf, h_buf))));
|
||
//buf.extendBorderPel(MAX_ALF_PADDING_SIZE);
|
||
//buf = buf.subBuf(UnitArea(cs.area.chromaFormat, Area(clip_l ? 0 : MAX_ALF_PADDING_SIZE, clip_t ? 0 : MAX_ALF_PADDING_SIZE, w, h)));
|
||
|
||
if (g_ctu_enable_flag[COMPONENT_Y][ctu_idx])
|
||
{
|
||
//const Area blkSrc(0, 0, w, h);
|
||
//const Area blkDst(x_start, y_start, w, h);
|
||
short filter_set_index = g_alf_ctb_filter_index[ctu_idx];
|
||
short *coeff;
|
||
short *clip;
|
||
if (filter_set_index >= ALF_NUM_FIXED_FILTER_SETS)
|
||
{
|
||
coeff = g_coeff_aps_luma[filter_set_index - ALF_NUM_FIXED_FILTER_SETS];
|
||
clip = g_clipp_aps_luma[filter_set_index - ALF_NUM_FIXED_FILTER_SETS];
|
||
}
|
||
else
|
||
{
|
||
coeff = g_fixed_filter_set_coeff_dec[filter_set_index];
|
||
clip = g_clip_default;
|
||
}
|
||
kvz_alf_filter_block(state,
|
||
state->tile->frame->rec->y, alf_tmp_y,
|
||
state->tile->frame->rec->stride, state->tile->frame->rec->stride,
|
||
coeff, clip, g_clp_rngs.comp[COMPONENT_Y], COMPONENT_Y,
|
||
w, h, x_start, y_start, x_start, y_start,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_luma_pos),
|
||
g_alf_vb_luma_ctu_height);
|
||
}
|
||
|
||
for (int comp_idx = 1; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
alf_component_id comp_id = comp_idx;
|
||
|
||
if (g_ctu_enable_flag[comp_idx][ctu_idx])
|
||
{
|
||
//const Area blkSrc(0, 0, w >> chromaScaleX, h >> chromaScaleY);
|
||
//const Area blkDst(x_start >> chromaScaleX, y_start >> chromaScaleY, w >> chromaScaleX, h >> chromaScaleY);
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
|
||
const kvz_pixel *src_pixels = comp_id - 1 ? state->tile->frame->rec->v : state->tile->frame->rec->u;
|
||
kvz_pixel *dst_pixels = comp_id - 1 ? alf_tmp_v : alf_tmp_u;
|
||
const int src_stride = state->tile->frame->rec->stride >> 1;
|
||
const int dst_stride = state->tile->frame->rec->stride >> 1;
|
||
|
||
const int alt_num = g_ctu_alternative[comp_id][ctu_idx];
|
||
kvz_alf_filter_block(state,
|
||
src_pixels, dst_pixels,
|
||
src_stride, dst_stride,
|
||
g_chroma_coeff_final[alt_num], g_chroma_clipp_final[alt_num], g_clp_rngs.comp[comp_idx], comp_id,
|
||
w >> chroma_scale_x, h >> chroma_scale_y,
|
||
x_start >> chroma_scale_x, y_start >> chroma_scale_y,
|
||
x_start >> chroma_scale_x, y_start >> chroma_scale_y,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_chma_pos),
|
||
g_alf_vb_chma_ctu_height);
|
||
/*#else
|
||
kvz_alf_filter_block(state, g_chroma_coeff_final, g_chroma_clipp_final, g_clp_rngs.comp[comp_idx], comp_id,
|
||
w >> chroma_scale_x, h >> chroma_scale_y,
|
||
x_start >> chroma_scale_x, y_start >> chroma_scale_y,
|
||
x_start >> chroma_scale_x, y_start >> chroma_scale_y,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_chma_pos),
|
||
g_alf_vb_chma_ctu_height);
|
||
#endif*/
|
||
}
|
||
}
|
||
|
||
x_start = x_end;
|
||
}
|
||
|
||
y_start = y_end;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (g_ctu_enable_flag[COMPONENT_Y][ctu_idx])
|
||
{
|
||
//Area blk(x_pos, y_pos, width, height);
|
||
short filter_set_index = g_alf_ctb_filter_index[ctu_idx];
|
||
short *coeff;
|
||
short *clip;
|
||
if (filter_set_index >= ALF_NUM_FIXED_FILTER_SETS)
|
||
{
|
||
coeff = g_coeff_aps_luma[filter_set_index - ALF_NUM_FIXED_FILTER_SETS];
|
||
clip = g_clipp_aps_luma[filter_set_index - ALF_NUM_FIXED_FILTER_SETS];
|
||
}
|
||
else
|
||
{
|
||
coeff = g_fixed_filter_set_coeff_dec[filter_set_index];
|
||
clip = g_clip_default;
|
||
}
|
||
kvz_alf_filter_block(state,
|
||
state->tile->frame->rec->y, alf_tmp_y,
|
||
state->tile->frame->rec->stride, state->tile->frame->rec->stride,
|
||
coeff, clip, g_clp_rngs.comp[COMPONENT_Y], COMPONENT_Y,
|
||
width, height, x_pos, y_pos, x_pos, y_pos,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_luma_pos),
|
||
g_alf_vb_luma_ctu_height);
|
||
}
|
||
/*else
|
||
{
|
||
int stride = state->tile->frame->rec->stride;
|
||
for (int h = y_pos; h < y_pos + height; h++) {
|
||
for (int w = x_pos; w < x_pos + width; w++) {
|
||
alf_tmp_y[h * stride + w] = state->tile->frame->rec->y[h * stride + w];
|
||
}
|
||
}
|
||
}*/
|
||
for (int comp_idx = 1; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
alf_component_id comp_id = comp_idx;
|
||
|
||
if (g_ctu_enable_flag[comp_idx][ctu_idx])
|
||
{
|
||
//Area blk(x_pos >> chroma_scale_x, y_pos >> chroma_scale_y, width >> chroma_scale_x, height >> chroma_scale_y);
|
||
//m_filter5x5Blk(m_classifier, recYuv, tmpYuv, blk, comp_id, m_chromaCoeffFinal, clp_rngs.comp[comp_idx], cs);
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
|
||
const kvz_pixel *src_pixels = comp_id - 1 ? state->tile->frame->rec->v : state->tile->frame->rec->u;
|
||
kvz_pixel *dst_pixels = comp_id - 1 ? alf_tmp_v : alf_tmp_u;
|
||
const int src_stride = state->tile->frame->rec->stride >> 1;
|
||
const int dst_stride = state->tile->frame->rec->stride >> 1;
|
||
|
||
const int alt_num = g_ctu_alternative[comp_id][ctu_idx];
|
||
kvz_alf_filter_block(state,
|
||
src_pixels, dst_pixels,
|
||
src_stride, dst_stride,
|
||
g_chroma_coeff_final[alt_num], g_chroma_clipp_final[alt_num], g_clp_rngs.comp[comp_idx], comp_idx,
|
||
width >> chroma_scale_x, height >> chroma_scale_y,
|
||
x_pos >> chroma_scale_x, y_pos >> chroma_scale_y,
|
||
x_pos >> chroma_scale_x, y_pos >> chroma_scale_y,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_chma_pos),
|
||
g_alf_vb_chma_ctu_height);
|
||
/*#else
|
||
kvz_alf_filter_block(state, g_chroma_coeff_final, g_chroma_clipp_final, g_clp_rngs.comp[comp_idx], comp_idx,
|
||
width >> chroma_scale_x, height >> chroma_scale_y,
|
||
x_pos >> chroma_scale_x, y_pos >> chroma_scale_y,
|
||
x_pos >> chroma_scale_x, y_pos >> chroma_scale_y,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_chma_pos),
|
||
g_alf_vb_chma_ctu_height);
|
||
#endif*/
|
||
}
|
||
/*else
|
||
{
|
||
int stride = state->tile->frame->rec->stride >> chroma_scale_y;
|
||
int h_start = y_pos >> chroma_scale_y;
|
||
int w_start = x_pos >> chroma_scale_x;
|
||
int c_width = width >> chroma_scale_x;
|
||
int c_height = height >> chroma_scale_y;
|
||
|
||
if (comp_idx == COMPONENT_Cb)
|
||
{
|
||
for (int h = h_start; h < h_start + c_height; h++) {
|
||
for (int w = w_start; w < w_start + c_width; w++) {
|
||
alf_tmp_u[h * stride + w] = state->tile->frame->rec->u[h * stride + w];
|
||
}
|
||
}
|
||
}
|
||
if (comp_idx == COMPONENT_Cr)
|
||
{
|
||
for (int h = h_start; h < h_start + c_height; h++) {
|
||
for (int w = w_start; w < w_start + c_width; w++) {
|
||
alf_tmp_v[h * stride + w] = state->tile->frame->rec->v[h * stride + w];
|
||
}
|
||
}
|
||
}
|
||
}*/
|
||
}
|
||
}
|
||
}
|
||
//ctu_idx++;
|
||
//}
|
||
//}
|
||
}
|
||
|
||
//----------------------------------------------------------------------
|
||
|
||
//-------------------------cabac writer functions------------------------
|
||
|
||
void kvz_cabac_reset_bits(cabac_data_t * const data)
|
||
{
|
||
data->low = 0;
|
||
data->bits_left = 23;
|
||
data->num_buffered_bytes = 0;
|
||
data->buffered_byte = 0xff;
|
||
}
|
||
|
||
void code_alf_ctu_enable_flags_channel(encoder_state_t * const state,
|
||
cabac_data_t * const cabac,
|
||
channel_type channel,
|
||
alf_aps *aps)
|
||
{
|
||
if (channel == CHANNEL_TYPE_LUMA)
|
||
{
|
||
if (aps->enabled_flag[COMPONENT_Y])
|
||
code_alf_ctu_enable_flags_component(state, cabac, COMPONENT_Y, aps);
|
||
}
|
||
else
|
||
{
|
||
if (aps->enabled_flag[COMPONENT_Cb])
|
||
code_alf_ctu_enable_flags_component(state, cabac, COMPONENT_Cb, aps);
|
||
if (aps->enabled_flag[COMPONENT_Cr])
|
||
code_alf_ctu_enable_flags_component(state, cabac, COMPONENT_Cr, aps);
|
||
}
|
||
}
|
||
|
||
void code_alf_ctu_enable_flags_component(encoder_state_t * const state,
|
||
cabac_data_t * const cabac,
|
||
alf_component_id component_id,
|
||
alf_aps *aps)
|
||
{
|
||
for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++)
|
||
{
|
||
code_alf_ctu_enable_flag(state, cabac, ctu_idx, component_id, aps);
|
||
}
|
||
}
|
||
|
||
void code_alf_ctu_enable_flag(encoder_state_t * const state,
|
||
cabac_data_t * const cabac,
|
||
uint32_t ctu_rs_addr,
|
||
alf_component_id component_id,
|
||
alf_aps *aps)
|
||
{
|
||
const encoder_control_t * const encoder = state->encoder_control;
|
||
|
||
const bool alf_component_enabled = (aps != NULL) ? aps->enabled_flag[component_id] : state->slice->tile_group_alf_enabled_flag[component_id];
|
||
|
||
if (encoder->cfg.alf_enable && alf_component_enabled)
|
||
{
|
||
int frame_width_in_ctus = state->tile->frame->width_in_lcu;
|
||
//int ry = ctu_rs_addr / frame_width_in_ctus;
|
||
//int rx = ctu_rs_addr - ry * frame_width_in_ctus;
|
||
const uint32_t curSliceIdx = state->slice->id;
|
||
//const Position pos(rx * cs.pcv->maxCUWidth, ry * cs.pcv->maxCUHeight);
|
||
//const uint32_t curSliceIdx = cs.slice->getIndependentSliceIdx();
|
||
//const uint32_t curTileIdx = cs.picture->brickMap->getBrickIdxRsMap(pos);
|
||
|
||
//bool leftAvail = cs.getCURestricted(pos.offset(-(int)pcv.maxCUWidth, 0), curSliceIdx, curTileIdx, CH_L) ? true : false;
|
||
//bool aboveAvail = cs.getCURestricted(pos.offset(0, -(int)pcv.maxCUHeight), curSliceIdx, curTileIdx, CH_L) ? true : false;
|
||
bool left_avail = state->lcu_order[ctu_rs_addr].left ? 1 : 0;
|
||
bool above_avail = state->lcu_order[ctu_rs_addr].above ? 1 : 0;
|
||
|
||
int left_ctu_addr = left_avail ? ctu_rs_addr - 1 : -1;
|
||
int above_ctu_addr = above_avail ? ctu_rs_addr - frame_width_in_ctus : -1;
|
||
|
||
uint8_t* ctb_alf_flag = g_ctu_enable_flag[component_id];
|
||
|
||
int ctx = 0;
|
||
ctx += left_ctu_addr > -1 ? (ctb_alf_flag[left_ctu_addr] ? 1 : 0) : 0;
|
||
ctx += above_ctu_addr > -1 ? (ctb_alf_flag[above_ctu_addr] ? 1 : 0) : 0;
|
||
|
||
//m_BinEncoder.encodeBin(ctbAlfFlag[ctuRsAddr], Ctx::ctbAlfFlag(comp_idx * 3 + ctx));
|
||
cabac->cur_ctx = &(cabac->ctx.alf_ctb_flag_model[component_id * 3 + ctx]);
|
||
CABAC_BIN(cabac, ctb_alf_flag[ctu_rs_addr], "alf_ctb_flag");
|
||
}
|
||
}
|
||
|
||
void code_alf_ctu_filter_index(encoder_state_t * const state,
|
||
cabac_data_t * const cabac,
|
||
uint32_t ctu_rs_addr,
|
||
bool alf_enable_luma)
|
||
{
|
||
bitstream_t *stream = &state->stream;
|
||
const encoder_control_t * const encoder = state->encoder_control;
|
||
|
||
if (!encoder->cfg.alf_enable || !alf_enable_luma)//(!cs.sps->getALFEnabledFlag()) || (!alfEnableLuma))
|
||
{
|
||
return;
|
||
}
|
||
|
||
if (!g_ctu_enable_flag[COMPONENT_Y][ctu_rs_addr])
|
||
{
|
||
return;
|
||
}
|
||
|
||
const unsigned filter_set_idx = g_alf_ctb_filter_index[ctu_rs_addr];
|
||
unsigned num_aps = state->slice->tile_group_num_aps;
|
||
unsigned num_available_filt_sets = num_aps + ALF_NUM_FIXED_FILTER_SETS;
|
||
if (num_available_filt_sets > ALF_NUM_FIXED_FILTER_SETS)
|
||
{
|
||
#if JVET_P0162_REMOVE_ALF_CTB_FIRST_USE_APS_FLAG
|
||
int use_temporal_filt = (filter_set_idx >= ALF_NUM_FIXED_FILTER_SETS) ? 1 : 0;
|
||
cabac->cur_ctx = &(cabac->ctx.alf_temporal_filt);
|
||
CABAC_BIN(cabac, use_temporal_filt, "use_latest_filt");
|
||
if (use_temporal_filt)
|
||
{
|
||
assert(filter_set_idx < num_available_filt_sets); //"temporal non-latest set"
|
||
if (num_aps > 1)
|
||
{
|
||
kvz_cabac_encode_trunc_bin(cabac, filter_set_idx - ALF_NUM_FIXED_FILTER_SETS, num_available_filt_sets - ALF_NUM_FIXED_FILTER_SETS);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
assert(filter_set_idx < ALF_NUM_FIXED_FILTER_SETS); //"fixed set larger than temporal"
|
||
kvz_cabac_encode_trunc_bin(cabac, filter_set_idx, ALF_NUM_FIXED_FILTER_SETS);
|
||
}
|
||
#else
|
||
int use_latest_filt = (filter_set_idx == ALF_NUM_FIXED_FILTER_SETS) ? 1 : 0;
|
||
/*if (num_aps == 0) {
|
||
use_latest_filt = 1;
|
||
}*/
|
||
cabac->cur_ctx = &(cabac->ctx.alf_latest_filt);
|
||
CABAC_BIN(cabac, use_latest_filt, "use_latest_filt");
|
||
|
||
if (!use_latest_filt)
|
||
{
|
||
|
||
if (num_aps == 1)
|
||
{
|
||
assert(filter_set_idx < ALF_NUM_FIXED_FILTER_SETS); //Fixed set numavail
|
||
kvz_cabac_encode_trunc_bin(cabac, filter_set_idx, ALF_NUM_FIXED_FILTER_SETS);
|
||
}
|
||
else
|
||
{
|
||
int use_temporal_filt = (filter_set_idx > ALF_NUM_FIXED_FILTER_SETS) ? 1 : 0;
|
||
cabac->cur_ctx = &(cabac->ctx.alf_temporal_filt);
|
||
CABAC_BIN(cabac, use_temporal_filt, "use_temporal_filt");
|
||
|
||
if (use_temporal_filt)
|
||
{
|
||
assert((filter_set_idx - (ALF_NUM_FIXED_FILTER_SETS + 1)) < (num_aps - 1)); //Temporal non-latest set
|
||
if (num_aps > 2)
|
||
{
|
||
kvz_cabac_encode_trunc_bin(cabac, filter_set_idx - (ALF_NUM_FIXED_FILTER_SETS + 1), num_available_filt_sets - (ALF_NUM_FIXED_FILTER_SETS + 1));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
assert(filter_set_idx < ALF_NUM_FIXED_FILTER_SETS); //Fixed set larger than temporal
|
||
kvz_cabac_encode_trunc_bin(cabac, filter_set_idx, ALF_NUM_FIXED_FILTER_SETS);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
assert(filter_set_idx < ALF_NUM_FIXED_FILTER_SETS); //Fixed set numavail < num_fixed
|
||
kvz_cabac_encode_trunc_bin(cabac, filter_set_idx, ALF_NUM_FIXED_FILTER_SETS);
|
||
}
|
||
}
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
void code_alf_ctu_alternatives_channel(encoder_state_t * const state,
|
||
cabac_data_t * const cabac,
|
||
channel_type channel,
|
||
alf_aps* aps,
|
||
int ctu_idx)
|
||
{
|
||
if (channel == CHANNEL_TYPE_CHROMA)
|
||
{
|
||
if (aps->enabled_flag[COMPONENT_Cb])
|
||
code_alf_ctu_alternatives_component(state, cabac, COMPONENT_Cb, aps, ctu_idx);
|
||
if (aps->enabled_flag[COMPONENT_Cr])
|
||
code_alf_ctu_alternatives_component(state, cabac, COMPONENT_Cr, aps, ctu_idx);
|
||
}
|
||
}
|
||
void code_alf_ctu_alternatives_component(encoder_state_t * const state,
|
||
cabac_data_t * const cabac,
|
||
alf_component_id comp_id,
|
||
alf_aps* aps,
|
||
int ctu_idx)
|
||
{
|
||
if (comp_id == COMPONENT_Y)
|
||
return;
|
||
uint32_t num_ctus = g_num_ctus_in_pic;
|
||
uint8_t* ctb_alf_flag = g_ctu_enable_flag[comp_id];
|
||
|
||
//for (int ctu_idx = 0; ctu_idx < num_ctus; ctu_idx++)
|
||
{
|
||
if (ctb_alf_flag[ctu_idx])
|
||
{
|
||
code_alf_ctu_alternative_ctu(state, cabac, ctu_idx, comp_id, aps);
|
||
}
|
||
}
|
||
}
|
||
|
||
void code_alf_ctu_alternative_ctu(encoder_state_t * const state,
|
||
cabac_data_t * const cabac,
|
||
uint32_t ctu_rs_addr,
|
||
const alf_component_id comp_idx,
|
||
const alf_aps* aps)
|
||
{
|
||
|
||
if (comp_idx == COMPONENT_Y)
|
||
return;
|
||
int aps_idx = aps ? 0 : state->slice->tile_group_chroma_aps_id;
|
||
const alf_aps* alf_param_ref = aps ? (aps) : &state->slice->apss[aps_idx];
|
||
|
||
if (aps || (state->encoder_control->cfg.alf_enable && state->slice->tile_group_alf_enabled_flag[comp_idx]))
|
||
{
|
||
uint8_t* ctb_alf_flag = g_ctu_enable_flag[comp_idx];
|
||
|
||
if (ctb_alf_flag[ctu_rs_addr])
|
||
{
|
||
const int num_alts = alf_param_ref->num_alternatives_chroma;
|
||
uint8_t* ctb_alf_alternative = g_ctu_alternative[comp_idx];
|
||
unsigned num_ones = ctb_alf_alternative[ctu_rs_addr];
|
||
assert(ctb_alf_alternative[ctu_rs_addr] < num_alts);
|
||
for (int i = 0; i < num_ones; ++i) {
|
||
cabac->cur_ctx = &cabac->ctx.alf_ctb_alternatives[comp_idx - 1];
|
||
CABAC_BIN(cabac, 1, "alf_ctb_alternatives");
|
||
}
|
||
if (num_ones < num_alts - 1) {
|
||
cabac->cur_ctx = &cabac->ctx.alf_ctb_alternatives[comp_idx - 1];
|
||
CABAC_BIN(cabac, 0, "alf_ctb_alternatives");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
//#endif
|
||
|
||
void kvz_encode_alf_bits(encoder_state_t * const state,
|
||
const int ctu_idx)
|
||
{
|
||
for (int comp_idx = 0; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
bool is_luma = comp_idx == COMPONENT_Y ? true : false;
|
||
//Pit<69>isi poistaa//
|
||
if (!is_luma)
|
||
{
|
||
state->slice->tile_group_alf_enabled_flag[comp_idx] = false;
|
||
}
|
||
// //
|
||
code_alf_ctu_enable_flag(state, &state->cabac, ctu_idx, comp_idx, NULL);
|
||
if (is_luma)
|
||
{
|
||
if (g_ctu_enable_flag[comp_idx][ctu_idx])
|
||
{
|
||
/*if (state->slice->tile_group_num_aps < 1)
|
||
{
|
||
state->slice->tile_group_num_aps = 1;
|
||
code_alf_ctu_filter_index(state, &state->cabac, ctu_idx, state->slice->tile_group_alf_enabled_flag[COMPONENT_Y]);
|
||
state->slice->tile_group_num_aps = 0;
|
||
}
|
||
else
|
||
{
|
||
code_alf_ctu_filter_index(state, &state->cabac, ctu_idx, state->slice->tile_group_alf_enabled_flag[COMPONENT_Y]);
|
||
}*/
|
||
|
||
int num_aps = state->slice->tile_group_num_aps; //Pit<69>isi poistaa
|
||
state->slice->tile_group_num_aps = 1; //Pit<69>isi poistaa
|
||
code_alf_ctu_filter_index(state, &state->cabac, ctu_idx, state->slice->tile_group_alf_enabled_flag[COMPONENT_Y]);
|
||
state->slice->tile_group_num_aps = num_aps; //Pit<69>isi poistaa
|
||
}
|
||
}
|
||
if (!is_luma)
|
||
{
|
||
uint8_t* ctb_alf_flag = state->slice->tile_group_alf_enabled_flag[comp_idx] ? g_ctu_enable_flag[comp_idx] : NULL;
|
||
if (ctb_alf_flag && ctb_alf_flag[ctu_idx])
|
||
{
|
||
code_alf_ctu_alternative_ctu(state, &state->cabac, ctu_idx, comp_idx, NULL);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void encoder_state_write_adaptation_parameter_set(encoder_state_t * const state, alf_aps *aps)
|
||
{
|
||
#ifdef KVZ_DEBUG
|
||
printf("=========== Adaptation Parameter Set ===========\n");
|
||
#endif
|
||
|
||
bitstream_t * const stream = &state->stream;
|
||
|
||
//WRITE_CODE(pcAPS->getAPSId(), 5, "adaptation_parameter_set_id");
|
||
WRITE_U(stream, aps->aps_id, 5, "adaptation_parameter_set_id");
|
||
|
||
//WRITE_CODE(pcAPS->getAPSType(), 3, "aps_params_type");
|
||
WRITE_U(stream, aps->aps_type, 3, "aps_params_type");
|
||
|
||
if (aps->aps_type == T_ALF_APS)
|
||
{
|
||
code_alf_aps(state, aps);
|
||
}
|
||
/*else if (aps->aps_type == T_LMCS_APS)
|
||
{
|
||
codeLmcsAps(pcAPS);
|
||
}*/
|
||
//WRITE_FLAG(0, "aps_extension_flag"); //Implementation when this flag is equal to 1 should be added when it is needed. Currently in the spec we don't have case when this flag is equal to 1
|
||
WRITE_U(stream, 0, 1, "aps_extension_flag"); //Implementation when this flag is equal to 1 should be added when it is needed. Currently in the spec we don't have case when this flag is equal to 1
|
||
kvz_bitstream_add_rbsp_trailing_bits(stream);
|
||
}
|
||
|
||
void code_alf_aps(encoder_state_t * const state,
|
||
alf_aps* aps)
|
||
{
|
||
bitstream_t * const stream = &state->stream;
|
||
|
||
//WRITE_FLAG(param.newFilterFlag[CHANNEL_TYPE_LUMA], "alf_luma_new_filter");
|
||
WRITE_U(stream, aps->new_filter_flag[CHANNEL_TYPE_LUMA], 1, "alf_luma_new_filter");
|
||
|
||
//WRITE_FLAG(param.newFilterFlag[CHANNEL_TYPE_CHROMA], "alf_chroma_new_filter");
|
||
WRITE_U(stream, aps->new_filter_flag[CHANNEL_TYPE_CHROMA], 1, "alf_chroma_new_filter")
|
||
|
||
if (aps->new_filter_flag[CHANNEL_TYPE_LUMA])
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
//WRITE_FLAG(param.nonLinearFlag[CHANNEL_TYPE_LUMA][0], "alf_luma_clip");
|
||
WRITE_U(stream, aps->non_linear_flag[CHANNEL_TYPE_LUMA][0], 1, "alf_luma_clip");
|
||
/*#else
|
||
WRITE_FLAG(param.nonLinearFlag[CHANNEL_TYPE_LUMA], "alf_luma_clip");
|
||
#endif*/
|
||
|
||
//#if JVET_O0491_HLS_CLEANUP
|
||
//WRITE_UVLC(param.numLumaFilters - 1, "alf_luma_num_filters_signalled_minus1");
|
||
WRITE_UE(stream, aps->num_luma_filters - 1, "alf_luma_num_filters_signalled_minus1");
|
||
/*#else
|
||
xWriteTruncBinCode(param.numLumaFilters - 1, MAX_NUM_ALF_CLASSES); //number_of_filters_minus1
|
||
#endif*/
|
||
|
||
if (aps->num_luma_filters > 1)
|
||
{
|
||
//#if JVET_O0491_HLS_CLEANUP
|
||
//const int length = ceilLog2(param.numLumaFilters);
|
||
const int length = kvz_math_ceil_log2(aps->num_luma_filters);
|
||
//#endif
|
||
for (int i = 0; i < MAX_NUM_ALF_CLASSES; i++)
|
||
{
|
||
//#if JVET_O0491_HLS_CLEANUP
|
||
//WRITE_CODE(param.filterCoeffDeltaIdx[i], length, "alf_luma_coeff_delta_idx");
|
||
WRITE_U(stream, aps->filter_coeff_delta_idx[i], length, "alf_luma_coeff_delta_idx");
|
||
/*#else
|
||
xWriteTruncBinCode((uint32_t)param.filterCoeffDeltaIdx[i], param.numLumaFilters); //filter_coeff_delta[i]
|
||
#endif*/
|
||
}
|
||
}
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
WRITE_FLAG(param.fixedFilterSetIndex > 0 ? 1 : 0, "fixed_filter_set_flag");
|
||
if (param.fixedFilterSetIndex > 0)
|
||
{
|
||
xWriteTruncBinCode(param.fixedFilterSetIndex - 1, NUM_FIXED_FILTER_SETS);
|
||
WRITE_FLAG(param.fixedFilterPattern, "fixed_filter_flag_pattern");
|
||
for (int classIdx = 0; classIdx < MAX_NUM_ALF_CLASSES; classIdx++)
|
||
{
|
||
if (param.fixedFilterPattern > 0)
|
||
{
|
||
WRITE_FLAG(param.fixedFilterIdx[classIdx], "fixed_filter_flag");
|
||
}
|
||
else
|
||
{
|
||
CHECK(param.fixedFilterIdx[classIdx] != 1, "Disabled fixed filter");
|
||
}
|
||
}
|
||
}
|
||
#endif*/
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
alf_filter(state, aps, false, 0);
|
||
/*#else
|
||
alfFilter(param, false);
|
||
#endif*/
|
||
|
||
}
|
||
if (aps->new_filter_flag[CHANNEL_TYPE_CHROMA])
|
||
{
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (MAX_NUM_ALF_ALTERNATIVES_CHROMA > 1)
|
||
{
|
||
//WRITE_UVLC(param.numAlternativesChroma - 1, "alf_chroma_num_alts_minus1");
|
||
WRITE_UE(stream, aps->num_alternatives_chroma - 1, "alf_chroma_num_alts_minus1");
|
||
}
|
||
|
||
for (int alt_idx = 0; alt_idx < aps->num_alternatives_chroma; ++alt_idx)
|
||
{
|
||
//WRITE_FLAG(param.nonLinearFlag[CHANNEL_TYPE_CHROMA][alt_idx], "alf_nonlinear_enable_flag_chroma");
|
||
WRITE_U(stream, aps->non_linear_flag[CHANNEL_TYPE_CHROMA][alt_idx], 1, "alf_nonlinear_enable_flag_chroma");
|
||
alf_filter(state, aps, true, alt_idx);
|
||
}
|
||
/*#else
|
||
WRITE_FLAG(param.nonLinearFlag[CHANNEL_TYPE_CHROMA], "alf_chroma_clip");
|
||
alfFilter(param, true);
|
||
#endif*/
|
||
}
|
||
}
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
void alf_filter(encoder_state_t * const state,
|
||
alf_aps* aps,
|
||
const bool is_chroma,
|
||
const int alt_idx)
|
||
/*#else
|
||
void HLSWriter::alfFilter(const AlfParam& alfParam, const bool is_chroma)
|
||
#endif*/
|
||
{
|
||
bitstream_t * const stream = &state->stream;
|
||
|
||
if (!is_chroma)
|
||
{
|
||
//WRITE_FLAG(alfParam.alfLumaCoeffDeltaFlag, "alf_luma_coeff_delta_flag");
|
||
WRITE_U(stream, aps->alf_luma_coeff_delta_flag, 1, "alf_luma_coeff_delta_flag");
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
if (!alfParam.alfLumaCoeffDeltaFlag)
|
||
{
|
||
if (alfParam.numLumaFilters > 1)
|
||
{
|
||
WRITE_FLAG(alfParam.alfLumaCoeffDeltaPredictionFlag, "alf_luma_coeff_delta_prediction_flag");
|
||
}
|
||
}
|
||
#endif*/
|
||
}
|
||
//AlfFilterShape alfShape(is_chroma ? 5 : 7);
|
||
const int num_coeff = is_chroma ? 7 : 13;
|
||
/*#if !JVET_O0216_ALF_COEFF_EG3 || !JVET_O0064_SIMP_ALF_CLIP_CODING
|
||
static int bitsCoeffScan[EncAdaptiveLoopFilter::m_MAX_SCAN_VAL][EncAdaptiveLoopFilter::m_MAX_EXP_GOLOMB];
|
||
memset(bitsCoeffScan, 0, sizeof(bitsCoeffScan));
|
||
const int maxGolombIdx = AdaptiveLoopFilter::getMaxGolombIdx(alfShape.filterType);
|
||
#endif*/
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
const short* coeff = is_chroma ? aps->chroma_coeff[alt_idx] : aps->luma_coeff;
|
||
const short* clipp = is_chroma ? aps->chroma_clipp[alt_idx] : aps->luma_clipp;
|
||
/*#else
|
||
const short* coeff = is_chroma ? alfParam.chromaCoeff : alfParam.lumaCoeff;
|
||
const short* clipp = is_chroma ? alfParam.chromaClipp : alfParam.lumaClipp;
|
||
#endif*/
|
||
const int num_filters = is_chroma ? 1 : aps->num_luma_filters;
|
||
|
||
// vlc for all
|
||
/*#if !JVET_O0216_ALF_COEFF_EG3
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
if (is_chroma || !alfParam.alfLumaCoeffDeltaFlag || alfParam.alfLumaCoeffFlag[ind])
|
||
{
|
||
for (int i = 0; i < alfShape.numCoeff - 1; i++)
|
||
{
|
||
int coeffVal = abs(coeff[ind * MAX_NUM_ALF_LUMA_COEFF + i]);
|
||
|
||
for (int k = 1; k < 15; k++)
|
||
{
|
||
bitsCoeffScan[alfShape.golombIdx[i]][k] += EncAdaptiveLoopFilter::lengthGolomb(coeffVal, k);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#endif*/
|
||
/*#if !JVET_O0216_ALF_COEFF_EG3 || !JVET_O0064_SIMP_ALF_CLIP_CODING
|
||
static int kMinTab[MAX_NUM_ALF_COEFF];
|
||
#endif*/
|
||
/*#if !JVET_O0216_ALF_COEFF_EG3
|
||
int kMin = EncAdaptiveLoopFilter::getGolombKMin(alfShape, num_filters, kMinTab, bitsCoeffScan);
|
||
// Golomb parameters
|
||
WRITE_UVLC(kMin - 1, is_chroma ? "alf_chroma_min_eg_order_minus1" : "alf_luma_min_eg_order_minus1");
|
||
|
||
for (int idx = 0; idx < maxGolombIdx; idx++)
|
||
{
|
||
bool golombOrderIncreaseFlag = (kMinTab[idx] != kMin) ? true : false;
|
||
CHECK(!(kMinTab[idx] <= kMin + 1), "ALF Golomb parameter not consistent");
|
||
WRITE_FLAG(golombOrderIncreaseFlag, is_chroma ? "alf_chroma_eg_order_increase_flag" : "alf_luma_eg_order_increase_flag");
|
||
kMin = kMinTab[idx];
|
||
}
|
||
#endif*/
|
||
if (!is_chroma)
|
||
{
|
||
if (aps->alf_luma_coeff_delta_flag)
|
||
{
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
//WRITE_FLAG(alfParam.alfLumaCoeffFlag[ind], "alf_luma_coeff_flag[i]");
|
||
WRITE_U(stream, aps->alf_luma_coeff_flag[ind], 1, "alf_luma_coeff_flag[i]");
|
||
}
|
||
}
|
||
}
|
||
|
||
// Filter coefficients
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
if (!is_chroma && !aps->alf_luma_coeff_flag[ind] && aps->alf_luma_coeff_delta_flag)
|
||
{
|
||
continue;
|
||
}
|
||
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
//#if JVET_O0216_ALF_COEFF_EG3
|
||
alf_golomb_encode(state, coeff[ind * MAX_NUM_ALF_LUMA_COEFF + i], 3, true); // alf_coeff_chroma[i], alf_coeff_luma_delta[i][j]
|
||
/*#else
|
||
alfGolombEncode(coeff[ind* MAX_NUM_ALF_LUMA_COEFF + i], kMinTab[alfShape.golombIdx[i]]); // alf_coeff_chroma[i], alf_coeff_luma_delta[i][j]
|
||
#endif*/
|
||
}
|
||
}
|
||
|
||
// Clipping values coding
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
if (aps->non_linear_flag[is_chroma][alt_idx])
|
||
/*#else
|
||
if (alfParam.nonLinearFlag[is_chroma])
|
||
#endif*/
|
||
{
|
||
//#if JVET_O0064_SIMP_ALF_CLIP_CODING
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
for (int i = 0; i < num_coeff - 1; i++)
|
||
{
|
||
//WRITE_CODE(clipp[ind* MAX_NUM_ALF_LUMA_COEFF + i], 2, "alf_clipping_index");
|
||
WRITE_U(stream, clipp[ind * MAX_NUM_ALF_LUMA_COEFF + i], 2, "alf_clipping_index");
|
||
}
|
||
}
|
||
/*#else
|
||
memset(bitsCoeffScan, 0, sizeof(bitsCoeffScan));
|
||
|
||
short recCoeff[MAX_NUM_ALF_CLASSES * MAX_NUM_ALF_LUMA_COEFF];
|
||
if (is_chroma)
|
||
{
|
||
memcpy(recCoeff, coeff, sizeof(short) * MAX_NUM_ALF_CHROMA_COEFF);
|
||
}
|
||
else
|
||
{
|
||
memcpy(recCoeff, coeff, sizeof(short) * num_filters * MAX_NUM_ALF_LUMA_COEFF);
|
||
#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
if (alfParam.alfLumaCoeffDeltaPredictionFlag)
|
||
{
|
||
for (int i = 1; i < num_filters; i++)
|
||
{
|
||
for (int j = 0; j < alfShape.numCoeff - 1; j++)
|
||
{
|
||
recCoeff[i * MAX_NUM_ALF_LUMA_COEFF + j] += recCoeff[(i - 1) * MAX_NUM_ALF_LUMA_COEFF + j];
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
// vlc for all
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
if (is_chroma || !alfParam.alfLumaCoeffDeltaFlag || alfParam.alfLumaCoeffFlag[ind])
|
||
{
|
||
for (int i = 0; i < alfShape.numCoeff - 1; i++)
|
||
{
|
||
if (!abs(recCoeff[ind * MAX_NUM_ALF_LUMA_COEFF + i]))
|
||
continue;
|
||
int coeffVal = abs(clipp[ind * MAX_NUM_ALF_LUMA_COEFF + i]);
|
||
|
||
for (int k = 1; k < 15; k++)
|
||
{
|
||
bitsCoeffScan[alfShape.golombIdx[i]][k] += EncAdaptiveLoopFilter::lengthGolomb(coeffVal, k, false);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#if JVET_O0216_ALF_COEFF_EG3
|
||
int kMin = EncAdaptiveLoopFilter::getGolombKMin(alfShape, num_filters, kMinTab, bitsCoeffScan);
|
||
#else
|
||
kMin = EncAdaptiveLoopFilter::getGolombKMin(alfShape, num_filters, kMinTab, bitsCoeffScan);
|
||
#endif
|
||
|
||
// Golomb parameters
|
||
WRITE_UVLC(kMin - 1, "clip_min_golomb_order");
|
||
|
||
for (int idx = 0; idx < maxGolombIdx; idx++)
|
||
{
|
||
bool golombOrderIncreaseFlag = (kMinTab[idx] != kMin) ? true : false;
|
||
CHECK(!(kMinTab[idx] <= kMin + 1), "ALF Golomb parameter not consistent");
|
||
WRITE_FLAG(golombOrderIncreaseFlag, "clip_golomb_order_increase_flag");
|
||
kMin = kMinTab[idx];
|
||
}
|
||
|
||
// Filter coefficients
|
||
for (int ind = 0; ind < num_filters; ++ind)
|
||
{
|
||
if (!is_chroma && !alfParam.alfLumaCoeffFlag[ind] && alfParam.alfLumaCoeffDeltaFlag)
|
||
{
|
||
continue;
|
||
}
|
||
|
||
for (int i = 0; i < alfShape.numCoeff - 1; i++)
|
||
{
|
||
if (!abs(recCoeff[ind * MAX_NUM_ALF_LUMA_COEFF + i]))
|
||
continue;
|
||
alfGolombEncode(clipp[ind* MAX_NUM_ALF_LUMA_COEFF + i], kMinTab[alfShape.golombIdx[i]], false); // alf_coeff_chroma[i], alf_coeff_luma_delta[i][j]
|
||
}
|
||
}
|
||
#endif*/
|
||
}
|
||
}
|
||
|
||
void alf_golomb_encode(encoder_state_t * const state,
|
||
int coeff,
|
||
int k,
|
||
const bool signed_coeff)
|
||
{
|
||
bitstream_t * const stream = &state->stream;
|
||
|
||
unsigned int symbol = abs(coeff);
|
||
while (symbol >= (unsigned int)(1 << k))
|
||
{
|
||
symbol -= 1 << k;
|
||
k++;
|
||
//WRITE_FLAG(0, "alf_coeff_abs_prefix");
|
||
WRITE_U(stream, 0, 1, "alf_coeff_abs_prefix");
|
||
}
|
||
//WRITE_FLAG(1, "alf_coeff_abs_prefix");
|
||
WRITE_U(stream, 1, 1, "alf_coeff_abs_prefix");
|
||
|
||
if (k > 0)
|
||
{
|
||
//WRITE_CODE(symbol, k, "alf_coeff_abs_suffix");
|
||
WRITE_U(stream, symbol, k, "alf_coeff_abs_suffix");
|
||
}
|
||
if (signed_coeff && coeff != 0)
|
||
{
|
||
//WRITE_FLAG((coeff < 0) ? 1 : 0, "alf_coeff_sign");
|
||
WRITE_U(stream, (coeff < 0) ? 1 : 0, 1, "alf_coeff_sign");
|
||
}
|
||
}
|
||
|
||
//---------------------------------------------------------------------
|
||
|
||
//-------------------------CTU functions--------------------------------
|
||
|
||
void kvz_alf_process(encoder_state_t const *state,
|
||
const lcu_order_element_t const *lcu)
|
||
{
|
||
//if (!cs.slice->getTileGroupAlfEnabledFlag(COMPONENT_Y) && !cs.slice->getTileGroupAlfEnabledFlag(COMPONENT_Cb) && !cs.slice->getTileGroupAlfEnabledFlag(COMPONENT_Cr))
|
||
if (!state->slice->tile_group_alf_enabled_flag[COMPONENT_Y] && !state->slice->tile_group_alf_enabled_flag[COMPONENT_Cb] && !state->slice->tile_group_alf_enabled_flag[COMPONENT_Cr])
|
||
{
|
||
return;
|
||
}
|
||
|
||
enum kvz_chroma_format chroma_fmt = state->encoder_control->chroma_format;
|
||
bool alf_ctb_flag = &state->cabac.ctx.alf_ctb_flag_model[COMPONENT_Y];
|
||
|
||
// set clipping range
|
||
// done in INIT
|
||
//m_clp_rngs = cs.slice->getClpRngs();
|
||
|
||
// set CTU enable flags
|
||
for (int comp_idx = 0; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
for (int ctu_idx = 0; ctu_idx < g_num_ctus_in_pic; ctu_idx++) {
|
||
g_ctu_enable_flag[comp_idx][ctu_idx] = g_alf_ctu_enable_flag[comp_idx][ctu_idx];
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
g_ctu_alternative[comp_idx][ctu_idx] = g_alf_ctu_alternative[comp_idx][ctu_idx];
|
||
//#endif
|
||
}
|
||
}
|
||
|
||
kvz_alf_reconstruct_coeff_aps(state,
|
||
true,
|
||
state->slice->tile_group_alf_enabled_flag[COMPONENT_Cb] || state->slice->tile_group_alf_enabled_flag[COMPONENT_Cr],
|
||
false);
|
||
|
||
//PelUnitBuf recYuv = cs.getRecoBuf();
|
||
kvz_picture *rec_yuv = state->tile->frame->rec;
|
||
//m_tempBuf.copyFrom(recYuv);
|
||
//PelUnitBuf tmpYuv = m_tempBuf.getBuf(cs.area);
|
||
//tmpYuv.extendBorderPel(MAX_ALF_FILTER_LENGTH >> 1);
|
||
|
||
int luma_height = state->tile->frame->height;
|
||
int luma_width = state->tile->frame->width;
|
||
|
||
int ctu_idx = 0;
|
||
int max_cu_width = LCU_WIDTH;
|
||
int max_cu_height = LCU_WIDTH;
|
||
|
||
bool clip_top = false, clip_bottom = false, clip_left = false, clip_right = false;
|
||
int num_hor_vir_bndry = 0, num_ver_vir_bndry = 0;
|
||
int hor_vir_bndry_pos[] = { 0, 0, 0 };
|
||
int ver_vir_bndry_pos[] = { 0, 0, 0 };
|
||
|
||
for (int y_pos = 0; y_pos < luma_height; y_pos += max_cu_width)
|
||
{
|
||
for (int x_pos = 0; x_pos < luma_width; x_pos += max_cu_width)
|
||
{
|
||
const int width = (x_pos + max_cu_width > luma_width) ? (luma_width - x_pos) : max_cu_width;
|
||
const int height = (y_pos + max_cu_width > luma_height) ? (luma_height - y_pos) : max_cu_width;
|
||
|
||
bool ctuEnableFlag = g_ctu_enable_flag[COMPONENT_Y][ctu_idx];
|
||
for (int comp_idx = 1; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
ctuEnableFlag |= g_ctu_enable_flag[comp_idx][ctu_idx] > 0;
|
||
}
|
||
|
||
if(ctuEnableFlag && is_crossed_by_virtual_boundaries(x_pos, y_pos, width, height, &clip_top, &clip_bottom, &clip_left, &clip_right, &num_hor_vir_bndry, &num_ver_vir_bndry, hor_vir_bndry_pos, ver_vir_bndry_pos, state))
|
||
{
|
||
int y_start = y_pos;
|
||
for (int i = 0; i <= num_hor_vir_bndry; i++)
|
||
{
|
||
const int y_end = i == num_hor_vir_bndry ? y_pos + height : hor_vir_bndry_pos[i];
|
||
const int h = y_end - y_start;
|
||
const bool clipT = (i == 0 && clip_top) || (i > 0) || (y_start == 0);
|
||
const bool clipB = (i == num_hor_vir_bndry && clip_bottom) || (i < num_hor_vir_bndry) || (y_end == luma_height);
|
||
|
||
int x_start = x_pos;
|
||
for (int j = 0; j <= num_ver_vir_bndry; j++)
|
||
{
|
||
const int x_end = j == num_ver_vir_bndry ? x_pos + width : ver_vir_bndry_pos[j];
|
||
const int w = x_end - x_start;
|
||
const bool clipL = (j == 0 && clip_left) || (j > 0) || (x_start == 0);
|
||
const bool clipR = (j == num_ver_vir_bndry && clip_right) || (j < num_ver_vir_bndry) || (x_end == luma_width);
|
||
|
||
const int wBuf = w + (clipL ? 0 : MAX_ALF_PADDING_SIZE) + (clipR ? 0 : MAX_ALF_PADDING_SIZE);
|
||
const int hBuf = h + (clipT ? 0 : MAX_ALF_PADDING_SIZE) + (clipB ? 0 : MAX_ALF_PADDING_SIZE);
|
||
/*
|
||
PelUnitBuf buf = m_tempBuf2.subBuf(UnitArea(cs.area.chromaFormat, Area(0, 0, w_buf, h_buf)));
|
||
buf.copyFrom(tmpYuv.subBuf(UnitArea(cs.area.chromaFormat, Area(x_start - (clip_l ? 0 : MAX_ALF_PADDING_SIZE), y_start - (clip_t ? 0 : MAX_ALF_PADDING_SIZE), w_buf, h_buf))));
|
||
buf.extendBorderPel(MAX_ALF_PADDING_SIZE);
|
||
buf = buf.subBuf(UnitArea(cs.area.chromaFormat, Area(clip_l ? 0 : MAX_ALF_PADDING_SIZE, clip_t ? 0 : MAX_ALF_PADDING_SIZE, w, h)));
|
||
*/
|
||
if (g_ctu_enable_flag[COMPONENT_Y][ctu_idx])
|
||
{
|
||
//const Area blkSrc(0, 0, w, h);
|
||
//const Area blkDst(x_start, y_start, w, h);
|
||
//deriveClassification(m_classifier, buf.get(COMPONENT_Y), blkDst, blkSrc);
|
||
kvz_alf_derive_classification(state, w, h, x_start, y_start, x_start, y_start);
|
||
//const Area blkPCM(x_start, y_start, w, h);
|
||
//#if !JVET_O0525_REMOVE_PCM
|
||
//resetPCMBlkClassInfo(cs, m_classifier, buf.get(COMPONENT_Y), blkPCM);
|
||
//kvz_alf_reset_pcm_blk_class_info(state, lcu, w, h, x_start, y_start);
|
||
short filter_set_index = g_alf_ctb_filter_index[ctu_idx];
|
||
short *coeff;
|
||
short *clip;
|
||
if (filter_set_index >= ALF_NUM_FIXED_FILTER_SETS)
|
||
{
|
||
coeff = g_coeff_aps_luma[filter_set_index - ALF_NUM_FIXED_FILTER_SETS];
|
||
clip = g_clipp_aps_luma[filter_set_index - ALF_NUM_FIXED_FILTER_SETS];
|
||
}
|
||
else
|
||
{
|
||
coeff = g_fixed_filter_set_coeff_dec[filter_set_index];
|
||
clip = g_clip_default;
|
||
}
|
||
kvz_alf_filter_block(state,
|
||
state->tile->frame->rec->y, alf_tmp_y,
|
||
state->tile->frame->rec->stride, state->tile->frame->rec->stride,
|
||
coeff, clip, g_clp_rngs.comp[COMPONENT_Y], COMPONENT_Y,
|
||
w, h, x_start, y_start, x_start, y_start,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_luma_pos),
|
||
g_alf_vb_luma_ctu_height);
|
||
}
|
||
|
||
for (int comp_idx = 1; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
alf_component_id comp_id = comp_idx;
|
||
|
||
if (g_ctu_enable_flag[comp_idx][ctu_idx])
|
||
{
|
||
//const Area blkSrc(0, 0, w >> chromaScaleX, h >> chromaScaleY);
|
||
//const Area blkDst(x_start >> chromaScaleX, y_start >> chromaScaleY, w >> chromaScaleX, h >> chromaScaleY);
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
|
||
const kvz_pixel *src_pixels = comp_id - 1 ? state->tile->frame->rec->v : state->tile->frame->rec->u;
|
||
kvz_pixel *dst_pixels = comp_id - 1 ? alf_tmp_v : alf_tmp_u;
|
||
const int src_stride = state->tile->frame->rec->stride >> 1;
|
||
const int dst_stride = state->tile->frame->rec->stride >> 1;
|
||
|
||
uint8_t alt_num = g_ctu_alternative[comp_idx][ctu_idx];
|
||
kvz_alf_filter_block(state,
|
||
src_pixels, dst_pixels,
|
||
src_stride, dst_stride,
|
||
g_chroma_coeff_final[alt_num], g_chroma_clipp_final[alt_num], g_clp_rngs.comp[comp_idx],
|
||
comp_id, w >> chroma_scale_x, h >> chroma_scale_y,
|
||
x_start >> chroma_scale_x, y_start >> chroma_scale_y,
|
||
x_start >> chroma_scale_x, y_start >> chroma_scale_y,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_chma_pos),
|
||
g_alf_vb_chma_ctu_height);
|
||
/*#else
|
||
kvz_alf_filter_block(state, g_chroma_coeff_final, g_chroma_clipp_final, g_clp_rngs.comp[comp_idx],
|
||
comp_id, w >> chroma_scale_x, h >> chroma_scale_y,
|
||
x_start >> chroma_scale_x, y_start >> chroma_scale_y,
|
||
x_start >> chroma_scale_x, y_start >> chroma_scale_y,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_chma_pos),
|
||
g_alf_vb_chma_ctu_height);
|
||
#endif*/
|
||
}
|
||
}
|
||
|
||
x_start = x_end;
|
||
}
|
||
|
||
y_start = y_end;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
//const UnitArea area(cs.area.chromaFormat, Area(x_pos, y_pos, width, height));
|
||
if (g_ctu_enable_flag[COMPONENT_Y][ctu_idx])
|
||
{
|
||
//Area blk(x_pos, y_pos, width, height);
|
||
//deriveClassification(m_classifier, tmpYuv.get(COMPONENT_Y), blk, blk);
|
||
kvz_alf_derive_classification(state, width, height, x_pos, y_pos, x_pos, y_pos);
|
||
//Area blkPCM(x_pos, y_pos, width, height);
|
||
//#if !JVET_O0525_REMOVE_PCM
|
||
//resetPCMBlkClassInfo(cs, m_classifier, tmpYuv.get(COMPONENT_Y), blkPCM);
|
||
//kvz_alf_reset_pcm_blk_class_info(state, lcu, width, height, x_pos, y_pos);
|
||
short filter_set_index = g_alf_ctb_filter_index[ctu_idx];
|
||
short *coeff;
|
||
short *clip;
|
||
if (filter_set_index >= ALF_NUM_FIXED_FILTER_SETS)
|
||
{
|
||
coeff = g_coeff_aps_luma[filter_set_index - ALF_NUM_FIXED_FILTER_SETS];
|
||
clip = g_clipp_aps_luma[filter_set_index - ALF_NUM_FIXED_FILTER_SETS];
|
||
}
|
||
else
|
||
{
|
||
coeff = g_fixed_filter_set_coeff_dec[filter_set_index];
|
||
clip = g_clip_default;
|
||
}
|
||
kvz_alf_filter_block(state,
|
||
state->tile->frame->rec->y, alf_tmp_y,
|
||
state->tile->frame->rec->stride, state->tile->frame->rec->stride,
|
||
coeff, clip, g_clp_rngs.comp[COMPONENT_Y], COMPONENT_Y,
|
||
width, height, x_pos, y_pos, x_pos, y_pos,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_luma_pos),
|
||
g_alf_vb_luma_ctu_height);
|
||
}
|
||
for (int comp_idx = 1; comp_idx < MAX_NUM_COMPONENT; comp_idx++)
|
||
{
|
||
alf_component_id comp_id = comp_idx;
|
||
|
||
if (g_ctu_enable_flag[comp_idx][ctu_idx])
|
||
{
|
||
//Area blk(x_pos >> chroma_scale_x, y_pos >> chroma_scale_y, width >> chroma_scale_x, height >> chroma_scale_y);
|
||
//m_filter5x5Blk(m_classifier, recYuv, tmpYuv, blk, comp_id, m_chromaCoeffFinal, clp_rngs.comp[comp_idx], cs);
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
|
||
const kvz_pixel *src_pixels = comp_id - 1 ? state->tile->frame->rec->v : state->tile->frame->rec->u;
|
||
kvz_pixel *dst_pixels = comp_id - 1 ? alf_tmp_v : alf_tmp_u;
|
||
const int src_stride = state->tile->frame->rec->stride >> 1;
|
||
const int dst_stride = state->tile->frame->rec->stride >> 1;
|
||
|
||
uint8_t alt_num = g_ctu_alternative[comp_idx][ctu_idx];
|
||
kvz_alf_filter_block(state,
|
||
src_pixels, dst_pixels,
|
||
src_stride, dst_stride,
|
||
g_chroma_coeff_final[alt_num], g_chroma_clipp_final[alt_num], g_clp_rngs.comp[comp_idx], comp_idx,
|
||
width >> chroma_scale_x, height >> chroma_scale_y,
|
||
x_pos >> chroma_scale_x, y_pos >> chroma_scale_y,
|
||
x_pos >> chroma_scale_x, y_pos >> chroma_scale_y,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_chma_pos),
|
||
g_alf_vb_chma_ctu_height);
|
||
/*#else
|
||
kvz_alf_filter_block(state, g_chroma_coeff_final, g_chroma_clipp_final, g_clp_rngs.comp[comp_idx], comp_idx,
|
||
width >> chroma_scale_x, height >> chroma_scale_y,
|
||
x_pos >> chroma_scale_x, y_pos >> chroma_scale_y,
|
||
x_pos >> chroma_scale_x, y_pos >> chroma_scale_y,
|
||
((y_pos + max_cu_height >= luma_height) ? luma_height : g_alf_vb_chma_pos),
|
||
g_alf_vb_chma_ctu_height);
|
||
#endif*/
|
||
|
||
|
||
}
|
||
}
|
||
}
|
||
ctu_idx++;
|
||
}
|
||
}
|
||
}
|
||
|
||
void kvz_alf_reconstruct_coeff_aps(encoder_state_t *const state, bool luma, bool chroma, bool is_rdo)
|
||
{
|
||
//luma
|
||
alf_aps* apss = state->slice->apss;
|
||
//AlfSliceParam alfSliceParamTmp;
|
||
alf_aps alf_param_tmp;
|
||
//APS* cur_aps;
|
||
alf_aps* cur_aps;
|
||
|
||
if (luma)
|
||
{
|
||
for (int i = 0; i < state->slice->tile_group_num_aps /* 1, cs.slice->getTileGroupNumAps()*/; i++) {
|
||
int aps_idx = state->slice->tile_group_luma_aps_id[i];
|
||
cur_aps = &apss[aps_idx];
|
||
|
||
assert(cur_aps != NULL); // "invalid APS"
|
||
alf_param_tmp = *cur_aps;
|
||
|
||
kvz_alf_reconstruct_coeff(state, &alf_param_tmp, CHANNEL_TYPE_LUMA, is_rdo, true);
|
||
memcpy(g_coeff_aps_luma[i], g_coeff_final, sizeof(g_coeff_final));
|
||
memcpy(g_clipp_aps_luma[i], g_clipp_final, sizeof(g_clipp_final));
|
||
}
|
||
}
|
||
|
||
//chroma
|
||
if (chroma)
|
||
{
|
||
int aps_idx_chroma = state->slice->tile_group_chroma_aps_id;
|
||
cur_aps = &apss[aps_idx_chroma];
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
/* g_alf_aps_chroma turha v<>lik<69>si (?)
|
||
copy_alf_param(g_alf_aps_chroma, cur_aps);
|
||
copy_alf_param(alf_param_tmp, g_alf_aps_chroma);*/
|
||
copy_alf_param(&alf_param_tmp, cur_aps);
|
||
/*#else
|
||
copy_alf_param(alf_param_tmp, cur_aps);
|
||
#endif*/
|
||
kvz_alf_reconstruct_coeff(state, &alf_param_tmp, CHANNEL_TYPE_CHROMA, is_rdo, true);
|
||
}
|
||
}
|
||
|
||
//void reconstructCoeff(AlfSliceParam& alfSliceParam, ChannelType channel, const bool isRdo, const bool isRedo)
|
||
void kvz_alf_reconstruct_coeff(encoder_state_t *const state,
|
||
alf_aps *aps,
|
||
channel_type channel,
|
||
const bool is_rdo,
|
||
const bool is_redo)
|
||
{
|
||
int factor = is_rdo ? 0 : (1 << (ALF_NUM_BITS - 1));
|
||
bool is_luma = channel == CHANNEL_TYPE_LUMA ? 1 : 0;
|
||
alf_filter_type filter_type = is_luma ? ALF_FILTER_7X7 : ALF_FILTER_5X5;
|
||
int num_classes = is_luma ? MAX_NUM_ALF_CLASSES : 1;
|
||
int num_coeff = filter_type == ALF_FILTER_5X5 ? 7 : 13;
|
||
int num_coeff_minus1 = num_coeff - 1;
|
||
|
||
/*#if !JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
int num_filters = is_luma ? num_luma_filters : 1;
|
||
short* coeff = is_luma ? luma_coeff : chroma_coeff;
|
||
short* clipp = is_luma ? luma_clipp : chroma_clipp;
|
||
#endif*/
|
||
|
||
//#if JVET_O0090_ALF_CHROMA_FILTER_ALTERNATIVES_CTB
|
||
const int num_alts = is_luma ? 1 : aps->num_alternatives_chroma;
|
||
|
||
for (int alt_idx = 0; alt_idx < num_alts; ++alt_idx)
|
||
{
|
||
int num_filters = is_luma ? aps->num_luma_filters : 1;
|
||
short* coeff = is_luma ? aps->luma_coeff : aps->chroma_coeff[alt_idx];
|
||
short* clipp = is_luma ? aps->luma_clipp : aps->chroma_clipp[alt_idx];
|
||
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
if (alfParam.alfLumaCoeffDeltaPredictionFlag && isLuma(channel))
|
||
{
|
||
for (int i = 1; i < num_filters; i++)
|
||
{
|
||
for (int j = 0; j < numCoeffMinus1; j++)
|
||
{
|
||
coeff[i * MAX_NUM_ALF_LUMA_COEFF + j] += coeff[(i - 1) * MAX_NUM_ALF_LUMA_COEFF + j];
|
||
}
|
||
}
|
||
}
|
||
#endif*/
|
||
for (int filter_idx = 0; filter_idx < num_filters; filter_idx++)
|
||
{
|
||
coeff[filter_idx * MAX_NUM_ALF_LUMA_COEFF + num_coeff_minus1] = factor;
|
||
}
|
||
|
||
if (!is_luma)
|
||
{
|
||
for (int coeff_idx = 0; coeff_idx < num_coeff_minus1; ++coeff_idx)
|
||
{
|
||
g_chroma_coeff_final[alt_idx][coeff_idx] = coeff[coeff_idx];
|
||
int clip_idx = aps->non_linear_flag[channel][alt_idx] ? clipp[coeff_idx] : 0;
|
||
g_chroma_clipp_final[alt_idx][coeff_idx] = is_rdo ? clip_idx : g_alf_clipping_values[channel][clip_idx];
|
||
}
|
||
g_chroma_coeff_final[alt_idx][num_coeff_minus1] = factor;
|
||
g_chroma_clipp_final[alt_idx][num_coeff_minus1] = is_rdo ? 0 : g_alf_clipping_values[channel][0];
|
||
continue;
|
||
}
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
int filterIdx = aps->filter_coeff_delta_idx[class_idx];
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
int fixedFilterIdx = alfParam.fixedFilterSetIndex;
|
||
if (fixedFilterIdx > 0 && alfParam.fixedFilterIdx[class_idx] > 0)
|
||
{
|
||
fixedFilterIdx = m_classToFilterMapping[fixedFilterIdx - 1][class_idx];
|
||
}
|
||
else
|
||
{
|
||
fixedFilterIdx = -1;
|
||
}
|
||
#endif*/
|
||
for (int coeff_idx = 0; coeff_idx < num_coeff_minus1; ++coeff_idx)
|
||
{
|
||
g_coeff_final[class_idx * MAX_NUM_ALF_LUMA_COEFF + coeff_idx] = coeff[filterIdx * MAX_NUM_ALF_LUMA_COEFF + coeff_idx];
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
//fixed filter
|
||
if (fixedFilterIdx >= 0)
|
||
{
|
||
m_coeffFinal[class_idx * MAX_NUM_ALF_LUMA_COEFF + coeff_idx] += m_fixedFilterSetCoeff[fixedFilterIdx][coeff_idx];
|
||
}
|
||
#endif*/
|
||
}
|
||
g_coeff_final[class_idx* MAX_NUM_ALF_LUMA_COEFF + num_coeff_minus1] = factor;
|
||
g_clipp_final[class_idx* MAX_NUM_ALF_LUMA_COEFF + num_coeff_minus1] = is_rdo ? 0 : g_alf_clipping_values[channel][0];
|
||
for (int coeff_idx = 0; coeff_idx < num_coeff_minus1; ++coeff_idx)
|
||
{
|
||
int clipIdx = aps->non_linear_flag[channel][alt_idx] ? (clipp + filterIdx * MAX_NUM_ALF_LUMA_COEFF)[coeff_idx] : 0;
|
||
(g_clipp_final + class_idx * MAX_NUM_ALF_LUMA_COEFF)[coeff_idx] = is_rdo ? clipIdx : g_alf_clipping_values[channel][clipIdx];
|
||
}
|
||
g_clipp_final[class_idx* MAX_NUM_ALF_LUMA_COEFF + num_coeff_minus1] =
|
||
is_rdo ? 0 :
|
||
g_alf_clipping_values[channel][0];
|
||
}
|
||
}
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
|
||
if (is_chroma(channel))
|
||
return;
|
||
|
||
if (isRedo && alfParam.alfLumaCoeffDeltaPredictionFlag)
|
||
{
|
||
int num_filters = alfParam.numLumaFilters;
|
||
short* coeff = alfParam.lumaCoeff;
|
||
|
||
for (int i = num_filters - 1; i > 0; i--)
|
||
{
|
||
for (int j = 0; j < numCoeffMinus1; j++)
|
||
{
|
||
coeff[i * MAX_NUM_ALF_LUMA_COEFF + j] = coeff[i * MAX_NUM_ALF_LUMA_COEFF + j] - coeff[(i - 1) * MAX_NUM_ALF_LUMA_COEFF + j];
|
||
}
|
||
}
|
||
}
|
||
#endif*/
|
||
/*#else
|
||
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
if (*alf_luma_coeff_delta_prediction_flag && is_luma)
|
||
{
|
||
for (int i = 1; i < num_filters; i++)
|
||
{
|
||
for (int j = 0; j < num_coeff_minus1; j++)
|
||
{
|
||
coeff[i * MAX_NUM_ALF_LUMA_COEFF + j] += coeff[(i - 1) * MAX_NUM_ALF_LUMA_COEFF + j];
|
||
}
|
||
}
|
||
}*//*
|
||
|
||
for (int filter_idx = 0; filter_idx < num_filters; filter_idx++)
|
||
{
|
||
coeff[filter_idx* MAX_NUM_ALF_LUMA_COEFF + num_coeff_minus1] = factor;
|
||
}
|
||
|
||
if ( !is_luma )
|
||
{
|
||
for (int coeff_idx = 0; coeff_idx < num_coeff_minus1; ++coeff_idx)
|
||
{
|
||
g_chroma_coeff_final[coeff_idx] = chroma_coeff[coeff_idx];
|
||
|
||
g_chroma_coeff_final[coeff_idx] = chroma_coeff[coeff_idx];
|
||
int clip_idx = aps->non_linear_flag[channel] ? clipp[coeff_idx] : 0;
|
||
g_chroma_clipp_final[coeff_idx] = is_rdo ? clip_idx : g_alf_clipping_values[channel][clip_idx];
|
||
|
||
}
|
||
g_chroma_coeff_final[num_coeff_minus1] = factor;
|
||
g_chroma_clipp_final[num_coeff_minus1] = is_rdo ? 0 : g_alf_clipping_values[channel][0];
|
||
|
||
return;
|
||
}
|
||
|
||
for (int class_idx = 0; class_idx < num_classes; class_idx++)
|
||
{
|
||
int filter_idx = filter_coeff_delta_idx[class_idx];
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
int fixed_filter_idx = *fixed_filter_set_index; //13
|
||
if (fixed_filter_idx > 0 && aps->fixed_filter_idx[class_idx] > 0)
|
||
{
|
||
fixed_filter_idx = g_class_to_filter_mapping[fixed_filter_idx - 1][class_idx];
|
||
}
|
||
else
|
||
{
|
||
fixed_filter_idx = -1;
|
||
}*//*
|
||
for (int coeff_idx = 0; coeff_idx < num_coeff_minus1; ++coeff_idx)
|
||
{
|
||
g_coeff_final[class_idx * MAX_NUM_ALF_LUMA_COEFF + coeff_idx] = coeff[filter_idx * MAX_NUM_ALF_LUMA_COEFF + coeff_idx];
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
//fixed filter
|
||
if (fixed_filter_idx >= 0)
|
||
{
|
||
g_coeff_final[class_idx * MAX_NUM_ALF_LUMA_COEFF + coeff_idx] += g_fixed_filter_set_coeff[fixed_filter_idx][coeff_idx];
|
||
}*//*
|
||
}
|
||
g_coeff_final[class_idx * MAX_NUM_ALF_LUMA_COEFF + num_coeff_minus1] = factor;
|
||
g_clipp_final[class_idx* MAX_NUM_ALF_LUMA_COEFF + num_coeff_minus1] = is_rdo ? 0 : g_alf_clipping_values[channel][0];
|
||
for (int coeff_idx = 0; coeff_idx < num_coeff_minus1; ++coeff_idx)
|
||
{
|
||
int clip_idx = aps->non_linear_flag[channel] ? (clipp + filter_idx * MAX_NUM_ALF_LUMA_COEFF)[coeff_idx] : 0;
|
||
g_clipp_final[class_idx * MAX_NUM_ALF_LUMA_COEFF + coeff_idx] = is_rdo ? clip_idx : g_alf_clipping_values[channel][clip_idx];
|
||
}
|
||
}
|
||
/*#if !JVET_O0669_REMOVE_ALF_COEFF_PRED
|
||
if (is_redo && state->cabac.ctx.alf_luma_coeff_delta_prediction_flag.state[0])
|
||
{
|
||
for (int i = num_filters - 1; i > 0; i--)
|
||
{
|
||
for (int j = 0; j < num_coeff_minus1; j++)
|
||
{
|
||
coeff[i * MAX_NUM_ALF_LUMA_COEFF + j] = coeff[i * MAX_NUM_ALF_LUMA_COEFF + j] - coeff[(i - 1) * MAX_NUM_ALF_LUMA_COEFF + j];
|
||
}
|
||
}
|
||
}*/
|
||
}
|
||
|
||
void kvz_alf_create(encoder_state_t const *state,
|
||
const lcu_order_element_t const *lcu)
|
||
{
|
||
if (g_created)
|
||
{
|
||
return;
|
||
}
|
||
|
||
const int pic_width = state->tile->frame->width;
|
||
const int pic_height = state->tile->frame->height;
|
||
const int max_cu_width = LCU_WIDTH; //128
|
||
const int max_cu_height = LCU_WIDTH; //128
|
||
enum kvz_chroma_format chroma_fmt = state->encoder_control->chroma_format;
|
||
|
||
const int num_ctus_in_width = (pic_width / max_cu_width) + ((pic_width % max_cu_width) ? 1 : 0);
|
||
const int num_ctus_in_height = (pic_height / max_cu_height) + ((pic_height % max_cu_height) ? 1 : 0);
|
||
g_num_ctus_in_pic = num_ctus_in_width * num_ctus_in_height;
|
||
|
||
g_alf_vb_luma_pos = max_cu_height - ALF_VB_POS_ABOVE_CTUROW_LUMA;
|
||
g_alf_vb_chma_pos = (max_cu_height >> ((chroma_fmt == KVZ_CSP_420) ? 1 : 0)) - ALF_VB_POS_ABOVE_CTUROW_CHMA;
|
||
|
||
g_alf_vb_luma_ctu_height = max_cu_height;
|
||
g_alf_vb_chma_ctu_height = (max_cu_height >> ((chroma_fmt == KVZ_CSP_420) ? 1 : 0));
|
||
|
||
assert(g_alf_num_clipping_values[CHANNEL_TYPE_LUMA] > 0); //"g_alf_num_clipping_values[CHANNEL_TYPE_LUMA] must be at least one"
|
||
for (int i = 0; i < g_alf_num_clipping_values[CHANNEL_TYPE_LUMA]; ++i)
|
||
{
|
||
g_alf_clipping_values[CHANNEL_TYPE_LUMA][i] =
|
||
(short)round(pow(2., g_input_bit_depth[CHANNEL_TYPE_LUMA] *
|
||
(g_alf_num_clipping_values[CHANNEL_TYPE_LUMA] - i) / g_alf_num_clipping_values[CHANNEL_TYPE_LUMA]));
|
||
}
|
||
|
||
assert(g_alf_num_clipping_values[CHANNEL_TYPE_CHROMA] > 0); //"g_alf_num_clipping_values[CHANNEL_TYPE_CHROMA] must be at least one"
|
||
g_alf_clipping_values[CHANNEL_TYPE_CHROMA][0] = 1 << g_input_bit_depth[CHANNEL_TYPE_CHROMA];
|
||
for (int i = 1; i < g_alf_num_clipping_values[CHANNEL_TYPE_CHROMA]; ++i)
|
||
{
|
||
g_alf_clipping_values[CHANNEL_TYPE_CHROMA][i] =
|
||
(short)round(pow(2., g_input_bit_depth[CHANNEL_TYPE_CHROMA] - 8 + 8. *
|
||
(g_alf_num_clipping_values[CHANNEL_TYPE_CHROMA] - i - 1) / (g_alf_num_clipping_values[CHANNEL_TYPE_CHROMA] - 1)));
|
||
}
|
||
|
||
// Classification
|
||
g_classifier = malloc(pic_height * sizeof(**g_classifier));
|
||
g_classifier[0] = malloc(pic_height * pic_width * sizeof(*g_classifier));
|
||
for (int i = 1; i < pic_height; i++)
|
||
{
|
||
g_classifier[i] = g_classifier[0] + i * pic_width;
|
||
}
|
||
|
||
for (int filter_set_index = 0; filter_set_index < ALF_NUM_FIXED_FILTER_SETS; filter_set_index++)
|
||
{
|
||
for (int class_idx = 0; class_idx < MAX_NUM_ALF_CLASSES; class_idx++)
|
||
{
|
||
int fixed_filter_idx = g_class_to_filter_mapping[filter_set_index][class_idx];
|
||
for (int i = 0; i < MAX_NUM_ALF_LUMA_COEFF - 1; i++)
|
||
{
|
||
g_fixed_filter_set_coeff_dec[filter_set_index][class_idx * MAX_NUM_ALF_LUMA_COEFF + i] = g_fixed_filter_set_coeff[fixed_filter_idx][i];
|
||
}
|
||
g_fixed_filter_set_coeff_dec[filter_set_index][class_idx * MAX_NUM_ALF_LUMA_COEFF + MAX_NUM_ALF_LUMA_COEFF - 1] = (1 << (ALF_NUM_BITS - 1));
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < MAX_NUM_ALF_LUMA_COEFF * MAX_NUM_ALF_CLASSES; i++)
|
||
{
|
||
g_clip_default[i] = g_alf_clipping_values[CHANNEL_TYPE_LUMA][0];
|
||
}
|
||
|
||
g_created = true;
|
||
}
|
||
|
||
void kvz_alf_destroy(videoframe_t * const frame)
|
||
{
|
||
if (!g_created)
|
||
{
|
||
return;
|
||
}
|
||
|
||
if (g_classifier)
|
||
{
|
||
FREE_POINTER(g_classifier[0]);
|
||
FREE_POINTER(g_classifier);
|
||
}
|
||
|
||
g_created = false;
|
||
}
|
||
|
||
void kvz_alf_derive_classification(encoder_state_t *const state,
|
||
const int width,
|
||
const int height,
|
||
int x_pos,
|
||
int y_pos,
|
||
const int blk_dst_x,
|
||
const int blk_dst_y)//,
|
||
//alf_classifier** g_classifier)
|
||
{
|
||
int32_t pic_height = state->tile->frame->rec->height;
|
||
|
||
int max_height = y_pos + height;
|
||
int max_width = x_pos + width;
|
||
|
||
adjust_pixels(state->tile->frame->rec->y, x_pos, max_width, y_pos, max_height, state->tile->frame->rec->stride, max_width, max_height);
|
||
adjust_pixels_chroma(state->tile->frame->rec->u,
|
||
x_pos >> chroma_scale_x,
|
||
max_width >> chroma_scale_x,
|
||
y_pos >> chroma_scale_y,
|
||
max_height >> chroma_scale_y,
|
||
state->tile->frame->rec->stride >> chroma_scale_x,
|
||
max_width >> chroma_scale_x,
|
||
max_height >> chroma_scale_y);
|
||
adjust_pixels_chroma(state->tile->frame->rec->v,
|
||
x_pos >> chroma_scale_x,
|
||
max_width >> chroma_scale_x,
|
||
y_pos >> chroma_scale_y,
|
||
max_height >> chroma_scale_y,
|
||
state->tile->frame->rec->stride >> chroma_scale_x,
|
||
max_width >> chroma_scale_x,
|
||
max_height >> chroma_scale_y);
|
||
|
||
for (int i = y_pos; i < max_height; i += CLASSIFICATION_BLK_SIZE)
|
||
{
|
||
int n_height = MIN(i + CLASSIFICATION_BLK_SIZE, max_height) - i;
|
||
|
||
for (int j = x_pos; j < max_width; j += CLASSIFICATION_BLK_SIZE)
|
||
{
|
||
int n_width = MIN(j + CLASSIFICATION_BLK_SIZE, max_width) - j;
|
||
kvz_alf_derive_classification_blk(state, g_input_bit_depth[CHANNEL_TYPE_LUMA] + 4, n_height, n_width, j, i,
|
||
j - x_pos + blk_dst_x, i - y_pos + blk_dst_y, g_alf_vb_luma_ctu_height,
|
||
((i - y_pos + blk_dst_y + n_height >= pic_height) ? pic_height : g_alf_vb_luma_pos));
|
||
}
|
||
}
|
||
}
|
||
|
||
void kvz_alf_derive_classification_blk(encoder_state_t * const state,
|
||
const int shift,
|
||
const int n_height,
|
||
const int n_width,
|
||
const int blk_pos_x,
|
||
const int blk_pos_y,
|
||
const int blk_dst_x,
|
||
const int blk_dst_y,
|
||
const int vb_ctu_height,
|
||
int vb_pos)
|
||
{
|
||
videoframe_t* const frame = state->tile->frame;
|
||
//int ***g_laplacian = state->tile->frame->alf_info->g_laplacian;
|
||
//alf_classifier **g_classifier = state->tile->frame->alf_info->g_classifier;
|
||
//CHECK((vb_ctu_height & (vb_ctu_height - 1)) != 0, "vb_ctu_height must be a power of 2");
|
||
|
||
static const int th[16] = { 0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4 };
|
||
const int stride = frame->rec->stride;
|
||
kvz_pixel *src = state->tile->frame->rec->y;
|
||
const int max_activity = 15;
|
||
|
||
int fl = 2;
|
||
int fl_p1 = fl + 1;
|
||
int fl2 = 2 * fl;
|
||
|
||
int main_direction, secondary_direction, dir_temp_hv, dir_temp_d;
|
||
int pix_y;
|
||
|
||
int height = n_height + fl2;
|
||
int width = n_width + fl2;
|
||
int pos_x = blk_pos_x;
|
||
int pos_y = blk_pos_y;
|
||
int start_height = pos_y - fl_p1;
|
||
|
||
for (int i = 0; i < height; i += 2)
|
||
{
|
||
int yoffset = (i + 1 + start_height) * stride - fl_p1;
|
||
const kvz_pixel *src0 = &src[yoffset - stride];
|
||
const kvz_pixel *src1 = &src[yoffset];
|
||
const kvz_pixel *src2 = &src[yoffset + stride];
|
||
const kvz_pixel *src3 = &src[yoffset + stride * 2];
|
||
|
||
const int y = blk_dst_y - 2 + i;
|
||
if (y > 0 && (y & (vb_ctu_height - 1)) == vb_pos - 2)
|
||
{
|
||
src3 = &src[yoffset + stride];
|
||
}
|
||
else if (y > 0 && (y & (vb_ctu_height - 1)) == vb_pos)
|
||
{
|
||
src0 = &src[yoffset];
|
||
}
|
||
|
||
int *p_y_ver = g_laplacian[ALF_VER][i];
|
||
int *p_y_hor = g_laplacian[ALF_HOR][i];
|
||
int *p_y_dig0 = g_laplacian[ALF_DIAG0][i];
|
||
int *p_y_dig1 = g_laplacian[ALF_DIAG1][i];
|
||
|
||
for (int j = 0; j < width; j += 2)
|
||
{
|
||
pix_y = j + 1 + pos_x;
|
||
const kvz_pixel *p_y = src1 + pix_y;
|
||
const kvz_pixel *p_y_down = src0 + pix_y;
|
||
const kvz_pixel *p_y_up = src2 + pix_y;
|
||
const kvz_pixel *p_y_up2 = src3 + pix_y;
|
||
|
||
const int16_t y0 = p_y[0] << 1;
|
||
const int16_t y_up1 = p_y_up[1] << 1;
|
||
|
||
p_y_ver[j] = abs(y0 - p_y_down[0] - p_y_up[0]) + abs(y_up1 - p_y[1] - p_y_up2[1]);
|
||
p_y_hor[j] = abs(y0 - p_y[1] - p_y[-1]) + abs(y_up1 - p_y_up[2] - p_y_up[0]);
|
||
p_y_dig0[j] = abs(y0 - p_y_down[-1] - p_y_up[1]) + abs(y_up1 - p_y[0] - p_y_up2[2]);
|
||
p_y_dig1[j] = abs(y0 - p_y_up[-1] - p_y_down[1]) + abs(y_up1 - p_y_up2[0] - p_y[2]);
|
||
|
||
if (j > 4 && (j - 6) % 4 == 0)
|
||
{
|
||
int j_m6 = j - 6;
|
||
int j_m4 = j - 4;
|
||
int j_m2 = j - 2;
|
||
|
||
p_y_ver[j_m6] += p_y_ver[j_m4] + p_y_ver[j_m2] + p_y_ver[j];
|
||
p_y_hor[j_m6] += p_y_hor[j_m4] + p_y_hor[j_m2] + p_y_hor[j];
|
||
p_y_dig0[j_m6] += p_y_dig0[j_m4] + p_y_dig0[j_m2] + p_y_dig0[j];
|
||
p_y_dig1[j_m6] += p_y_dig1[j_m4] + p_y_dig1[j_m2] + p_y_dig1[j];
|
||
}
|
||
}
|
||
}
|
||
|
||
// classification block size
|
||
const int cls_size_y = 4;
|
||
const int cls_size_x = 4;
|
||
|
||
//for (int i = 0; i < blk.height; i += cls_size_y)
|
||
for (int i = 0; i < n_height; i += cls_size_y)
|
||
{
|
||
int* p_y_ver = g_laplacian[ALF_VER][i];
|
||
int* p_y_ver2 = g_laplacian[ALF_VER][i + 2];
|
||
int* p_y_ver4 = g_laplacian[ALF_VER][i + 4];
|
||
int* p_y_ver6 = g_laplacian[ALF_VER][i + 6];
|
||
|
||
int* p_y_hor = g_laplacian[ALF_HOR][i];
|
||
int* p_y_hor2 = g_laplacian[ALF_HOR][i + 2];
|
||
int* p_y_hor4 = g_laplacian[ALF_HOR][i + 4];
|
||
int* p_y_hor6 = g_laplacian[ALF_HOR][i + 6];
|
||
|
||
int* p_y_dig0 = g_laplacian[ALF_DIAG0][i];
|
||
int* p_y_dig02 = g_laplacian[ALF_DIAG0][i + 2];
|
||
int* p_y_dig04 = g_laplacian[ALF_DIAG0][i + 4];
|
||
int* p_y_dig06 = g_laplacian[ALF_DIAG0][i + 6];
|
||
|
||
int* p_y_dig1 = g_laplacian[ALF_DIAG1][i];
|
||
int* p_y_dig12 = g_laplacian[ALF_DIAG1][i + 2];
|
||
int* p_y_dig14 = g_laplacian[ALF_DIAG1][i + 4];
|
||
int* p_y_dig16 = g_laplacian[ALF_DIAG1][i + 6];
|
||
|
||
//for (int j = 0; j < blk.width; j += cls_size_x)
|
||
for (int j = 0; j < n_width; j += cls_size_x)
|
||
{
|
||
int sum_v = 0; int sum_h = 0; int sum_d0 = 0; int sum_d1 = 0;
|
||
|
||
if (((i + blk_dst_y) % vb_ctu_height) == (vb_pos - 4))
|
||
{
|
||
sum_v = p_y_ver[j] + p_y_ver2[j] + p_y_ver4[j];
|
||
sum_h = p_y_hor[j] + p_y_hor2[j] + p_y_hor4[j];
|
||
sum_d0 = p_y_dig0[j] + p_y_dig02[j] + p_y_dig04[j];
|
||
sum_d1 = p_y_dig1[j] + p_y_dig12[j] + p_y_dig14[j];
|
||
}
|
||
else if (((i + blk_dst_y) % vb_ctu_height) == vb_pos)
|
||
{
|
||
sum_v = p_y_ver2[j] + p_y_ver4[j] + p_y_ver6[j];
|
||
sum_h = p_y_hor2[j] + p_y_hor4[j] + p_y_hor6[j];
|
||
sum_d0 = p_y_dig02[j] + p_y_dig04[j] + p_y_dig06[j];
|
||
sum_d1 = p_y_dig12[j] + p_y_dig14[j] + p_y_dig16[j];
|
||
}
|
||
else
|
||
{
|
||
sum_v = p_y_ver[j] + p_y_ver2[j] + p_y_ver4[j] + p_y_ver6[j];
|
||
sum_h = p_y_hor[j] + p_y_hor2[j] + p_y_hor4[j] + p_y_hor6[j];
|
||
sum_d0 = p_y_dig0[j] + p_y_dig02[j] + p_y_dig04[j] + p_y_dig06[j];
|
||
sum_d1 = p_y_dig1[j] + p_y_dig12[j] + p_y_dig14[j] + p_y_dig16[j];
|
||
}
|
||
|
||
int temp_act = sum_v + sum_h;
|
||
int activity = 0;
|
||
|
||
const int y = (i + blk_dst_y) & (vb_ctu_height - 1);
|
||
if (y == vb_pos - 4 || y == vb_pos)
|
||
{
|
||
activity = alf_clip3(0, max_activity, (temp_act * 96) >> shift);
|
||
}
|
||
else
|
||
{
|
||
activity = alf_clip3(0, max_activity, (temp_act * 64) >> shift);
|
||
}
|
||
|
||
int class_idx = th[activity];
|
||
|
||
int hv1, hv0, d1, d0, hvd1, hvd0;
|
||
|
||
if (sum_v > sum_h)
|
||
{
|
||
hv1 = sum_v;
|
||
hv0 = sum_h;
|
||
dir_temp_hv = 1;
|
||
}
|
||
else
|
||
{
|
||
hv1 = sum_h;
|
||
hv0 = sum_v;
|
||
dir_temp_hv = 3;
|
||
}
|
||
if (sum_d0 > sum_d1)
|
||
{
|
||
d1 = sum_d0;
|
||
d0 = sum_d1;
|
||
dir_temp_d = 0;
|
||
}
|
||
else
|
||
{
|
||
d1 = sum_d1;
|
||
d0 = sum_d0;
|
||
dir_temp_d = 2;
|
||
}
|
||
if((uint32_t)d1 * (uint32_t)hv0 > (uint32_t)hv1 * (uint32_t)d0)
|
||
{
|
||
hvd1 = d1;
|
||
hvd0 = d0;
|
||
main_direction = dir_temp_d;
|
||
secondary_direction = dir_temp_hv;
|
||
}
|
||
else
|
||
{
|
||
hvd1 = hv1;
|
||
hvd0 = hv0;
|
||
main_direction = dir_temp_hv;
|
||
secondary_direction = dir_temp_d;
|
||
}
|
||
|
||
int direction_strength = 0;
|
||
if (hvd1 > 2 * hvd0)
|
||
{
|
||
direction_strength = 1;
|
||
}
|
||
if (hvd1 * 2 > 9 * hvd0)
|
||
{
|
||
direction_strength = 2;
|
||
}
|
||
|
||
if (direction_strength)
|
||
{
|
||
class_idx += (((main_direction & 0x1) << 1) + direction_strength) * 5;
|
||
}
|
||
|
||
static const int transpose_table[8] = { 0, 1, 0, 2, 2, 3, 1, 3 };
|
||
int transpose_idx = transpose_table[main_direction * 2 + (secondary_direction >> 1)];
|
||
|
||
int y_offset = i + blk_dst_y;
|
||
int x_offset = j + blk_dst_x;
|
||
|
||
alf_classifier *cl0 = g_classifier[y_offset] + x_offset;
|
||
alf_classifier *cl1 = g_classifier[y_offset + 1] + x_offset;
|
||
alf_classifier *cl2 = g_classifier[y_offset + 2] + x_offset;
|
||
alf_classifier *cl3 = g_classifier[y_offset + 3] + x_offset;
|
||
|
||
cl0[0].class_idx = cl0[1].class_idx = cl0[2].class_idx = cl0[3].class_idx =
|
||
cl1[0].class_idx = cl1[1].class_idx = cl1[2].class_idx = cl1[3].class_idx =
|
||
cl2[0].class_idx = cl2[1].class_idx = cl2[2].class_idx = cl2[3].class_idx =
|
||
cl3[0].class_idx = cl3[1].class_idx = cl3[2].class_idx = cl3[3].class_idx = class_idx;
|
||
|
||
cl0[0].transpose_idx = cl0[1].transpose_idx = cl0[2].transpose_idx = cl0[3].transpose_idx =
|
||
cl1[0].transpose_idx = cl1[1].transpose_idx = cl1[2].transpose_idx = cl1[3].transpose_idx =
|
||
cl2[0].transpose_idx = cl2[1].transpose_idx = cl2[2].transpose_idx = cl2[3].transpose_idx =
|
||
cl3[0].transpose_idx = cl3[1].transpose_idx = cl3[2].transpose_idx = cl3[3].transpose_idx = transpose_idx;
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
void kvz_alf_filter_block(encoder_state_t * const state,
|
||
const kvz_pixel *src_pixels,
|
||
kvz_pixel *dst_pixels,
|
||
const int src_stride,
|
||
const int dst_stride,
|
||
const short* filter_set,
|
||
const short *fClipSet,
|
||
clp_rng clp_rng,
|
||
alf_component_id component_id,
|
||
const int width,
|
||
const int height,
|
||
int x_pos,
|
||
int y_pos,
|
||
int blk_dst_x,
|
||
int blk_dst_y,
|
||
int vb_pos,
|
||
const int vb_ctu_height)
|
||
{
|
||
videoframe_t* const frame = state->tile->frame;
|
||
alf_filter_type const filter_type = component_id == COMPONENT_Y ? ALF_FILTER_7X7 : ALF_FILTER_5X5;
|
||
const bool chroma = component_id == COMPONENT_Y ? 0 : 1;
|
||
//alf_classifier **g_classifier = state->tile->frame->alf_info->g_classifier;
|
||
|
||
//CHECK((vb_ctu_height & (vb_ctu_height - 1)) != 0, "vb_ctu_height must be a power of 2");
|
||
|
||
if (chroma)
|
||
{
|
||
assert((int)filter_type == 0); //Chroma needs to have filtType == 0
|
||
}
|
||
/*#if !JVET_O0525_REMOVE_PCM
|
||
//bool isDualTree = CS::isDualITree(cs);
|
||
bool is_dual_tree = false;
|
||
bool is_pcm_filter_enabled = ENABLE_PCM;
|
||
enum kvz_chroma_format chroma_fmt = state->encoder_control->chroma_format;
|
||
*/
|
||
|
||
//const int srcStride = srcLuma.stride;
|
||
//const int src_stride = frame->rec->stride;
|
||
//const int dstStride = dstLuma.stride;
|
||
//const int dst_stride = frame->rec->stride;
|
||
|
||
const int start_height = y_pos;
|
||
const int end_height = start_height + height;
|
||
const int start_width = x_pos;
|
||
const int end_width = start_width + width;
|
||
|
||
const kvz_pixel *src = src_pixels;
|
||
kvz_pixel *dst = dst_pixels + blk_dst_y * dst_stride;
|
||
|
||
const kvz_pixel *p_img_y_pad_0, *p_img_y_pad_1, *p_img_y_pad_2, *p_img_y_pad_3, *p_img_y_pad_4, *p_img_y_pad_5, *p_img_y_pad_6;
|
||
const kvz_pixel *p_img_0, *p_img_1, *p_img_2, *p_img_3, *p_img_4, *p_img_5, *p_img_6;
|
||
|
||
const short *coef = filter_set;
|
||
const short *clip = fClipSet;
|
||
|
||
const int shift = ALF_NUM_BITS - 1;
|
||
|
||
const int offset = 1 << (shift - 1);
|
||
|
||
int transpose_idx = 0;
|
||
const int cls_size_y = 4;
|
||
const int cls_size_x = 4;
|
||
|
||
/*#if !JVET_O0525_REMOVE_PCM
|
||
bool pcm_flags_2x2[4] = { 0,0,0,0 };*/
|
||
|
||
assert((start_height % cls_size_y) == 0); //Wrong startHeight in filtering
|
||
assert((start_width % cls_size_x) == 0); //Wrong startWidth in filtering
|
||
assert(((end_height - start_height) % cls_size_y) == 0); //Wrong endHeight in filtering
|
||
assert(((end_width - start_width) % cls_size_x) == 0); //Wrong endWidth in filtering
|
||
|
||
alf_classifier *p_class = NULL;
|
||
|
||
int dst_stride2 = dst_stride * cls_size_y;
|
||
int src_stride2 = src_stride * cls_size_y;
|
||
|
||
//std::vector<Pel> filterCoeff(MAX_NUM_ALF_LUMA_COEFF);
|
||
int filter_coeff[MAX_NUM_ALF_LUMA_COEFF];
|
||
//std::array<int, MAX_NUM_ALF_LUMA_COEFF> filterClipp;
|
||
int filter_clipp[MAX_NUM_ALF_LUMA_COEFF];
|
||
|
||
p_img_y_pad_0 = src + start_height * src_stride + start_width;
|
||
p_img_y_pad_1 = p_img_y_pad_0 + src_stride;
|
||
p_img_y_pad_2 = p_img_y_pad_0 - src_stride;
|
||
p_img_y_pad_3 = p_img_y_pad_1 + src_stride;
|
||
p_img_y_pad_4 = p_img_y_pad_2 - src_stride;
|
||
p_img_y_pad_5 = p_img_y_pad_3 + src_stride;
|
||
p_img_y_pad_6 = p_img_y_pad_4 - src_stride;
|
||
|
||
kvz_pixel* p_rec_0 = dst + blk_dst_x;//start_width;
|
||
kvz_pixel* p_rec_1 = p_rec_0 + dst_stride;
|
||
|
||
for (int i = 0; i < end_height - start_height; i += cls_size_y)
|
||
{
|
||
if (!chroma)
|
||
{
|
||
p_class = g_classifier[blk_dst_y + i] + blk_dst_x;
|
||
}
|
||
|
||
for (int j = 0; j < end_width - start_width; j += cls_size_x)
|
||
{
|
||
if (!chroma)
|
||
{
|
||
alf_classifier cl = p_class[j];
|
||
transpose_idx = cl.transpose_idx;
|
||
/*#if !JVET_O0525_REMOVE_PCM
|
||
if (is_pcm_filter_enabled && cl.class_idx == ALF_UNUSED_CLASS_IDX && transpose_idx == ALF_UNUSED_TRANSPOSE_IDX)
|
||
{
|
||
continue;
|
||
}*/
|
||
coef = filter_set + cl.class_idx * MAX_NUM_ALF_LUMA_COEFF;
|
||
clip = fClipSet + cl.class_idx * MAX_NUM_ALF_LUMA_COEFF;
|
||
}
|
||
/*#if !JVET_O0525_REMOVE_PCM
|
||
else if (is_pcm_filter_enabled)
|
||
{
|
||
int blk_x, blk_y;
|
||
bool *flags = pcm_flags_2x2;
|
||
|
||
// check which chroma 2x2 blocks use PCM
|
||
// chroma PCM may not be aligned with 4x4 ALF processing grid
|
||
for (blk_y = 0; blk_y < 4; blk_y += 2)
|
||
{
|
||
for (blk_x = 0; blk_x < 4; blk_x += 2)
|
||
{
|
||
//Position pos(j + blkDst.x + blkX, i + blkDst.y + blkY);
|
||
//CodingUnit* cu = is_dual_tree ? cs.getCU(pos, CH_C) : cs.getCU(recalcPosition(nChromaFormat, CH_C, CH_L, pos), CH_L);
|
||
*flags++ = 1; //cu->ipcm ? 1 : 0;
|
||
}
|
||
}
|
||
|
||
// skip entire 4x4 if all chroma 2x2 blocks use PCM
|
||
if (pcm_flags_2x2[0] && pcm_flags_2x2[1] && pcm_flags_2x2[2] && pcm_flags_2x2[3])
|
||
{
|
||
continue;
|
||
}
|
||
}*/
|
||
|
||
|
||
if (filter_type == ALF_FILTER_7X7)
|
||
{
|
||
if (transpose_idx == 1)
|
||
{
|
||
filter_coeff[0] = coef[9];
|
||
filter_coeff[1] = coef[4];
|
||
filter_coeff[2] = coef[10];
|
||
filter_coeff[3] = coef[8];
|
||
filter_coeff[4] = coef[1];
|
||
filter_coeff[5] = coef[5];
|
||
filter_coeff[6] = coef[11];
|
||
filter_coeff[7] = coef[7];
|
||
filter_coeff[8] = coef[3];
|
||
filter_coeff[9] = coef[0];
|
||
filter_coeff[10] = coef[2];
|
||
filter_coeff[11] = coef[6];
|
||
filter_coeff[12] = coef[12];
|
||
|
||
filter_clipp[0] = clip[9];
|
||
filter_clipp[1] = clip[4];
|
||
filter_clipp[2] = clip[10];
|
||
filter_clipp[3] = clip[8];
|
||
filter_clipp[4] = clip[1];
|
||
filter_clipp[5] = clip[5];
|
||
filter_clipp[6] = clip[11];
|
||
filter_clipp[7] = clip[7];
|
||
filter_clipp[8] = clip[3];
|
||
filter_clipp[9] = clip[0];
|
||
filter_clipp[10] = clip[2];
|
||
filter_clipp[11] = clip[6];
|
||
filter_clipp[12] = clip[12];
|
||
}
|
||
else if (transpose_idx == 2)
|
||
{
|
||
filter_coeff[0] = coef[0];
|
||
filter_coeff[1] = coef[3];
|
||
filter_coeff[2] = coef[2];
|
||
filter_coeff[3] = coef[1];
|
||
filter_coeff[4] = coef[8];
|
||
filter_coeff[5] = coef[7];
|
||
filter_coeff[6] = coef[6];
|
||
filter_coeff[7] = coef[5];
|
||
filter_coeff[8] = coef[4];
|
||
filter_coeff[9] = coef[9];
|
||
filter_coeff[10] = coef[10];
|
||
filter_coeff[11] = coef[11];
|
||
filter_coeff[12] = coef[12];
|
||
|
||
filter_clipp[0] = clip[0];
|
||
filter_clipp[1] = clip[3];
|
||
filter_clipp[2] = clip[2];
|
||
filter_clipp[3] = clip[1];
|
||
filter_clipp[4] = clip[8];
|
||
filter_clipp[5] = clip[7];
|
||
filter_clipp[6] = clip[6];
|
||
filter_clipp[7] = clip[5];
|
||
filter_clipp[8] = clip[4];
|
||
filter_clipp[9] = clip[9];
|
||
filter_clipp[10] = clip[10];
|
||
filter_clipp[11] = clip[11];
|
||
filter_clipp[12] = clip[12];
|
||
|
||
}
|
||
else if (transpose_idx == 3)
|
||
{
|
||
filter_coeff[0] = coef[9];
|
||
filter_coeff[1] = coef[8];
|
||
filter_coeff[2] = coef[10];
|
||
filter_coeff[3] = coef[4];
|
||
filter_coeff[4] = coef[3];
|
||
filter_coeff[5] = coef[7];
|
||
filter_coeff[6] = coef[11];
|
||
filter_coeff[7] = coef[5];
|
||
filter_coeff[8] = coef[1];
|
||
filter_coeff[9] = coef[0];
|
||
filter_coeff[10] = coef[2];
|
||
filter_coeff[11] = coef[6];
|
||
filter_coeff[12] = coef[12];
|
||
|
||
filter_clipp[0] = clip[9];
|
||
filter_clipp[1] = clip[8];
|
||
filter_clipp[2] = clip[10];
|
||
filter_clipp[3] = clip[4];
|
||
filter_clipp[4] = clip[3];
|
||
filter_clipp[5] = clip[7];
|
||
filter_clipp[6] = clip[11];
|
||
filter_clipp[7] = clip[5];
|
||
filter_clipp[8] = clip[1];
|
||
filter_clipp[9] = clip[0];
|
||
filter_clipp[10] = clip[2];
|
||
filter_clipp[11] = clip[6];
|
||
filter_clipp[12] = clip[12];
|
||
}
|
||
else
|
||
{
|
||
filter_coeff[0] = coef[0];
|
||
filter_coeff[1] = coef[1];
|
||
filter_coeff[2] = coef[2];
|
||
filter_coeff[3] = coef[3];
|
||
filter_coeff[4] = coef[4];
|
||
filter_coeff[5] = coef[5];
|
||
filter_coeff[6] = coef[6];
|
||
filter_coeff[7] = coef[7];
|
||
filter_coeff[8] = coef[8];
|
||
filter_coeff[9] = coef[9];
|
||
filter_coeff[10] = coef[10];
|
||
filter_coeff[11] = coef[11];
|
||
filter_coeff[12] = coef[12];
|
||
|
||
filter_clipp[0] = clip[0];
|
||
filter_clipp[1] = clip[1];
|
||
filter_clipp[2] = clip[2];
|
||
filter_clipp[3] = clip[3];
|
||
filter_clipp[4] = clip[4];
|
||
filter_clipp[5] = clip[5];
|
||
filter_clipp[6] = clip[6];
|
||
filter_clipp[7] = clip[7];
|
||
filter_clipp[8] = clip[8];
|
||
filter_clipp[9] = clip[9];
|
||
filter_clipp[10] = clip[10];
|
||
filter_clipp[11] = clip[11];
|
||
filter_clipp[12] = clip[12];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (transpose_idx == 1)
|
||
{
|
||
filter_coeff[0] = coef[4];
|
||
filter_coeff[1] = coef[1];
|
||
filter_coeff[2] = coef[5];
|
||
filter_coeff[3] = coef[3];
|
||
filter_coeff[4] = coef[0];
|
||
filter_coeff[5] = coef[2];
|
||
filter_coeff[6] = coef[6];
|
||
|
||
filter_clipp[0] = clip[4];
|
||
filter_clipp[1] = clip[1];
|
||
filter_clipp[2] = clip[5];
|
||
filter_clipp[3] = clip[3];
|
||
filter_clipp[4] = clip[0];
|
||
filter_clipp[5] = clip[2];
|
||
filter_clipp[6] = clip[6];
|
||
|
||
}
|
||
else if (transpose_idx == 2)
|
||
{
|
||
filter_coeff[0] = coef[0];
|
||
filter_coeff[1] = coef[3];
|
||
filter_coeff[2] = coef[2];
|
||
filter_coeff[3] = coef[1];
|
||
filter_coeff[4] = coef[4];
|
||
filter_coeff[5] = coef[5];
|
||
filter_coeff[6] = coef[6];
|
||
|
||
filter_clipp[0] = clip[0];
|
||
filter_clipp[1] = clip[3];
|
||
filter_clipp[2] = clip[2];
|
||
filter_clipp[3] = clip[1];
|
||
filter_clipp[4] = clip[4];
|
||
filter_clipp[5] = clip[5];
|
||
filter_clipp[6] = clip[6];
|
||
|
||
}
|
||
else if (transpose_idx == 3)
|
||
{
|
||
filter_coeff[0] = coef[4];
|
||
filter_coeff[1] = coef[3];
|
||
filter_coeff[2] = coef[5];
|
||
filter_coeff[3] = coef[1];
|
||
filter_coeff[4] = coef[0];
|
||
filter_coeff[5] = coef[2];
|
||
filter_coeff[6] = coef[6];
|
||
|
||
filter_clipp[0] = clip[4];
|
||
filter_clipp[1] = clip[3];
|
||
filter_clipp[2] = clip[5];
|
||
filter_clipp[3] = clip[1];
|
||
filter_clipp[4] = clip[0];
|
||
filter_clipp[5] = clip[2];
|
||
filter_clipp[6] = clip[6];
|
||
|
||
}
|
||
else
|
||
{
|
||
filter_coeff[0] = coef[0];
|
||
filter_coeff[1] = coef[1];
|
||
filter_coeff[2] = coef[2];
|
||
filter_coeff[3] = coef[3];
|
||
filter_coeff[4] = coef[4];
|
||
filter_coeff[5] = coef[5];
|
||
filter_coeff[6] = coef[6];
|
||
|
||
filter_clipp[0] = clip[0];
|
||
filter_clipp[1] = clip[1];
|
||
filter_clipp[2] = clip[2];
|
||
filter_clipp[3] = clip[3];
|
||
filter_clipp[4] = clip[4];
|
||
filter_clipp[5] = clip[5];
|
||
filter_clipp[6] = clip[6];
|
||
|
||
}
|
||
}
|
||
|
||
for (int ii = 0; ii < cls_size_y; ii++)
|
||
{
|
||
p_img_0 = p_img_y_pad_0 + j + ii * src_stride;
|
||
p_img_1 = p_img_y_pad_1 + j + ii * src_stride;
|
||
p_img_2 = p_img_y_pad_2 + j + ii * src_stride;
|
||
p_img_3 = p_img_y_pad_3 + j + ii * src_stride;
|
||
p_img_4 = p_img_y_pad_4 + j + ii * src_stride;
|
||
p_img_5 = p_img_y_pad_5 + j + ii * src_stride;
|
||
p_img_6 = p_img_y_pad_6 + j + ii * src_stride;
|
||
|
||
p_rec_1 = p_rec_0 + j + ii * dst_stride;
|
||
|
||
const int yVb = (blk_dst_y + i + ii) & (vb_ctu_height - 1);
|
||
if (yVb < vb_pos && (yVb >= vb_pos - (chroma ? 2 : 4))) // above
|
||
{
|
||
p_img_1 = (yVb == vb_pos - 1) ? p_img_0 : p_img_1;
|
||
p_img_3 = (yVb >= vb_pos - 2) ? p_img_1 : p_img_3;
|
||
p_img_5 = (yVb >= vb_pos - 3) ? p_img_3 : p_img_5;
|
||
|
||
p_img_2 = (yVb == vb_pos - 1) ? p_img_0 : p_img_2;
|
||
p_img_4 = (yVb >= vb_pos - 2) ? p_img_2 : p_img_4;
|
||
p_img_6 = (yVb >= vb_pos - 3) ? p_img_4 : p_img_6;
|
||
}
|
||
else if (yVb >= vb_pos && (yVb <= vb_pos + (chroma ? 1 : 3))) // bottom
|
||
{
|
||
p_img_2 = (yVb == vb_pos) ? p_img_0 : p_img_2;
|
||
p_img_4 = (yVb <= vb_pos + 1) ? p_img_2 : p_img_4;
|
||
p_img_6 = (yVb <= vb_pos + 2) ? p_img_4 : p_img_6;
|
||
|
||
p_img_1 = (yVb == vb_pos) ? p_img_0 : p_img_1;
|
||
p_img_3 = (yVb <= vb_pos + 1) ? p_img_1 : p_img_3;
|
||
p_img_5 = (yVb <= vb_pos + 2) ? p_img_3 : p_img_5;
|
||
}
|
||
|
||
for (int jj = 0; jj < cls_size_x; jj++)
|
||
{
|
||
/*#if !JVET_O0525_REMOVE_PCM
|
||
// skip 2x2 PCM chroma blocks
|
||
if (chroma && is_pcm_filter_enabled)
|
||
{
|
||
if (pcm_flags_2x2[2 * (ii >> 1) + (jj >> 1)])
|
||
{
|
||
p_img_0++;
|
||
p_img_1++;
|
||
p_img_2++;
|
||
p_img_3++;
|
||
p_img_4++;
|
||
p_img_5++;
|
||
p_img_6++;
|
||
continue;
|
||
}
|
||
}*/
|
||
|
||
int sum = 0;
|
||
const kvz_pixel curr = p_img_0[+0];
|
||
if (filter_type == ALF_FILTER_7X7)
|
||
{
|
||
sum += filter_coeff[0] * (clip_alf(filter_clipp[0], curr, p_img_5[+0], p_img_6[+0]));
|
||
|
||
sum += filter_coeff[1] * (clip_alf(filter_clipp[1], curr, p_img_3[+1], p_img_4[-1]));
|
||
sum += filter_coeff[2] * (clip_alf(filter_clipp[2], curr, p_img_3[+0], p_img_4[+0]));
|
||
sum += filter_coeff[3] * (clip_alf(filter_clipp[3], curr, p_img_3[-1], p_img_4[+1]));
|
||
|
||
sum += filter_coeff[4] * (clip_alf(filter_clipp[4], curr, p_img_1[+2], p_img_2[-2]));
|
||
sum += filter_coeff[5] * (clip_alf(filter_clipp[5], curr, p_img_1[+1], p_img_2[-1]));
|
||
sum += filter_coeff[6] * (clip_alf(filter_clipp[6], curr, p_img_1[+0], p_img_2[+0]));
|
||
sum += filter_coeff[7] * (clip_alf(filter_clipp[7], curr, p_img_1[-1], p_img_2[+1]));
|
||
sum += filter_coeff[8] * (clip_alf(filter_clipp[8], curr, p_img_1[-2], p_img_2[+2]));
|
||
|
||
sum += filter_coeff[9] * (clip_alf(filter_clipp[9], curr, p_img_0[+3], p_img_0[-3]));
|
||
sum += filter_coeff[10] * (clip_alf(filter_clipp[10], curr, p_img_0[+2], p_img_0[-2]));
|
||
sum += filter_coeff[11] * (clip_alf(filter_clipp[11], curr, p_img_0[+1], p_img_0[-1]));
|
||
}
|
||
else
|
||
{
|
||
sum += filter_coeff[0] * (clip_alf(filter_clipp[0], curr, p_img_3[+0], p_img_4[+0]));
|
||
|
||
sum += filter_coeff[1] * (clip_alf(filter_clipp[1], curr, p_img_1[+1], p_img_2[-1]));
|
||
sum += filter_coeff[2] * (clip_alf(filter_clipp[2], curr, p_img_1[+0], p_img_2[+0]));
|
||
sum += filter_coeff[3] * (clip_alf(filter_clipp[3], curr, p_img_1[-1], p_img_2[+1]));
|
||
|
||
sum += filter_coeff[4] * (clip_alf(filter_clipp[4], curr, p_img_0[+2], p_img_0[-2]));
|
||
sum += filter_coeff[5] * (clip_alf(filter_clipp[5], curr, p_img_0[+1], p_img_0[-1]));
|
||
}
|
||
|
||
sum = (sum + offset) >> shift;
|
||
sum += curr;
|
||
|
||
p_rec_1[jj] = alf_clip_pixel(sum, clp_rng);
|
||
|
||
p_img_0++;
|
||
p_img_1++;
|
||
p_img_2++;
|
||
p_img_3++;
|
||
p_img_4++;
|
||
p_img_5++;
|
||
p_img_6++;
|
||
}
|
||
}
|
||
}
|
||
|
||
p_rec_0 += dst_stride2;
|
||
p_rec_1 += dst_stride2;
|
||
|
||
p_img_y_pad_0 += src_stride2;
|
||
p_img_y_pad_1 += src_stride2;
|
||
p_img_y_pad_2 += src_stride2;
|
||
p_img_y_pad_3 += src_stride2;
|
||
p_img_y_pad_4 += src_stride2;
|
||
p_img_y_pad_5 += src_stride2;
|
||
p_img_y_pad_6 += src_stride2;
|
||
}
|
||
} |