uvg266/src/search.c
2022-06-28 15:32:32 +03:00

1544 lines
60 KiB
C

/*****************************************************************************
* This file is part of uvg266 VVC encoder.
*
* Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* INCLUDING NEGLIGENCE OR OTHERWISE ARISING IN ANY WAY OUT OF THE USE OF THIS
****************************************************************************/
#include "search.h"
#include <limits.h>
#include <string.h>
#include "cabac.h"
#include "encoder.h"
#include "encode_coding_tree.h"
#include "imagelist.h"
#include "inter.h"
#include "intra.h"
#include "uvg266.h"
#include "rdo.h"
#include "search_inter.h"
#include "search_intra.h"
#include "threadqueue.h"
#include "transform.h"
#include "videoframe.h"
#include "strategies/strategies-picture.h"
#include "strategies/strategies-quant.h"
#include "reshape.h"
#define IN_FRAME(x, y, width, height, block_width, block_height) \
((x) >= 0 && (y) >= 0 \
&& (x) + (block_width) <= (width) \
&& (y) + (block_height) <= (height))
// Cost threshold for doing intra search in inter frames with --rd=0.
static const int INTRA_THRESHOLD = 8;
static INLINE void copy_cu_info(int x_local, int y_local, int width, lcu_t *from, lcu_t *to)
{
for (int y = y_local; y < y_local + width; y += SCU_WIDTH) {
for (int x = x_local; x < x_local + width; x += SCU_WIDTH) {
*LCU_GET_CU_AT_PX(to, x, y) = *LCU_GET_CU_AT_PX(from, x, y);
}
}
}
static INLINE void copy_cu_pixels(int x_local, int y_local, int width, lcu_t *from, lcu_t *to, enum uvg_tree_type
tree_type)
{
const int luma_index = x_local + y_local * LCU_WIDTH;
const int chroma_index = tree_type == UVG_CHROMA_T ? x_local + y_local * LCU_WIDTH_C : (x_local / 2) + (y_local / 2) * LCU_WIDTH_C;
if(tree_type != UVG_CHROMA_T) {
uvg_pixels_blit(&from->rec.y[luma_index], &to->rec.y[luma_index],
width, width, LCU_WIDTH, LCU_WIDTH);
}
if (from->rec.chroma_format != UVG_CSP_400 && tree_type != UVG_LUMA_T) {
uvg_pixels_blit(&from->rec.u[chroma_index], &to->rec.u[chroma_index],
width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
uvg_pixels_blit(&from->rec.v[chroma_index], &to->rec.v[chroma_index],
width / 2, width / 2, LCU_WIDTH / 2, LCU_WIDTH / 2);
}
}
static INLINE void copy_cu_coeffs(int x_local, int y_local, int width, lcu_t *from, lcu_t *to, bool joint, enum
uvg_tree_type tree_type)
{
if (tree_type != UVG_CHROMA_T) {
const int luma_z = xy_to_zorder(LCU_WIDTH, x_local, y_local);
copy_coeffs(&from->coeff.y[luma_z], &to->coeff.y[luma_z], width);
}
if (from->rec.chroma_format != UVG_CSP_400 && tree_type != UVG_LUMA_T) {
const int chroma_z = xy_to_zorder(LCU_WIDTH_C, x_local >> (tree_type != UVG_CHROMA_T), y_local >> (tree_type != UVG_CHROMA_T));
copy_coeffs(&from->coeff.u[chroma_z], &to->coeff.u[chroma_z], width >> 1);
copy_coeffs(&from->coeff.v[chroma_z], &to->coeff.v[chroma_z], width >> 1);
if (joint) {
copy_coeffs(&from->coeff.joint_uv[chroma_z], &to->coeff.joint_uv[chroma_z], width >> 1);
}
}
}
/**
* Copy all non-reference CU data from next level to current level.
*/
static void work_tree_copy_up(int x_local, int y_local, int depth, lcu_t *work_tree, bool joint, enum
uvg_tree_type tree_type)
{
const int width = LCU_WIDTH >> depth;
copy_cu_info (x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth]);
copy_cu_pixels(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth], tree_type);
copy_cu_coeffs(x_local, y_local, width, &work_tree[depth + 1], &work_tree[depth], joint, tree_type);
}
/**
* Copy all non-reference CU data from current level to all lower levels.
*/
static void work_tree_copy_down(int x_local, int y_local, int depth, lcu_t *work_tree, enum uvg_tree_type
tree_type)
{
const int width = tree_type != UVG_CHROMA_T ? LCU_WIDTH >> depth : LCU_WIDTH_C >> 1;
for (int i = depth + 1; i <= MAX_PU_DEPTH; i++) {
copy_cu_info (x_local, y_local, width, &work_tree[depth], &work_tree[i]);
copy_cu_pixels(x_local, y_local, LCU_WIDTH >> depth, &work_tree[depth], &work_tree[i], tree_type);
}
}
void uvg_lcu_fill_trdepth(lcu_t *lcu, int x_px, int y_px, int depth, int tr_depth)
{
const int x_local = SUB_SCU(x_px);
const int y_local = SUB_SCU(y_px);
const uint32_t width = LCU_WIDTH >> depth;
for (unsigned y = 0; y < width; y += SCU_WIDTH) {
for (unsigned x = 0; x < width; x += SCU_WIDTH) {
LCU_GET_CU_AT_PX(lcu, x_local + x, y_local + y)->tr_depth = tr_depth;
}
}
}
static void lcu_fill_cu_info(lcu_t *lcu, int x_local, int y_local, int width, int height, cu_info_t *cu)
{
// Set mode in every CU covered by part_mode in this depth.
for (int y = y_local; y < y_local + height; y += SCU_WIDTH) {
for (int x = x_local; x < x_local + width; x += SCU_WIDTH) {
cu_info_t *to = LCU_GET_CU_AT_PX(lcu, x, y);
to->type = cu->type;
to->depth = cu->depth;
to->part_size = cu->part_size;
to->qp = cu->qp;
//to->tr_idx = cu->tr_idx;
to->lfnst_idx = cu->lfnst_idx;
to->lfnst_last_scan_pos = cu->lfnst_last_scan_pos;
to->violates_lfnst_constrained_luma = cu->violates_lfnst_constrained_luma;
to->violates_lfnst_constrained_chroma = cu->violates_lfnst_constrained_chroma;
if (cu->type == CU_INTRA) {
to->intra.mode = cu->intra.mode;
to->intra.mode_chroma = cu->intra.mode_chroma;
to->intra.multi_ref_idx = cu->intra.multi_ref_idx;
to->intra.mip_flag = cu->intra.mip_flag;
to->intra.mip_is_transposed = cu->intra.mip_is_transposed;
} else {
to->skipped = cu->skipped;
to->merged = cu->merged;
to->merge_idx = cu->merge_idx;
to->inter = cu->inter;
}
}
}
}
static void lcu_fill_inter(lcu_t *lcu, int x_local, int y_local, int cu_width)
{
const part_mode_t part_mode = LCU_GET_CU_AT_PX(lcu, x_local, y_local)->part_size;
const int num_pu = uvg_part_mode_num_parts[part_mode];
for (int i = 0; i < num_pu; ++i) {
const int x_pu = PU_GET_X(part_mode, cu_width, x_local, i);
const int y_pu = PU_GET_Y(part_mode, cu_width, y_local, i);
const int width_pu = PU_GET_W(part_mode, cu_width, i);
const int height_pu = PU_GET_H(part_mode, cu_width, i);
cu_info_t *pu = LCU_GET_CU_AT_PX(lcu, x_pu, y_pu);
pu->type = CU_INTER;
lcu_fill_cu_info(lcu, x_pu, y_pu, width_pu, height_pu, pu);
}
}
static void lcu_fill_cbf(lcu_t *lcu, uint32_t x_local, uint32_t y_local, uint32_t width, cu_info_t *cur_cu)
{
const uint32_t tr_split = cur_cu->tr_depth - cur_cu->depth;
const uint32_t mask = ~((width >> tr_split)-1);
// Set coeff flags in every CU covered by part_mode in this depth.
for (uint32_t y = y_local; y < y_local + width; y += SCU_WIDTH) {
for (uint32_t x = x_local; x < x_local + width; x += SCU_WIDTH) {
// Use TU top-left CU to propagate coeff flags
cu_info_t *cu_from = LCU_GET_CU_AT_PX(lcu, x & mask, y & mask);
cu_info_t *cu_to = LCU_GET_CU_AT_PX(lcu, x, y);
if (cu_from != cu_to) {
// Chroma and luma coeff data is needed for deblocking
cbf_copy(&cu_to->cbf, cu_from->cbf, COLOR_Y);
cbf_copy(&cu_to->cbf, cu_from->cbf, COLOR_U);
cbf_copy(&cu_to->cbf, cu_from->cbf, COLOR_V);
}
}
}
}
//Calculates cost for all zero coeffs
static double cu_zero_coeff_cost(const encoder_state_t *state, lcu_t *work_tree, const int x, const int y,
const int depth)
{
int x_local = SUB_SCU(x);
int y_local = SUB_SCU(y);
int cu_width = LCU_WIDTH >> depth;
lcu_t *const lcu = &work_tree[depth];
const int luma_index = y_local * LCU_WIDTH + x_local;
const int chroma_index = (y_local / 2) * LCU_WIDTH_C + (x_local / 2);
double ssd = 0.0;
ssd += UVG_LUMA_MULT * uvg_pixels_calc_ssd(
&lcu->ref.y[luma_index], &lcu->rec.y[luma_index],
LCU_WIDTH, LCU_WIDTH, cu_width
);
if (x % 8 == 0 && y % 8 == 0 && state->encoder_control->chroma_format != UVG_CSP_400) {
ssd += UVG_CHROMA_MULT * uvg_pixels_calc_ssd(
&lcu->ref.u[chroma_index], &lcu->rec.u[chroma_index],
LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2
);
ssd += UVG_CHROMA_MULT * uvg_pixels_calc_ssd(
&lcu->ref.v[chroma_index], &lcu->rec.v[chroma_index],
LCU_WIDTH_C, LCU_WIDTH_C, cu_width / 2
);
}
// Save the pixels at a lower level of the working tree.
copy_cu_pixels(x_local, y_local, cu_width, lcu, &work_tree[depth + 1], UVG_BOTH_T);
return ssd;
}
static void downsample_cclm_rec(encoder_state_t *state, int x, int y, int width, int height, uvg_pixel *y_rec, uvg_pixel extra_pixel) {
if (!state->encoder_control->cfg.cclm) return;
int x_scu = SUB_SCU(x);
int y_scu = SUB_SCU(y);
y_rec += x_scu + y_scu * LCU_WIDTH;
const int stride = state->tile->frame->rec->stride;
const int stride2 = (((state->tile->frame->width + 7) & ~7) + FRAME_PADDING_LUMA);
for (int y_ = 0; y_ < height && y_ * 2 + y < state->encoder_control->cfg.height; y_++) {
for (int x_ = 0; x_ < width; x_++) {
int s = 4;
s += y_rec[2 * x_] * 2;
s += y_rec[2 * x_ + 1];
// If we are at the edge of the CTU read the pixel from the frame reconstruct buffer,
// *except* when we are also at the edge of the frame, in which case we want to duplicate
// the edge pixel
s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + (y + y_ * 2) * stride] : y_rec[2 * x_ - ((x_ + x) > 0)];
s += y_rec[2 * x_ + LCU_WIDTH] * 2;
s += y_rec[2 * x_ + 1 + LCU_WIDTH];
s += !x_scu && !x_ && x ? state->tile->frame->rec->y[x - 1 + (y + y_ * 2 + 1) * stride] : y_rec[2 * x_ - ((x_ + x) > 0) + LCU_WIDTH];
int index = x / 2 + x_ + (y / 2 + y_ )* stride2 / 2;
state->tile->frame->cclm_luma_rec[index] = s >> 3;
}
y_rec += LCU_WIDTH * 2;
}
if((y + height * 2) % 64 == 0) {
int line = y / 64 * stride2 / 2;
y_rec -= LCU_WIDTH;
for (int i = 0; i < width; ++i) {
int s = 2;
s += y_rec[i * 2] * 2;
s += y_rec[i * 2 + 1];
s += !x_scu && !i && x ? extra_pixel : y_rec[i * 2 - ((i + x) > 0)] ;
state->tile->frame->cclm_luma_rec_top_line[i + x / 2 + line] = s >> 2;
}
}
}
/**
* Calculate RD cost for a Coding Unit.
* \return Cost of block
* \param ref_cu CU used for prediction parameters.
*
* Calculates the RDO cost of a single CU that will not be split further.
* Takes into account SSD of reconstruction and the cost of encoding whatever
* prediction unit data needs to be coded.
*/
double uvg_cu_rd_cost_luma(const encoder_state_t *const state,
const int x_px, const int y_px, const int depth,
const cu_info_t *const pred_cu,
lcu_t *const lcu)
{
const int width = LCU_WIDTH >> depth;
const int skip_residual_coding = pred_cu->skipped || (pred_cu->type == CU_INTER && pred_cu->cbf == 0);
cabac_data_t* cabac = (cabac_data_t *)&state->search_cabac;
// cur_cu is used for TU parameters.
cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px);
double coeff_bits = 0;
double tr_tree_bits = 0;
// Check that lcu is not in
assert(x_px >= 0 && x_px < LCU_WIDTH);
assert(y_px >= 0 && y_px < LCU_WIDTH);
const uint8_t tr_depth = tr_cu->tr_depth - depth;
if (tr_depth > 0) {
int offset = width / 2;
double sum = 0;
sum += uvg_cu_rd_cost_luma(state, x_px, y_px, depth + 1, pred_cu, lcu);
sum += uvg_cu_rd_cost_luma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
sum += uvg_cu_rd_cost_luma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
sum += uvg_cu_rd_cost_luma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
return sum + tr_tree_bits * state->lambda;
}
// Add transform_tree cbf_luma bit cost.
const int is_tr_split = tr_cu->tr_depth - tr_cu->depth;
int is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_Y);
if (pred_cu->type == CU_INTRA ||
is_tr_split ||
cbf_is_set(tr_cu->cbf, depth, COLOR_U) ||
cbf_is_set(tr_cu->cbf, depth, COLOR_V))
{
cabac_ctx_t *ctx = &(cabac->ctx.qt_cbf_model_luma[0]);
CABAC_FBITS_UPDATE(cabac, ctx, is_set, tr_tree_bits, "cbf_y_search");
}
if (is_set && state->encoder_control->cfg.trskip_enable && width <= (1 << state->encoder_control->cfg.trskip_max_size)) {
CABAC_FBITS_UPDATE(cabac, &cabac->ctx.transform_skip_model_luma, pred_cu->tr_idx == MTS_SKIP, tr_tree_bits, "transform_skip_flag");
}
// SSD between reconstruction and original
int ssd = 0;
if (!state->encoder_control->cfg.lossless) {
int index = y_px * LCU_WIDTH + x_px;
ssd = uvg_pixels_calc_ssd(&lcu->ref.y[index], &lcu->rec.y[index],
LCU_WIDTH, LCU_WIDTH,
width);
}
if (!skip_residual_coding) {
int8_t luma_scan_mode = uvg_get_scan_order(pred_cu->type, pred_cu->intra.mode, depth);
const coeff_t *coeffs = &lcu->coeff.y[xy_to_zorder(LCU_WIDTH, x_px, y_px)];
coeff_bits += uvg_get_coeff_cost(state, coeffs, NULL, width, 0, luma_scan_mode, pred_cu->tr_idx == MTS_SKIP);
}
double bits = tr_tree_bits + coeff_bits;
return (double)ssd * UVG_LUMA_MULT + bits * state->lambda;
}
double uvg_cu_rd_cost_chroma(const encoder_state_t *const state,
const int x_px, const int y_px, const int depth,
cu_info_t *const pred_cu,
lcu_t *const lcu)
{
const vector2d_t lcu_px = { (x_px & ~7) / 2, (y_px & ~7) / 2 };
const int width = (depth < MAX_DEPTH) ? LCU_WIDTH >> (depth + 1) : LCU_WIDTH >> depth;
cu_info_t *const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px);
const int skip_residual_coding = pred_cu->skipped || (pred_cu->type == CU_INTER && pred_cu->cbf == 0);
double tr_tree_bits = 0;
double coeff_bits = 0;
assert(x_px >= 0 && x_px < LCU_WIDTH);
assert(y_px >= 0 && y_px < LCU_WIDTH);
if (depth == 4 && (x_px % 8 == 0 || y_px % 8 == 0)) {
// For MAX_PU_DEPTH calculate chroma for previous depth for the first
// block and return 0 cost for all others.
return 0;
}
// See luma for why the second condition
if (!skip_residual_coding) {
const int tr_depth = depth - pred_cu->depth;
cabac_data_t* cabac = (cabac_data_t*)&state->search_cabac;
cabac_ctx_t *ctx = &(cabac->ctx.qt_cbf_model_cb[0]);
cabac->cur_ctx = ctx;
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_U)) {
int u_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_U);
CABAC_FBITS_UPDATE(cabac, ctx, u_is_set, tr_tree_bits, "cbf_cb_search");
}
int is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_U);
ctx = &(cabac->ctx.qt_cbf_model_cr[is_set]);
if (tr_depth == 0 || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_V)) {
int v_is_set = cbf_is_set(pred_cu->cbf, depth, COLOR_V);
CABAC_FBITS_UPDATE(cabac, ctx, v_is_set, tr_tree_bits, "cbf_cb_search");
}
}
if (tr_cu->tr_depth > depth) {
int offset = LCU_WIDTH >> (depth + 1);
double sum = 0;
sum += uvg_cu_rd_cost_chroma(state, x_px, y_px, depth + 1, pred_cu, lcu);
sum += uvg_cu_rd_cost_chroma(state, x_px + offset, y_px, depth + 1, pred_cu, lcu);
sum += uvg_cu_rd_cost_chroma(state, x_px, y_px + offset, depth + 1, pred_cu, lcu);
sum += uvg_cu_rd_cost_chroma(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu);
return sum + tr_tree_bits * state->lambda;
}
if (state->encoder_control->cfg.jccr) {
int cbf_mask = cbf_is_set(pred_cu->cbf, depth, COLOR_U) * 2 + cbf_is_set(pred_cu->cbf, depth, COLOR_V) - 1;
cabac_ctx_t* ctx = NULL;
if (cbf_mask != -1) {
cabac_data_t* cabac = (cabac_data_t*)&state->search_cabac;
ctx = &(cabac->ctx.joint_cb_cr[cbf_mask]);
CABAC_FBITS_UPDATE(cabac, ctx, 0, tr_tree_bits, "cbf_cb_search");
}
}
// Chroma SSD
int ssd = 0;
if (!state->encoder_control->cfg.lossless) {
int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x;
int ssd_u = uvg_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.u[index],
LCU_WIDTH_C, LCU_WIDTH_C,
width);
int ssd_v = uvg_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.v[index],
LCU_WIDTH_C, LCU_WIDTH_C,
width);
ssd = ssd_u + ssd_v;
}
if (!skip_residual_coding)
{
int8_t scan_order = uvg_get_scan_order(pred_cu->type, pred_cu->intra.mode_chroma, depth);
const int index = xy_to_zorder(LCU_WIDTH_C, lcu_px.x, lcu_px.y);
coeff_bits += uvg_get_coeff_cost(state, &lcu->coeff.u[index], NULL, width, 2, scan_order, 0);
coeff_bits += uvg_get_coeff_cost(state, &lcu->coeff.v[index], NULL, width, 2, scan_order, 0);
}
double bits = tr_tree_bits + coeff_bits;
return (double)ssd * UVG_CHROMA_MULT + bits * state->c_lambda;
}
static double cu_rd_cost_tr_split_accurate(
const encoder_state_t* const state,
const int x_px,
const int y_px,
const int depth,
const cu_info_t* const pred_cu,
lcu_t* const lcu,
enum uvg_tree_type tree_type) {
const int width = LCU_WIDTH >> depth;
const int skip_residual_coding = pred_cu->skipped || (pred_cu->type == CU_INTER && pred_cu->cbf == 0);
// cur_cu is used for TU parameters.
cu_info_t* const tr_cu = LCU_GET_CU_AT_PX(lcu, x_px, y_px);
double coeff_bits = 0;
double tr_tree_bits = 0;
// Check that lcu is not in
assert(x_px >= 0 && x_px < LCU_WIDTH);
assert(y_px >= 0 && y_px < LCU_WIDTH);
const uint8_t tr_depth = tr_cu->tr_depth - depth;
const int cb_flag_u = tr_cu->joint_cb_cr ? tr_cu->joint_cb_cr >> 1 : cbf_is_set(tr_cu->cbf, depth, COLOR_U);
const int cb_flag_v = tr_cu->joint_cb_cr ? tr_cu->joint_cb_cr & 1 : cbf_is_set(tr_cu->cbf, depth, COLOR_V);
cabac_data_t* cabac = (cabac_data_t*)&state->search_cabac;
{
int cbf = cbf_is_set_any(pred_cu->cbf, depth);
// Only need to signal coded block flag if not skipped or merged
// skip = no coded residual, merge = coded residual
if (pred_cu->type == CU_INTER && (pred_cu->part_size != SIZE_2Nx2N || !pred_cu->merged)) {
CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.cu_qt_root_cbf_model), cbf, tr_tree_bits, "rqt_root_cbf");
}
}
bool has_chroma = state->encoder_control->chroma_format != UVG_CSP_400 && (depth != 4 || (x_px % 8 && y_px % 8)) && tree_type != UVG_LUMA_T;
if( !skip_residual_coding && has_chroma) {
if(tr_cu->depth == depth || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_U)) {
CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.qt_cbf_model_cb[0]), cb_flag_u, tr_tree_bits, "cbf_cb");
}
if(tr_cu->depth == depth || cbf_is_set(pred_cu->cbf, depth - 1, COLOR_V)) {
CABAC_FBITS_UPDATE(cabac, &(cabac->ctx.qt_cbf_model_cr[cb_flag_u]), cb_flag_v, tr_tree_bits, "cbf_cr");
}
}
if (tr_depth > 0) {
int offset = LCU_WIDTH >> (depth + 1);
double sum = 0;
sum += cu_rd_cost_tr_split_accurate(state, x_px, y_px, depth + 1, pred_cu, lcu, tree_type);
sum += cu_rd_cost_tr_split_accurate(state, x_px + offset, y_px, depth + 1, pred_cu, lcu, tree_type);
sum += cu_rd_cost_tr_split_accurate(state, x_px, y_px + offset, depth + 1, pred_cu, lcu, tree_type);
sum += cu_rd_cost_tr_split_accurate(state, x_px + offset, y_px + offset, depth + 1, pred_cu, lcu, tree_type);
return sum + tr_tree_bits * state->lambda;
}
const int cb_flag_y = cbf_is_set(tr_cu->cbf, depth, COLOR_Y) && tree_type != UVG_CHROMA_T;
// Add transform_tree cbf_luma bit cost.
const int is_tr_split = depth - tr_cu->depth;
if ((pred_cu->type == CU_INTRA ||
is_tr_split ||
cb_flag_u ||
cb_flag_v)
&& !skip_residual_coding && tree_type != UVG_CHROMA_T)
{
cabac_ctx_t* ctx = &(cabac->ctx.qt_cbf_model_luma[0]);
CABAC_FBITS_UPDATE(cabac, ctx, cb_flag_y, tr_tree_bits, "cbf_y_search");
}
if (cb_flag_y || cb_flag_u || cb_flag_v) {
// TODO qp_delta_sign_flag
if ((cb_flag_u || cb_flag_v) && has_chroma && state->encoder_control->cfg.jccr) {
CABAC_FBITS_UPDATE(cabac, &cabac->ctx.joint_cb_cr[cb_flag_u * 2 + cb_flag_v - 1], tr_cu->joint_cb_cr != 0, tr_tree_bits, "tu_joint_cbcr_residual_flag");
}
}
// SSD between reconstruction and original
unsigned luma_ssd = 0;
if (!state->encoder_control->cfg.lossless && tree_type != UVG_CHROMA_T) {
int index = y_px * LCU_WIDTH + x_px;
luma_ssd = uvg_pixels_calc_ssd(&lcu->ref.y[index], &lcu->rec.y[index],
LCU_WIDTH, LCU_WIDTH,
width);
}
// Chroma transform skip enable/disable is non-normative, so we need to count the chroma
// tr-skip bits even when we are never using it.
const bool can_use_tr_skip = state->encoder_control->cfg.trskip_enable && width <= (1 << state->encoder_control->cfg.trskip_max_size);
if(cb_flag_y){
if (can_use_tr_skip) {
CABAC_FBITS_UPDATE(cabac, &cabac->ctx.transform_skip_model_luma, tr_cu->tr_idx == MTS_SKIP, tr_tree_bits, "transform_skip_flag");
}
int8_t luma_scan_mode = uvg_get_scan_order(pred_cu->type, pred_cu->intra.mode, depth);
const coeff_t* coeffs = &lcu->coeff.y[xy_to_zorder(LCU_WIDTH, x_px, y_px)];
coeff_bits += uvg_get_coeff_cost(state, coeffs, tr_cu, width, 0, luma_scan_mode, tr_cu->tr_skip & 1);
}
if(depth == 4 || tree_type == UVG_LUMA_T) {
if (uvg_is_lfnst_allowed(state, tr_cu, width, width, x_px, y_px, tree_type)) {
const int lfnst_idx = tr_cu->lfnst_idx;
CABAC_FBITS_UPDATE(
cabac,
&cabac->ctx.lfnst_idx_model[1],
lfnst_idx != 0,
tr_tree_bits,
"lfnst_idx");
if (lfnst_idx > 0) {
CABAC_FBITS_UPDATE(
cabac,
&cabac->ctx.lfnst_idx_model[2],
lfnst_idx == 2,
tr_tree_bits,
"lfnst_idx");
}
}
tr_cu->lfnst_last_scan_pos = false;
}
unsigned chroma_ssd = 0;
if(has_chroma) {
const vector2d_t lcu_px = { (x_px >> (tree_type != UVG_CHROMA_T)) & ~3, (y_px >> (tree_type != UVG_CHROMA_T)) &~3 };
const int chroma_width = MAX(4, LCU_WIDTH >> (depth + 1));
int8_t scan_order = uvg_get_scan_order(pred_cu->type, pred_cu->intra.mode_chroma, depth);
const unsigned index = xy_to_zorder(LCU_WIDTH_C, lcu_px.x, lcu_px.y);
const bool chroma_can_use_tr_skip = state->encoder_control->cfg.trskip_enable && chroma_width <= (1 << state->encoder_control->cfg.trskip_max_size);
if(pred_cu->joint_cb_cr == 0) {
if (!state->encoder_control->cfg.lossless) {
int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x;
unsigned ssd_u = uvg_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.u[index],
LCU_WIDTH_C, LCU_WIDTH_C,
chroma_width);
unsigned ssd_v = uvg_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.v[index],
LCU_WIDTH_C, LCU_WIDTH_C,
chroma_width);
chroma_ssd = ssd_u + ssd_v;
}
if(chroma_can_use_tr_skip && cb_flag_u) {
CABAC_FBITS_UPDATE(cabac, &cabac->ctx.transform_skip_model_chroma, tr_cu->tr_skip & 2, tr_tree_bits, "transform_skip_flag");
}
if(chroma_can_use_tr_skip && cb_flag_v) {
CABAC_FBITS_UPDATE(cabac, &cabac->ctx.transform_skip_model_chroma, tr_cu->tr_skip & 4, tr_tree_bits, "transform_skip_flag");
}
coeff_bits += uvg_get_coeff_cost(state, &lcu->coeff.u[index], tr_cu, chroma_width, COLOR_U, scan_order, tr_cu->tr_skip & 2);
coeff_bits += uvg_get_coeff_cost(state, &lcu->coeff.v[index], tr_cu, chroma_width, COLOR_V, scan_order, tr_cu->tr_skip & 4);
}
else {
{
int index = lcu_px.y * LCU_WIDTH_C + lcu_px.x;
int ssd_u_joint = uvg_pixels_calc_ssd(&lcu->ref.u[index], &lcu->rec.joint_u[index],
LCU_WIDTH_C, LCU_WIDTH_C,
chroma_width);
int ssd_v_joint = uvg_pixels_calc_ssd(&lcu->ref.v[index], &lcu->rec.joint_v[index],
LCU_WIDTH_C, LCU_WIDTH_C,
chroma_width);
chroma_ssd = ssd_u_joint + ssd_v_joint;
}
if (chroma_can_use_tr_skip) {
CABAC_FBITS_UPDATE(cabac, &cabac->ctx.transform_skip_model_chroma, tr_cu->tr_skip & 2, tr_tree_bits, "transform_skip_flag");
}
coeff_bits += uvg_get_coeff_cost(state, &lcu->coeff.joint_uv[index], NULL, chroma_width, COLOR_U, scan_order, 0);
}
}
if (uvg_is_lfnst_allowed(state, tr_cu, width, width, x_px, y_px, tree_type)) {
const int lfnst_idx = (depth != 4 && tree_type != UVG_CHROMA_T) ? tr_cu->lfnst_idx : tr_cu->cr_lfnst_idx;
CABAC_FBITS_UPDATE(
cabac,
&cabac->ctx.lfnst_idx_model[tr_cu->depth == 4 || tree_type != UVG_BOTH_T],
lfnst_idx != 0,
tr_tree_bits,
"lfnst_idx");
if (lfnst_idx > 0) {
CABAC_FBITS_UPDATE(
cabac,
&cabac->ctx.lfnst_idx_model[2],
lfnst_idx == 2,
tr_tree_bits,
"lfnst_idx");
}
}
tr_cu->lfnst_last_scan_pos = false;
tr_cu->violates_lfnst_constrained_luma = false;
tr_cu->violates_lfnst_constrained_chroma = false;
if (uvg_is_mts_allowed(state, tr_cu) && tree_type != UVG_CHROMA_T) {
bool symbol = tr_cu->tr_idx != 0;
int ctx_idx = 0;
CABAC_FBITS_UPDATE(cabac, &cabac->ctx.mts_idx_model[ctx_idx], symbol, tr_tree_bits, "mts_idx");
ctx_idx++;
for (int i = 0; i < 3 && symbol; i++, ctx_idx++)
{
symbol = tr_cu->tr_idx > i + MTS_DST7_DST7 ? 1 : 0;
CABAC_FBITS_UPDATE(cabac, &cabac->ctx.mts_idx_model[ctx_idx], symbol, tr_tree_bits, "mts_idx");
}
tr_cu->mts_last_scan_pos = false;
tr_cu->violates_mts_coeff_constraint = false;
}
double bits = tr_tree_bits + coeff_bits;
return luma_ssd * UVG_LUMA_MULT + chroma_ssd * UVG_CHROMA_MULT + bits * state->lambda;
}
// Return estimate of bits used to code prediction mode of cur_cu.
static double calc_mode_bits(const encoder_state_t *state,
const lcu_t *lcu,
const cu_info_t * cur_cu,
int x, int y, int depth)
{
assert(cur_cu->type == CU_INTRA);
double mode_bits = uvg_luma_mode_bits(state, cur_cu, x, y, depth, lcu);
if (((depth == 4 && x % 8 && y % 8) || (depth != 4)) && state->encoder_control->chroma_format != UVG_CSP_400) {
mode_bits += uvg_chroma_mode_bits(state, cur_cu->intra.mode_chroma, cur_cu->intra.mode);
}
return mode_bits;
}
// TODO: replace usages of this by the uvg_sort_indices_by_cost function.
/**
* \brief Sort modes and costs to ascending order according to costs.
*/
void uvg_sort_modes(int8_t *__restrict modes, double *__restrict costs, uint8_t length)
{
// Length for intra is always between 5 and 23, and is either 21, 17, 9 or 8 about
// 60% of the time, so there should be no need for anything more complex
// than insertion sort.
// Length for merge is 5 or less.
for (uint8_t i = 1; i < length; ++i) {
const double cur_cost = costs[i];
const int8_t cur_mode = modes[i];
uint8_t j = i;
while (j > 0 && cur_cost < costs[j - 1]) {
costs[j] = costs[j - 1];
modes[j] = modes[j - 1];
--j;
}
costs[j] = cur_cost;
modes[j] = cur_mode;
}
}
/**
* \brief Sort modes and costs to ascending order according to costs.
*/
void uvg_sort_modes_intra_luma(int8_t *__restrict modes, int8_t *__restrict trafo, double *__restrict costs, uint8_t length)
{
// Length for intra is always between 5 and 23, and is either 21, 17, 9 or 8 about
// 60% of the time, so there should be no need for anything more complex
// than insertion sort.
// Length for merge is 5 or less.
for (uint8_t i = 1; i < length; ++i) {
const double cur_cost = costs[i];
const int8_t cur_mode = modes[i];
const int8_t cur_tr = trafo[i];
uint8_t j = i;
while (j > 0 && cur_cost < costs[j - 1]) {
costs[j] = costs[j - 1];
modes[j] = modes[j - 1];
trafo[j] = trafo[j - 1];
--j;
}
costs[j] = cur_cost;
modes[j] = cur_mode;
trafo[j] = cur_tr;
}
}
/**
* \brief Sort keys (indices) to ascending order according to costs.
*/
void uvg_sort_keys_by_cost(unit_stats_map_t *__restrict map)
{
// Size of sorted arrays is expected to be "small". No need for faster algorithm.
for (uint8_t i = 1; i < map->size; ++i) {
const int8_t cur_indx = map->keys[i];
const double cur_cost = map->cost[cur_indx];
uint8_t j = i;
while (j > 0 && cur_cost < map->cost[map->keys[j - 1]]) {
map->keys[j] = map->keys[j - 1];
--j;
}
map->keys[j] = cur_indx;
}
}
/**
* Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode.
* - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH.
* - Data structure work_tree is maintained such that the neighbouring SCUs
* and pixels to the left and up of current CU are the final CUs decided
* via the search. This is done by copying the relevant data to all
* relevant levels whenever a decision is made whether to split or not.
* - All the final data for the LCU gets eventually copied to depth 0, which
* will be the final output of the recursion.
*/
static double search_cu(
encoder_state_t* const state,
int x,
int y,
int depth,
lcu_t* work_tree,
enum uvg_tree_type
tree_type)
{
const encoder_control_t* ctrl = state->encoder_control;
const videoframe_t * const frame = state->tile->frame;
const int cu_width = tree_type != UVG_CHROMA_T ? LCU_WIDTH >> depth : LCU_WIDTH_C >> depth;
const int luma_width = LCU_WIDTH >> depth;
assert(cu_width >= 4);
double cost = MAX_DOUBLE;
double inter_zero_coeff_cost = MAX_DOUBLE;
double inter_bitcost = MAX_INT;
cu_info_t *cur_cu;
cabac_data_t pre_search_cabac;
memcpy(&pre_search_cabac, &state->search_cabac, sizeof(pre_search_cabac));
const uint32_t ctu_row = (y >> LOG2_LCU_WIDTH);
const uint32_t ctu_row_mul_five = ctu_row * MAX_NUM_HMVP_CANDS;
cu_info_t hmvp_lut[MAX_NUM_HMVP_CANDS];
uint8_t hmvp_lut_size = state->tile->frame->hmvp_size[ctu_row];
// Store original HMVP lut before search and restore after, since it's modified
if (state->frame->slicetype != UVG_SLICE_I) memcpy(hmvp_lut, &state->tile->frame->hmvp_lut[ctu_row_mul_five], sizeof(cu_info_t) * MAX_NUM_HMVP_CANDS);
struct {
int32_t min;
int32_t max;
} pu_depth_inter, pu_depth_intra;
lcu_t *const lcu = &work_tree[depth];
int x_local = SUB_SCU(x) >> (tree_type == UVG_CHROMA_T);
int y_local = SUB_SCU(y) >> (tree_type == UVG_CHROMA_T);
int32_t frame_width = frame->width;
int32_t frame_height = frame->height;
// Stop recursion if the CU is completely outside the frame.
if (x >= frame_width || y >= frame_height) {
// Return zero cost because this CU does not have to be coded.
return 0;
}
int gop_layer = ctrl->cfg.gop_len != 0 ? ctrl->cfg.gop[state->frame->gop_offset].layer - 1 : 0;
// Assign correct depth limit
constraint_t* constr = state->constraint;
if(constr->ml_intra_depth_ctu) {
pu_depth_intra.min = constr->ml_intra_depth_ctu->_mat_upper_depth[(x_local >> 3) + (y_local >> 3) * 8];
pu_depth_intra.max = constr->ml_intra_depth_ctu->_mat_lower_depth[(x_local >> 3) + (y_local >> 3) * 8];
}
else {
pu_depth_intra.min = ctrl->cfg.pu_depth_intra.min[gop_layer] >= 0 ? ctrl->cfg.pu_depth_intra.min[gop_layer] : ctrl->cfg.pu_depth_intra.min[0];
pu_depth_intra.max = ctrl->cfg.pu_depth_intra.max[gop_layer] >= 0 ? ctrl->cfg.pu_depth_intra.max[gop_layer] : ctrl->cfg.pu_depth_intra.max[0];
}
if(tree_type == UVG_CHROMA_T) {
pu_depth_intra.max = MIN(3, pu_depth_intra.max);
pu_depth_intra.min = MIN(3, pu_depth_intra.min);
}
pu_depth_inter.min = ctrl->cfg.pu_depth_inter.min[gop_layer] >= 0 ? ctrl->cfg.pu_depth_inter.min[gop_layer] : ctrl->cfg.pu_depth_inter.min[0];
pu_depth_inter.max = ctrl->cfg.pu_depth_inter.max[gop_layer] >= 0 ? ctrl->cfg.pu_depth_inter.max[gop_layer] : ctrl->cfg.pu_depth_inter.max[0];
cur_cu = LCU_GET_CU_AT_PX(lcu, x_local, y_local);
// Assign correct depth
cur_cu->depth = (depth > MAX_DEPTH) ? MAX_DEPTH : depth;
cur_cu->tr_depth = (depth > 0) ? depth : 1;
cur_cu->type = CU_NOTSET;
cur_cu->part_size = SIZE_2Nx2N;
cur_cu->qp = state->qp;
cur_cu->bdpcmMode = 0;
cur_cu->tr_idx = 0;
cur_cu->violates_mts_coeff_constraint = 0;
cur_cu->mts_last_scan_pos = 0;
cur_cu->violates_lfnst_constrained_luma = 0;
cur_cu->violates_lfnst_constrained_chroma = 0;
cur_cu->lfnst_last_scan_pos = 0;
cur_cu->lfnst_idx = 0;
cur_cu->joint_cb_cr = 0;
// If the CU is completely inside the frame at this depth, search for
// prediction modes at this depth.
if ( x + luma_width <= frame_width && y + luma_width <= frame_height)
{
int cu_width_inter_min = LCU_WIDTH >> pu_depth_inter.max;
bool can_use_inter =
state->frame->slicetype != UVG_SLICE_I &&
depth <= MAX_DEPTH &&
(
WITHIN(depth, pu_depth_inter.min, pu_depth_inter.max) ||
// When the split was forced because the CTU is partially outside the
// frame, we permit inter coding even if pu_depth_inter would
// otherwise forbid it.
(x & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame_width ||
(y & ~(cu_width_inter_min - 1)) + cu_width_inter_min > frame_height
);
if (can_use_inter) {
double mode_cost;
double mode_bitcost;
uvg_search_cu_inter(state,
x, y,
depth,
lcu,
&mode_cost, &mode_bitcost);
if (mode_cost < cost) {
cost = mode_cost;
inter_bitcost = mode_bitcost;
cur_cu->type = CU_INTER;
}
}
// Try to skip intra search in rd==0 mode.
// This can be quite severe on bdrate. It might be better to do this
// decision after reconstructing the inter frame.
bool skip_intra = (state->encoder_control->cfg.rdo == 0
&& cur_cu->type != CU_NOTSET
&& cost / (cu_width * cu_width) < INTRA_THRESHOLD)
|| (ctrl->cfg.early_skip && cur_cu->skipped);
int32_t cu_width_intra_min = LCU_WIDTH >> pu_depth_intra.max;
bool can_use_intra =
(WITHIN(depth, pu_depth_intra.min, pu_depth_intra.max) ||
// When the split was forced because the CTU is partially outside
// the frame, we permit intra coding even if pu_depth_intra would
// otherwise forbid it.
(x & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame_width ||
(y & ~(cu_width_intra_min - 1)) + cu_width_intra_min > frame_height) &&
!(state->encoder_control->cfg.force_inter && state->frame->slicetype != UVG_SLICE_I);
intra_search_data_t intra_search;
intra_search.cost = 0;
if (can_use_intra && !skip_intra) {
intra_search.pred_cu = *cur_cu;
if(tree_type != UVG_CHROMA_T) {
intra_search.pred_cu.joint_cb_cr = 4;
uvg_search_cu_intra(state, x, y, depth, &intra_search,
lcu,
tree_type);
}
#ifdef COMPLETE_PRED_MODE_BITS
// Technically counting these bits would be correct, however counting
// them universally degrades quality so this block is disabled by default
if(state->frame->slicetype != UVG_SLICE_I) {
double pred_mode_type_bits = 0;
CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.cu_pred_mode_model, 1, pred_mode_type_bits, "pred_mode_flag");
CABAC_FBITS_UPDATE(&state->search_cabac, &state->search_cabac.ctx.cu_skip_flag_model[uvg_get_skip_context(x, y, lcu, NULL)], 0, pred_mode_type_bits, "skip_flag");
intra_cost += pred_mode_type_bits * state->lambda;
}
#endif
double intra_cost = intra_search.cost;
if (intra_cost < cost && tree_type != UVG_LUMA_T) {
int8_t intra_mode = intra_search.pred_cu.intra.mode;
if(state->encoder_control->cfg.cclm && tree_type == UVG_BOTH_T) {
intra_search.pred_cu.intra.mode_chroma = -1;
uvg_intra_recon_cu(state,
x, y,
depth, &intra_search,
&intra_search.pred_cu,
lcu, tree_type);
downsample_cclm_rec(
state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y, lcu->left_ref.y[64]
);
}
intra_search.pred_cu.joint_cb_cr = 0;
// TODO: This heavily relies to square CUs
if ((depth != 4 || (x % 8 && y % 8)) && state->encoder_control->chroma_format != UVG_CSP_400 && tree_type != UVG_LUMA_T) {
// There is almost no benefit to doing the chroma mode search for
// rd2. Possibly because the luma mode search already takes chroma
// into account, so there is less of a chanse of luma mode being
// really bad for chroma.
if(tree_type == UVG_CHROMA_T) {
intra_search.pred_cu.intra = uvg_get_co_located_luma_cu(x, y, luma_width, luma_width, NULL, state->tile->frame->cu_array, UVG_CHROMA_T)->intra;
intra_mode = intra_search.pred_cu.intra.mode;
intra_search.pred_cu.type = CU_INTRA;
}
intra_search.pred_cu.intra.mode_chroma = intra_search.pred_cu.intra.mode;
if (ctrl->cfg.rdo >= 3 || ctrl->cfg.jccr || ctrl->cfg.lfnst) {
uvg_search_cu_intra_chroma(state, x, y, depth, lcu, &intra_search, tree_type);
if (intra_search.pred_cu.joint_cb_cr == 0) {
intra_search.pred_cu.joint_cb_cr = 4;
}
}
else if (!intra_search.pred_cu.intra.mip_flag) {
intra_search.pred_cu.intra.mode_chroma = intra_search.pred_cu.intra.mode;
}
else {
intra_search.pred_cu.intra.mode_chroma = 0;
}
uvg_intra_recon_cu(state,
x, y,
depth, &intra_search,
&intra_search.pred_cu,
lcu,
tree_type);
if(tree_type != UVG_CHROMA_T) {
intra_cost += uvg_cu_rd_cost_chroma(state, x_local, y_local, depth, &intra_search.pred_cu, lcu);
}
else {
intra_cost = intra_search.cost;
}
intra_search.pred_cu.intra.mode = intra_mode;
intra_search.pred_cu.violates_lfnst_constrained_chroma = false;
intra_search.pred_cu.lfnst_last_scan_pos = false;
}
intra_search.pred_cu.intra.mode = intra_mode;
}
if (intra_cost < cost) {
cost = intra_cost;
*cur_cu = intra_search.pred_cu;
cur_cu->type = CU_INTRA;
}
}
// Reconstruct best mode because we need the reconstructed pixels for
// mode search of adjacent CUs.
if (cur_cu->type == CU_INTRA) {
assert(cur_cu->part_size == SIZE_2Nx2N || cur_cu->part_size == SIZE_NxN);
if ((depth == 4 && (x % 8 == 0 || y % 8 == 0)) || state->encoder_control->chroma_format == UVG_CSP_400 || tree_type == UVG_LUMA_T) {
intra_search.pred_cu.intra.mode_chroma = -1;
}
if(tree_type == UVG_CHROMA_T) {
intra_search.pred_cu.intra.mode = -1;
}
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
uvg_intra_recon_cu(state,
x, y,
depth, &intra_search,
NULL,
lcu, tree_type);
if(depth == 4 && x % 8 && y % 8) {
intra_search.pred_cu.intra.mode_chroma = cur_cu->intra.mode_chroma;
intra_search.pred_cu.intra.mode = -1;
uvg_intra_recon_cu(state,
x, y,
depth, &intra_search,
NULL,
lcu,
tree_type);
}
if (cur_cu->joint_cb_cr == 4) cur_cu->joint_cb_cr = 0;
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
} else if (cur_cu->type == CU_INTER) {
if (!cur_cu->skipped) {
if (!cur_cu->merged) {
if (cur_cu->inter.mv_dir & 1) uvg_round_precision(INTERNAL_MV_PREC, 2, &cur_cu->inter.mv[0][0], &cur_cu->inter.mv[0][1]);
if (cur_cu->inter.mv_dir & 2) uvg_round_precision(INTERNAL_MV_PREC, 2, &cur_cu->inter.mv[1][0], &cur_cu->inter.mv[1][1]);
}
// Reset transform depth because intra messes with them.
// This will no longer be necessary if the transform depths are not shared.
int tr_depth = MAX(1, depth);
if (cur_cu->part_size != SIZE_2Nx2N) {
tr_depth = depth + 1;
}
uvg_lcu_fill_trdepth(lcu, x, y, depth, tr_depth);
const bool has_chroma = state->encoder_control->chroma_format != UVG_CSP_400;
uvg_inter_recon_cu(state, lcu, x, y, cu_width, true, has_chroma);
if (ctrl->cfg.zero_coeff_rdo && !ctrl->cfg.lossless && !ctrl->cfg.rdoq_enable) {
//Calculate cost for zero coeffs
inter_zero_coeff_cost = cu_zero_coeff_cost(state, work_tree, x, y, depth) + inter_bitcost * state->lambda;
}
uvg_quantize_lcu_residual(state,
true, has_chroma && !cur_cu->joint_cb_cr,
cur_cu->joint_cb_cr, x, y,
depth,
NULL,
lcu,
false,
tree_type);
int cbf = cbf_is_set_any(cur_cu->cbf, depth);
if (cur_cu->merged && !cbf && cur_cu->part_size == SIZE_2Nx2N) {
cur_cu->merged = 0;
cur_cu->skipped = 1;
// Selecting skip reduces bits needed to code the CU
int skip_ctx = uvg_get_skip_context(x, y, lcu, NULL, NULL);
inter_bitcost = CTX_ENTROPY_FBITS(&state->search_cabac.ctx.cu_skip_flag_model[skip_ctx], 1);
inter_bitcost += CTX_ENTROPY_FBITS(&(state->search_cabac.ctx.cu_merge_idx_ext_model), cur_cu->merge_idx != 0);
inter_bitcost += cur_cu->merge_idx;
}
}
lcu_fill_inter(lcu, x_local, y_local, cu_width);
lcu_fill_cbf(lcu, x_local, y_local, cu_width, cur_cu);
}
}
if (cur_cu->type == CU_INTRA || cur_cu->type == CU_INTER) {
double bits = 0;
cabac_data_t* cabac = &state->search_cabac;
cabac->update = 1;
if(cur_cu->type != CU_INTRA || cur_cu->part_size == SIZE_2Nx2N) {
bits += uvg_mock_encode_coding_unit(
state,
cabac,
x, y, depth,
lcu,
cur_cu,
tree_type);
}
else {
assert(0);
}
cost = bits * state->lambda;
cost += cu_rd_cost_tr_split_accurate(state, x_local, y_local, depth, cur_cu, lcu, tree_type);
if (ctrl->cfg.zero_coeff_rdo && inter_zero_coeff_cost <= cost) {
cost = inter_zero_coeff_cost;
// Restore saved pixels from lower level of the working tree.
copy_cu_pixels(x_local, y_local, cu_width, &work_tree[depth + 1], lcu, tree_type);
if (cur_cu->merged && cur_cu->part_size == SIZE_2Nx2N) {
cur_cu->merged = 0;
cur_cu->skipped = 1;
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
}
if (cur_cu->tr_depth != depth) {
// Reset transform depth since there are no coefficients. This
// ensures that CBF is cleared for the whole area of the CU.
uvg_lcu_fill_trdepth(lcu, x, y, depth, depth);
}
cur_cu->cbf = 0;
lcu_fill_cbf(lcu, x_local, y_local, cu_width, cur_cu);
}
cabac->update = 0;
}
bool can_split_cu =
// If the CU is partially outside the frame, we need to split it even
// if pu_depth_intra and pu_depth_inter would not permit it.
cur_cu->type == CU_NOTSET ||
(depth < pu_depth_intra.max && !(state->encoder_control->cfg.force_inter&& state->frame->slicetype != UVG_SLICE_I)) ||
(state->frame->slicetype != UVG_SLICE_I &&
depth < pu_depth_inter.max);
if(state->encoder_control->cabac_debug_file) {
fprintf(state->encoder_control->cabac_debug_file, "S %4d %4d %d %d", x, y, depth, tree_type);
fwrite(&state->search_cabac.ctx, 1, sizeof(state->search_cabac.ctx), state->encoder_control->cabac_debug_file);
}
// Recursively split all the way to max search depth.
if (can_split_cu) {
int half_cu = cu_width >> (tree_type != UVG_CHROMA_T);
double split_cost = 0.0;
int cbf = cbf_is_set_any(cur_cu->cbf, depth);
cabac_data_t post_seach_cabac;
memcpy(&post_seach_cabac, &state->search_cabac, sizeof(post_seach_cabac));
memcpy(&state->search_cabac, &pre_search_cabac, sizeof(post_seach_cabac));
state->search_cabac.update = 1;
double split_bits = 0;
if (depth < MAX_DEPTH) {
// Add cost of cu_split_flag.
const cu_info_t* left_cu = NULL, * above_cu = NULL;
if (x) {
if (x_local || tree_type != UVG_CHROMA_T) {
left_cu = LCU_GET_CU_AT_PX(lcu, x_local - 1, y_local);
}
else {
left_cu = uvg_cu_array_at_const(state->tile->frame->chroma_cu_array, (x >> 1) - 1, y >> 1);
}
}
if (y) {
if (y_local || tree_type != UVG_CHROMA_T) {
above_cu = LCU_GET_CU_AT_PX(lcu, x_local, y_local - 1);
}
else {
above_cu = uvg_cu_array_at_const(state->tile->frame->chroma_cu_array, x >> 1, (y >> 1) - 1);
}
}
uvg_write_split_flag(
state,
&state->search_cabac,
left_cu,
above_cu,
1,
depth,
cu_width,
x >> (tree_type == UVG_CHROMA_T),
y >> (tree_type == UVG_CHROMA_T),
tree_type,
&split_bits);
}
state->search_cabac.update = 0;
split_cost += split_bits * state->lambda;
// If skip mode was selected for the block, skip further search.
// Skip mode means there's no coefficients in the block, so splitting
// might not give any better results but takes more time to do.
// It is ok to interrupt the search as soon as it is known that
// the split costs at least as much as not splitting.
if (cur_cu->type == CU_NOTSET || cbf || state->encoder_control->cfg.cu_split_termination == UVG_CU_SPLIT_TERMINATION_OFF) {
if (split_cost < cost) split_cost += search_cu(state, x, y, depth + 1, work_tree, tree_type);
if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y, depth + 1, work_tree, tree_type);
if (split_cost < cost) split_cost += search_cu(state, x, y + half_cu, depth + 1, work_tree, tree_type);
if (split_cost < cost) split_cost += search_cu(state, x + half_cu, y + half_cu, depth + 1, work_tree, tree_type);
} else {
split_cost = INT_MAX;
}
// If no search is not performed for this depth, try just the best mode
// of the top left CU from the next depth. This should ensure that 64x64
// gets used, at least in the most obvious cases, while avoiding any
// searching.
// TODO: Dual tree
if (cur_cu->type == CU_NOTSET && depth < MAX_PU_DEPTH
&& x + cu_width <= frame_width && y + cu_width <= frame_height
&& state->encoder_control->cfg.combine_intra_cus)
{
cu_info_t *cu_d1 = LCU_GET_CU_AT_PX(&work_tree[depth + 1], x_local, y_local);
// If the best CU in depth+1 is intra and the biggest it can be, try it.
if (cu_d1->type == CU_INTRA && cu_d1->depth == depth + 1) {
cabac_data_t temp_cabac;
memcpy(&temp_cabac, &state->search_cabac, sizeof(temp_cabac));
memcpy(&state->search_cabac, &pre_search_cabac, sizeof(pre_search_cabac));
cost = 0;
double bits = 0;
uvg_write_split_flag(state, &state->search_cabac,
x > 0 ? LCU_GET_CU_AT_PX(lcu, SUB_SCU(x) - 1, SUB_SCU(y)) : NULL,
y > 0 ? LCU_GET_CU_AT_PX(lcu, SUB_SCU(x), SUB_SCU(y) - 1) : NULL,
0, depth, cu_width, x, y, tree_type,
& split_bits);
cur_cu->intra = cu_d1->intra;
cur_cu->type = CU_INTRA;
cur_cu->part_size = SIZE_2Nx2N;
// Disable MRL in this case
cur_cu->intra.multi_ref_idx = 0;
uvg_lcu_fill_trdepth(lcu, x, y, depth, cur_cu->tr_depth);
lcu_fill_cu_info(lcu, x_local, y_local, cu_width, cu_width, cur_cu);
intra_search_data_t proxy;
FILL(proxy, 0);
proxy.pred_cu = *cur_cu;
uvg_intra_recon_cu(state,
x, y,
depth,
&proxy,
NULL,
lcu,
tree_type);
double mode_bits = calc_mode_bits(state, lcu, cur_cu, x, y, depth) + bits;
cost += mode_bits * state->lambda;
cost += cu_rd_cost_tr_split_accurate(state, x_local, y_local, depth, cur_cu, lcu, tree_type);
memcpy(&post_seach_cabac, &state->search_cabac, sizeof(post_seach_cabac));
memcpy(&state->search_cabac, &temp_cabac, sizeof(temp_cabac));
}
}
if (split_cost < cost) {
// Copy split modes to this depth.
cost = split_cost;
work_tree_copy_up(x_local, y_local, depth, work_tree, state->encoder_control->cfg.jccr, tree_type);
#if UVG_DEBUG
//debug_split = 1;
#endif
} else if (depth > 0) {
// Copy this CU's mode all the way down for use in adjacent CUs mode
// search.
memcpy(&state->search_cabac, &post_seach_cabac, sizeof(post_seach_cabac));
work_tree_copy_down(x_local, y_local, depth, work_tree, tree_type);
downsample_cclm_rec(
state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y, lcu->left_ref.y[64]
);
if (state->frame->slicetype != UVG_SLICE_I) {
// Reset HMVP to the beginning of this CU level search and add this CU as the mvp
memcpy(&state->tile->frame->hmvp_lut[ctu_row_mul_five], hmvp_lut, sizeof(cu_info_t) * MAX_NUM_HMVP_CANDS);
state->tile->frame->hmvp_size[ctu_row] = hmvp_lut_size;
uvg_hmvp_add_mv(state, x, y, cu_width, cu_width, cur_cu);
}
}
else {
downsample_cclm_rec(
state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y, lcu->left_ref.y[64]
);
}
} else if (depth >= 0 && depth < MAX_PU_DEPTH) {
// Need to copy modes down since the lower level of the work tree is used
// when searching SMP and AMP blocks.
work_tree_copy_down(x_local, y_local, depth, work_tree, tree_type);
if(tree_type != UVG_CHROMA_T) {
downsample_cclm_rec(
state, x, y, cu_width / 2, cu_width / 2, lcu->rec.y, lcu->left_ref.y[64]
);
}
if (state->frame->slicetype != UVG_SLICE_I) {
// Reset HMVP to the beginning of this CU level search and add this CU as the mvp
memcpy(&state->tile->frame->hmvp_lut[ctu_row_mul_five], hmvp_lut, sizeof(cu_info_t) * MAX_NUM_HMVP_CANDS);
state->tile->frame->hmvp_size[ctu_row] = hmvp_lut_size;
uvg_hmvp_add_mv(state, x, y, cu_width, cu_width, cur_cu);
}
}
assert(cur_cu->type != CU_NOTSET);
return cost;
}
/**
* Initialize lcu_t for search.
* - Copy reference CUs.
* - Copy reference pixels from neighbouring LCUs.
* - Copy reference pixels from this LCU.
*/
static void init_lcu_t(const encoder_state_t * const state, const int x, const int y, lcu_t *lcu, const yuv_t *hor_buf, const yuv_t *ver_buf)
{
const videoframe_t * const frame = state->tile->frame;
FILL(*lcu, 0);
lcu->rec.chroma_format = state->encoder_control->chroma_format;
lcu->ref.chroma_format = state->encoder_control->chroma_format;
// Copy reference cu_info structs from neighbouring LCUs.
// Copy top CU row.
if (y > 0) {
for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) {
const cu_info_t *from_cu = uvg_cu_array_at_const(frame->cu_array, x + i, y - 1);
cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, i, -1);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy left CU column.
if (x > 0) {
for (int i = 0; i < LCU_WIDTH; i += SCU_WIDTH) {
const cu_info_t *from_cu = uvg_cu_array_at_const(frame->cu_array, x - 1, y + i);
cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, i);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
}
// Copy top-left CU.
if (x > 0 && y > 0) {
const cu_info_t *from_cu = uvg_cu_array_at_const(frame->cu_array, x - 1, y - 1);
cu_info_t *to_cu = LCU_GET_CU_AT_PX(lcu, -1, -1);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
// Copy top-right CU, available only without WPP
if (y > 0 && x + LCU_WIDTH < frame->width && !state->encoder_control->cfg.wpp) {
const cu_info_t *from_cu = uvg_cu_array_at_const(frame->cu_array, x + LCU_WIDTH, y - 1);
cu_info_t *to_cu = LCU_GET_TOP_RIGHT_CU(lcu);
memcpy(to_cu, from_cu, sizeof(*to_cu));
}
// Copy reference pixels.
{
const int pic_width = frame->width;
// Copy top reference pixels.
if (y > 0) {
// hor_buf is of size pic_width so there might not be LCU_REF_PX_WIDTH
// number of allocated pixels left.
int x_max = MIN(LCU_REF_PX_WIDTH, pic_width - x);
int x_min_in_lcu = (x>0) ? 0 : 1;
int luma_offset = OFFSET_HOR_BUF(x, y, frame, x_min_in_lcu - 1);
int chroma_offset = OFFSET_HOR_BUF_C(x, y, frame, x_min_in_lcu - 1);
int luma_bytes = (x_max + (1 - x_min_in_lcu))*sizeof(uvg_pixel);
int chroma_bytes = (x_max / 2 + (1 - x_min_in_lcu))*sizeof(uvg_pixel);
memcpy(&lcu->top_ref.y[x_min_in_lcu], &hor_buf->y[luma_offset], luma_bytes);
if (state->encoder_control->chroma_format != UVG_CSP_400) {
memcpy(&lcu->top_ref.u[x_min_in_lcu], &hor_buf->u[chroma_offset], chroma_bytes);
memcpy(&lcu->top_ref.v[x_min_in_lcu], &hor_buf->v[chroma_offset], chroma_bytes);
}
}
// Copy left reference pixels.
if (x > 0) {
int y_min_in_lcu = (y>0) ? 0 : 1;
int luma_offset = OFFSET_VER_BUF(x, y, frame, y_min_in_lcu - 1);
int chroma_offset = OFFSET_VER_BUF_C(x, y, frame, y_min_in_lcu - 1);
int luma_bytes = (LCU_WIDTH + (1 - y_min_in_lcu)) * sizeof(uvg_pixel);
int chroma_bytes = (LCU_WIDTH / 2 + (1 - y_min_in_lcu)) * sizeof(uvg_pixel);
memcpy(&lcu->left_ref.y[y_min_in_lcu], &ver_buf->y[luma_offset], luma_bytes);
if (state->encoder_control->chroma_format != UVG_CSP_400) {
memcpy(&lcu->left_ref.u[y_min_in_lcu], &ver_buf->u[chroma_offset], chroma_bytes);
memcpy(&lcu->left_ref.v[y_min_in_lcu], &ver_buf->v[chroma_offset], chroma_bytes);
}
}
}
// Copy LCU pixels.
{
const videoframe_t * const frame = state->tile->frame;
int x_max = MIN(x + LCU_WIDTH, frame->width) - x;
int y_max = MIN(y + LCU_WIDTH, frame->height) - y;
int x_c = x / 2;
int y_c = y / 2;
int x_max_c = x_max / 2;
int y_max_c = y_max / 2;
uvg_pixel* source = NULL;
if (state->tile->frame->lmcs_aps->m_sliceReshapeInfo.sliceReshaperEnableFlag) {
source = frame->source_lmcs->y;
} else {
source = frame->source->y;
}
// Use LMCS pixels for luma if they are available, otherwise source_lmcs is mapped to normal source
uvg_pixels_blit(&source[x + y * frame->source->stride], lcu->ref.y,
x_max, y_max, frame->source->stride, LCU_WIDTH);
if (state->encoder_control->chroma_format != UVG_CSP_400) {
uvg_pixels_blit(&frame->source->u[x_c + y_c * frame->source->stride / 2], lcu->ref.u,
x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2);
uvg_pixels_blit(&frame->source->v[x_c + y_c * frame->source->stride / 2], lcu->ref.v,
x_max_c, y_max_c, frame->source->stride / 2, LCU_WIDTH / 2);
}
}
}
/**
* Copy CU and pixel data to it's place in picture datastructure.
*/
static void copy_lcu_to_cu_data(const encoder_state_t * const state, int x_px, int y_px, const lcu_t *lcu, enum
uvg_tree_type tree_type)
{
// Copy non-reference CUs to picture.
uvg_cu_array_copy_from_lcu(
tree_type != UVG_CHROMA_T ? state->tile->frame->cu_array : state->tile->frame->chroma_cu_array,
tree_type != UVG_CHROMA_T ? x_px : x_px / 2,
tree_type != UVG_CHROMA_T ? y_px : y_px / 2,
lcu,
tree_type);
// Copy pixels to picture.
{
videoframe_t * const pic = state->tile->frame;
const int pic_width = pic->width;
const int x_max = MIN(x_px + LCU_WIDTH, pic_width) - x_px;
const int y_max = MIN(y_px + LCU_WIDTH, pic->height) - y_px;
if(tree_type != UVG_CHROMA_T) {
uvg_pixels_blit(lcu->rec.y, &pic->rec->y[x_px + y_px * pic->rec->stride],
x_max, y_max, LCU_WIDTH, pic->rec->stride);
}
if (state->tile->frame->lmcs_aps->m_sliceReshapeInfo.sliceReshaperEnableFlag) {
uvg_pixels_blit(lcu->rec.y, &pic->rec_lmcs->y[x_px + y_px * pic->rec->stride],
x_max, y_max, LCU_WIDTH, pic->rec->stride);
}
if (state->encoder_control->chroma_format != UVG_CSP_400 && tree_type != UVG_LUMA_T) {
uvg_pixels_blit(lcu->rec.u, &pic->rec->u[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
uvg_pixels_blit(lcu->rec.v, &pic->rec->v[(x_px / 2) + (y_px / 2) * (pic->rec->stride / 2)],
x_max / 2, y_max / 2, LCU_WIDTH / 2, pic->rec->stride / 2);
}
}
}
/**
* Search LCU for modes.
* - Best mode gets copied to current picture.
*/
void uvg_search_lcu(encoder_state_t * const state, const int x, const int y, const yuv_t * const hor_buf, const yuv_t * const ver_buf, lcu_coeff_t *coeff)
{
memcpy(&state->search_cabac, &state->cabac, sizeof(cabac_data_t));
state->search_cabac.only_count = 1;
assert(x % LCU_WIDTH == 0);
assert(y % LCU_WIDTH == 0);
// Initialize the same starting state to every depth. The search process
// will use these as temporary storage for predictions before making
// a decision on which to use, and they get updated during the search
// process.
lcu_t work_tree[MAX_PU_DEPTH + 1];
init_lcu_t(state, x, y, &work_tree[0], hor_buf, ver_buf);
for (int depth = 1; depth <= MAX_PU_DEPTH; ++depth) {
work_tree[depth] = work_tree[0];
}
// If the ML depth prediction is enabled,
// generate the depth prediction interval
// for the current lcu
constraint_t* constr = state->constraint;
if (constr->ml_intra_depth_ctu) {
uvg_lcu_luma_depth_pred(constr->ml_intra_depth_ctu, work_tree[0].ref.y, state->qp);
}
int tree_type = state->frame->slicetype == UVG_SLICE_I
&& state->encoder_control->cfg.dual_tree ? UVG_LUMA_T : UVG_BOTH_T;
// Start search from depth 0.
double cost = search_cu(
state,
x,
y,
0,
work_tree,
tree_type);
// Save squared cost for rate control.
if(state->encoder_control->cfg.rc_algorithm == UVG_LAMBDA) {
uvg_get_lcu_stats(state, x / LCU_WIDTH, y / LCU_WIDTH)->weight = cost * cost;
}
// The best decisions through out the LCU got propagated back to depth 0,
// so copy those back to the frame.
copy_lcu_to_cu_data(state, x, y, &work_tree[0], tree_type);
// Copy coeffs to encoder state.
copy_coeffs(work_tree[0].coeff.y, coeff->y, LCU_WIDTH);
if(state->frame->slicetype == UVG_SLICE_I && state->encoder_control->cfg.dual_tree) {
cost = search_cu(
state,
x,
y,
0,
work_tree,
UVG_CHROMA_T);
if (state->encoder_control->cfg.rc_algorithm == UVG_LAMBDA) {
uvg_get_lcu_stats(state, x / LCU_WIDTH, y / LCU_WIDTH)->weight += cost * cost;
}
copy_lcu_to_cu_data(state, x, y, &work_tree[0], UVG_CHROMA_T);
}
copy_coeffs(work_tree[0].coeff.u, coeff->u, LCU_WIDTH_C);
copy_coeffs(work_tree[0].coeff.v, coeff->v, LCU_WIDTH_C);
if (state->encoder_control->cfg.jccr) {
copy_coeffs(work_tree[0].coeff.joint_uv, coeff->joint_uv, LCU_WIDTH_C);
}
}