uvg266/src/search.c
Ari Koivula c7ca3a6b44 Clarify parameter passing for hexagon_search.
Handling mv as a local struct instead of pointer had no performance impact,
but it makes the parameter passing clearer so I'm keeping it.
2013-10-18 17:45:42 +03:00

429 lines
14 KiB
C

/**
* \file
*
* \author Marko Viitanen ( fador@iki.fi ),
* Tampere University of Technology,
* Department of Pervasive Computing.
* \author Ari Koivula ( ari@koivu.la ),
* Tampere University of Technology,
* Department of Pervasive Computing.
*/
#include "search.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "bitstream.h"
#include "picture.h"
#include "intra.h"
#include "inter.h"
#include "filter.h"
#include "debug.h"
// Temporarily for debugging.
#define USE_INTRA_IN_P 0
//#define RENDER_CU encoder->frame==2
#define RENDER_CU 0
#define USE_CHROMA_IN_MV_SEARCH 0
#define IN_FRAME(x, y, width, height, block_width, block_height) \
((x) >= 0 && (y) >= 0 \
&& (x) + (block_width) <= (width) \
&& (y) + (block_height) <= (height))
typedef struct {
int x;
int y;
} vector2d;
/**
* This is used in the hexagon_search to select 3 points to search.
*
* The start of the hexagonal pattern has been repeated at the end so that
* the indices between 1-6 can be used as the start of a 3-point list of new
* points to search.
*
* 6 o-o 1 / 7
* / \
* 5 o 0 o 2 / 8
* \ /
* 4 o-o 3
*/
const vector2d large_hexbs[10] = {
{ 0, 0 },
{ 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 },
{ 1, -2 }, { 2, 0 }
};
/**
* This is used as the last step of the hexagon search.
*/
const vector2d small_hexbs[5] = {
{ 0, 0 },
{ -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 }
};
unsigned hexagon_search(unsigned depth,
picture *pic, picture *ref,
vector2d *orig, vector2d *mv_in_out)
{
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
int block_width = CU_WIDTH_FROM_DEPTH(depth);
unsigned best_cost = -1;
unsigned i;
unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs.
// Search the initial 7 points of the hexagon.
for (i = 0; i < 7; ++i) {
const vector2d *pattern = large_hexbs + i;
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
orig->x + mv.x + pattern->x, orig->y + mv.y + pattern->y,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
best_index = i;
}
}
// Try the 0,0 vector.
if (!(mv.x == 0 && mv.y == 0)) {
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
orig->x, orig->y,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
best_index = 0;
mv.x = 0;
mv.y = 0;
// Redo the search around the 0,0 point.
for (i = 1; i < 7; ++i) {
const vector2d *pattern = large_hexbs + i;
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
orig->x + pattern->x, orig->y + pattern->y,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
best_index = i;
}
}
}
}
// Iteratively search the 3 new points around the best match, until the best
// match is in the center.
while (best_index != 0) {
unsigned start; // Starting point of the 3 offsets to be searched.
if (best_index == 1) {
start = 6;
} else if (best_index == 8) {
start = 1;
} else {
start = best_index - 1;
}
// Move the center to the best match.
mv.x += large_hexbs[best_index].x;
mv.y += large_hexbs[best_index].y;
best_index = 0;
// Iterate through the next 3 points.
for (i = 0; i < 3; ++i) {
const vector2d *offset = large_hexbs + start + i;
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
orig->x + mv.x + offset->x,
orig->y + mv.y + offset->y,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
best_index = start + i;
}
++offset;
}
}
// Do the final step of the search with a small pattern.
mv.x += large_hexbs[best_index].x;
mv.y += large_hexbs[best_index].y;
best_index = 0;
for (i = 1; i < 5; ++i) {
const vector2d *offset = small_hexbs + i;
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
orig->x + mv.x + offset->x, orig->y + mv.y + offset->y,
block_width, block_width);
if (cost > 0 && cost < best_cost) {
best_cost = cost;
best_index = i;
}
}
mv.x += small_hexbs[best_index].x;
mv.y += small_hexbs[best_index].y;
mv_in_out->x = mv.x << 2;
mv_in_out->y = mv.y << 2;
return best_cost;
}
/**
* \brief
*/
void search_buildReferenceBorder(picture *pic, int32_t x_ctb, int32_t y_ctb,
int16_t outwidth, int16_t *dst,
int32_t dststride, int8_t chroma)
{
int32_t left_col; // left column iterator
int16_t val; // variable to store extrapolated value
int32_t i; // index iterator
int16_t dc_val = 1 << (g_bitdepth - 1); // default predictor value
int32_t top_row; // top row iterator
int32_t src_width = (pic->width >> (chroma ? 1 : 0)); // source picture width
int32_t src_height = (pic->height >> (chroma ? 1 : 0)); // source picture height
pixel *src_pic = (!chroma) ? pic->y_data : ((chroma == 1) ? pic->u_data : pic->v_data); // input picture pointer
int16_t scu_width = LCU_WIDTH >> (MAX_DEPTH + (chroma ? 1 : 0)); // Smallest Coding Unit width
pixel *src_shifted = &src_pic[x_ctb * scu_width + (y_ctb * scu_width) * src_width]; // input picture pointer shifted to start from the left-top corner of the current block
int32_t width_in_scu = pic->width_in_lcu << MAX_DEPTH; // picture width in SCU
// Fill left column
if (x_ctb) {
// Loop SCU's
for (left_col = 1; left_col < outwidth / scu_width; left_col++) {
// If over the picture height or block not yet searched, stop
if ((y_ctb + left_col) * scu_width >= src_height
|| pic->cu_array[MAX_DEPTH][x_ctb - 1 + (y_ctb + left_col) * width_in_scu].type == CU_NOTSET) {
break;
}
}
// Copy the pixels to output
for (i = 0; i < left_col * scu_width - 1; i++) {
dst[(i + 1) * dststride] = src_shifted[i * src_width - 1];
}
// if the loop was not completed, extrapolate the last pixel pushed to output
if (left_col != outwidth / scu_width) {
val = src_shifted[(left_col * scu_width - 1) * src_width - 1];
for (i = (left_col * scu_width); i < outwidth; i++) {
dst[i * dststride] = val;
}
}
} else { // If left column not available, copy from toprow or use the default predictor
val = y_ctb ? src_shifted[-src_width] : dc_val;
for (i = 0; i < outwidth; i++) {
dst[i * dststride] = val;
}
}
if (y_ctb) {
// Loop top SCU's
for (top_row = 1; top_row < outwidth / scu_width; top_row++) {
if ((x_ctb + top_row) * scu_width >= src_width
|| pic->cu_array[MAX_DEPTH][x_ctb + top_row + (y_ctb - 1) * width_in_scu].type
== CU_NOTSET) {
break;
}
}
for (i = 0; i < top_row * scu_width - 1; i++) {
dst[i + 1] = src_shifted[i - src_width];
}
if (top_row != outwidth / scu_width) {
val = src_shifted[(top_row * scu_width) - src_width - 1];
for (i = (top_row * scu_width); i < outwidth; i++) {
dst[i] = val;
}
}
} else {
val = x_ctb ? src_shifted[-1] : dc_val;
for (i = 1; i < outwidth; i++) {
dst[i] = val;
}
}
// Topleft corner
dst[0] = (x_ctb && y_ctb) ? src_shifted[-src_width - 1] : dst[dststride];
}
/**
* \brief
*/
void search_tree(encoder_control *encoder,
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
{
uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
uint8_t border = border_x | border_y; // are we in any border CU
picture *cur_pic = encoder->in.cur_pic;
cu_info *cur_cu = &cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
cur_cu->intra.cost = 0xffffffff;
cur_cu->inter.cost = 0xffffffff;
// Force split on border
if (depth != MAX_DEPTH) {
if (border) {
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
search_tree(encoder, x_ctb, y_ctb, depth + 1);
if (!border_x || border_split_x) {
search_tree(encoder, x_ctb + change, y_ctb, depth + 1);
}
if (!border_y || border_split_y) {
search_tree(encoder, x_ctb, y_ctb + change, depth + 1);
}
if (!border || (border_split_x && border_split_y)) {
search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1);
}
return;
}
}
// INTER SEARCH
if (cur_pic->slicetype != SLICE_I
&& depth >= MIN_INTER_SEARCH_DEPTH && depth <= MAX_INTER_SEARCH_DEPTH) {
picture *ref_pic = encoder->ref->pics[0];
unsigned width_in_scu = NO_SCU_IN_LCU(ref_pic->width_in_lcu);
cu_info *ref_cu = &ref_pic->cu_array[MAX_DEPTH][y_ctb * width_in_scu + x_ctb];
vector2d orig, mv;
orig.x = x_ctb * CU_MIN_SIZE_PIXELS;
orig.y = y_ctb * CU_MIN_SIZE_PIXELS;
mv.x = 0;
mv.y = 0;
if (ref_cu->type == CU_INTER) {
mv.x = ref_cu->inter.mv[0];
mv.y = ref_cu->inter.mv[1];
}
cur_cu->inter.cost = hexagon_search(depth, cur_pic, ref_pic, &orig, &mv);
cur_cu->inter.mv_dir = 1;
cur_cu->inter.mv[0] = mv.x;
cur_cu->inter.mv[1] = mv.y;
}
// INTRA SEARCH
if (depth >= MIN_INTRA_SEARCH_DEPTH && depth <= MAX_INTRA_SEARCH_DEPTH
&& (encoder->in.cur_pic->slicetype == SLICE_I || USE_INTRA_IN_P)) {
int x = 0, y = 0;
pixel *base = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
uint32_t width = LCU_WIDTH >> depth;
// INTRAPREDICTION
int16_t pred[LCU_WIDTH * LCU_WIDTH + 1];
int16_t rec[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8)];
int16_t *recShift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1];
//int16_t *pred = (int16_t*)malloc(LCU_WIDTH*LCU_WIDTH*sizeof(int16_t));
//int16_t *rec = (int16_t*)malloc((LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)*sizeof(int16_t));
// Build reconstructed block to use in prediction with extrapolated borders
search_buildReferenceBorder(encoder->in.cur_pic, x_ctb, y_ctb,
(LCU_WIDTH >> (depth)) * 2 + 8, rec, (LCU_WIDTH >> (depth)) * 2 + 8, 0);
cur_cu->intra.mode = (uint8_t) intra_prediction(encoder->in.cur_pic->y_data,
encoder->in.width, recShift, (LCU_WIDTH >> (depth)) * 2 + 8,
x_ctb * (LCU_WIDTH >> (MAX_DEPTH)), y_ctb * (LCU_WIDTH >> (MAX_DEPTH)),
width, pred, width, &cur_cu->intra.cost);
//free(pred);
//free(rec);
}
// Split and search to max_depth
if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) {
// Split blocks and remember to change x and y block positions
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
search_tree(encoder, x_ctb, y_ctb, depth + 1);
search_tree(encoder, x_ctb + change, y_ctb, depth + 1);
search_tree(encoder, x_ctb, y_ctb + change, depth + 1);
search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1);
}
}
/**
* \brief
*/
uint32_t search_best_mode(encoder_control *encoder,
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
{
cu_info *cur_cu = &encoder->in.cur_pic->cu_array[depth]
[x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
uint32_t best_intra_cost = cur_cu->intra.cost;
uint32_t best_inter_cost = cur_cu->inter.cost;
uint32_t lambda_cost = (4 * g_lambda_cost[encoder->QP]) << 4; //<<5; //TODO: Correct cost calculation
if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) {
uint32_t cost = lambda_cost;
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
cost = search_best_mode(encoder, x_ctb, y_ctb, depth + 1);
cost += search_best_mode(encoder, x_ctb + change, y_ctb, depth + 1);
cost += search_best_mode(encoder, x_ctb, y_ctb + change, depth + 1);
cost += search_best_mode(encoder, x_ctb + change, y_ctb + change, depth + 1);
if (cost < best_intra_cost && cost < best_inter_cost)
{
// Better value was found at a lower level.
return cost;
}
}
// If search hasn't been peformed at all for this block, the cost will be
// max value, so it is safe to just compare costs. It just has to be made
// sure that no value overflows.
if (best_inter_cost <= best_intra_cost) {
inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu);
return best_inter_cost;
} else {
intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth,
cur_cu->intra.mode);
return best_intra_cost;
}
}
/**
* \brief
*/
void search_slice_data(encoder_control *encoder)
{
int16_t x_lcu, y_lcu;
FILE *fp = 0, *fp2 = 0;
if (RENDER_CU) {
fp = open_cu_file("cu_search.html");
fp2 = open_cu_file("cu_best.html");
}
// Loop through every LCU in the slice
for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) {
for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) {
uint8_t depth = 0;
// Recursive function for looping through all the sub-blocks
search_tree(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
if (RENDER_CU) {
render_cu_file(encoder, encoder->in.cur_pic, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp);
}
// Decide actual coding modes
search_best_mode(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
if (RENDER_CU) {
render_cu_file(encoder, encoder->in.cur_pic, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp2);
}
}
}
if (RENDER_CU && fp) {
close_cu_file(fp);
fp = 0;
}
if (RENDER_CU && fp2) {
close_cu_file(fp2);
fp2 = 0;
}
}