uvg266/src/strategies/avx2/sao-avx2.c

906 lines
40 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "strategies/avx2/sao-avx2.h"
#if COMPILE_INTEL_AVX2
#include "kvazaar.h"
#if KVZ_BIT_DEPTH == 8
#include <immintrin.h>
#include <nmmintrin.h>
// Use a couple generic functions from here as a worst-case fallback
#include "strategies/generic/sao_shared_generics.h"
#include "strategies/avx2/avx2_common_functions.h"
#include "strategies/missing-intel-intrinsics.h"
#include "cu.h"
#include "encoder.h"
#include "encoderstate.h"
#include "sao.h"
#include "strategyselector.h"
// These optimizations are based heavily on sao-generic.c.
// Might be useful to check that if (when) this file
// is difficult to understand.
// Do the SIGN3 operation for the difference a-b
static INLINE __m256i sign3_diff_epu8(const __m256i a, const __m256i b)
{
// Subtract 0x80 from unsigneds to compare them as signed
const __m256i epu2epi = _mm256_set1_epi8 (0x80);
const __m256i ones = _mm256_set1_epi8 (0x01);
__m256i a_signed = _mm256_sub_epi8 (a, epu2epi);
__m256i b_signed = _mm256_sub_epi8 (b, epu2epi);
__m256i diff = _mm256_subs_epi8 (a_signed, b_signed);
return _mm256_sign_epi8 (ones, diff);
}
// Mapping of edge_idx values to eo-classes, 32x8b at once
static __m256i FIX_W32 calc_eo_cat(const __m256i a,
const __m256i b,
const __m256i c)
{
const __m256i twos = _mm256_set1_epi8 (0x02);
const __m256i idx_to_cat = _mm256_setr_epi64x(0x0403000201, 0,
0x0403000201, 0);
__m256i c_a_sign = sign3_diff_epu8 (c, a);
__m256i c_b_sign = sign3_diff_epu8 (c, b);
__m256i signsum = _mm256_add_epi8 (c_a_sign, c_b_sign);
__m256i eo_idx = _mm256_add_epi8 (signsum, twos);
return _mm256_shuffle_epi8(idx_to_cat, eo_idx);
}
static INLINE __m256i srli_epi8(const __m256i v,
const uint32_t shift)
{
const uint8_t hibit_mask = 0xff >> shift;
const __m256i hibit_mask_256 = _mm256_set1_epi8(hibit_mask);
__m256i v_shifted = _mm256_srli_epi32(v, shift);
__m256i v_masked = _mm256_and_si256 (v_shifted, hibit_mask_256);
return v_masked;
}
static INLINE void cvt_epu8_epi16(const __m256i v,
__m256i *res_lo,
__m256i *res_hi)
{
const __m256i zero = _mm256_setzero_si256();
*res_lo = _mm256_unpacklo_epi8(v, zero);
*res_hi = _mm256_unpackhi_epi8(v, zero);
}
static INLINE void cvt_epi8_epi16(const __m256i v,
__m256i *res_lo,
__m256i *res_hi)
{
const __m256i zero = _mm256_setzero_si256();
__m256i signs = _mm256_cmpgt_epi8 (zero, v);
*res_lo = _mm256_unpacklo_epi8(v, signs);
*res_hi = _mm256_unpackhi_epi8(v, signs);
}
static INLINE void diff_epi8_epi16(const __m256i a,
const __m256i b,
__m256i *res_lo,
__m256i *res_hi)
{
const __m256i invmask = _mm256_set1_epi16(0xff01);
__m256i composite_lo = _mm256_unpacklo_epi8(a, b);
__m256i composite_hi = _mm256_unpackhi_epi8(a, b);
*res_lo = _mm256_maddubs_epi16(composite_lo, invmask);
*res_hi = _mm256_maddubs_epi16(composite_hi, invmask);
}
// Convert a byte-addressed mask for VPSHUFB into two word-addressed ones, for
// example:
// 7 3 6 2 5 1 4 0 => e f 6 7 c d 4 5 a b 2 3 8 9 0 1
static INLINE void cvt_shufmask_epi8_epi16(const __m256i v,
__m256i *res_lo,
__m256i *res_hi)
{
const __m256i zero = _mm256_setzero_si256();
const __m256i ones = _mm256_set1_epi8(1);
// There's no 8-bit shift, so highest bit could bleed into neighboring byte
// if set. To avoid it, reset all sign bits with max. The only valid input
// values for v are [0, 7] anyway and invalid places should be masked out by
// caller, so it doesn't matter that we turn negative bytes into garbage.
__m256i v_nonnegs = _mm256_max_epi8 (zero, v);
__m256i v_lobytes = _mm256_slli_epi32(v_nonnegs, 1);
__m256i v_hibytes = _mm256_add_epi8 (v_lobytes, ones);
*res_lo = _mm256_unpacklo_epi8(v_lobytes, v_hibytes);
*res_hi = _mm256_unpackhi_epi8(v_lobytes, v_hibytes);
}
// Check if all 4 dwords of v are in [-128, 127] and can be truncated to
// 8 bits each. Returns -1 if everything is fine
static INLINE uint16_t epi32v_fits_in_epi8s(const __m128i v)
{
// Compare most significant 25 bits of SAO bands to the sign bit to assert
// that the i32's are between -128 and 127 (only comparing 24 would fail to
// detect values of 128...255)
__m128i v_ms25b = _mm_srai_epi32 (v, 7);
__m128i v_signs = _mm_srai_epi32 (v, 31);
__m128i ok_i32s = _mm_cmpeq_epi32 (v_ms25b, v_signs);
return _mm_movemask_epi8(ok_i32s);
}
static INLINE __m128i truncate_epi32_epi8(const __m128i v)
{
// LSBs of each dword, the values values must fit in 8 bits anyway for
// what this intended for (use epi32v_fits_in_epi8s to check if needed)
const __m128i trunc_shufmask = _mm_set1_epi32 (0x0c080400);
__m128i sbs_8 = _mm_shuffle_epi8(v, trunc_shufmask);
return sbs_8;
}
// Read 0-3 bytes (pixels) into uint32_t
static INLINE uint32_t load_border_bytes(const uint8_t *buf,
const int32_t start_pos,
const int32_t width_rest)
{
uint32_t last_dword = 0;
for (int32_t i = 0; i < width_rest; i++) {
uint8_t currb = buf[start_pos + i];
uint32_t currd = ((uint32_t)currb) << (i * 8);
last_dword |= currd;
}
return last_dword;
}
static INLINE void store_border_bytes( uint8_t *buf,
const uint32_t start_pos,
const int32_t width_rest,
uint32_t data)
{
for (uint32_t i = 0; i < width_rest; i++) {
uint8_t currb = data & 0xff;
buf[start_pos + i] = currb;
data >>= 8;
}
}
// Mask all inexistent bytes to 0xFF for functions that count particular byte
// values, so they won't count anywhere
static INLINE __m256i gen_badbyte_mask(const __m256i db4_mask,
const int32_t width_rest)
{
const __m256i zero = _mm256_setzero_si256();
uint32_t last_badbytes = 0xffffffff << (width_rest << 3);
__m256i badbyte_mask = _mm256_cmpeq_epi8 (db4_mask, zero);
return _mm256_insert_epi32(badbyte_mask, last_badbytes, 7);
}
// Ok, so the broadcast si128->si256 instruction only works with a memory
// source operand..
static INLINE __m256i broadcast_xmm2ymm(const __m128i v)
{
__m256i res = _mm256_castsi128_si256 (v);
return _mm256_inserti128_si256(res, v, 1);
}
// Used for edge_ddistortion and band_ddistortion
static __m256i FIX_W32 calc_diff_off_delta(const __m256i diff_lo,
const __m256i diff_hi,
const __m256i offsets,
const __m256i orig)
{
const __m256i zero = _mm256_setzero_si256();
const __m256i negate_hiword = _mm256_set1_epi32(0xffff0001);
__m256i orig_lo, orig_hi, offsets_lo, offsets_hi;
cvt_epu8_epi16(orig, &orig_lo, &orig_hi);
cvt_epi8_epi16(offsets, &offsets_lo, &offsets_hi);
__m256i offsets_0_lo = _mm256_cmpeq_epi16 (offsets_lo, zero);
__m256i offsets_0_hi = _mm256_cmpeq_epi16 (offsets_hi, zero);
__m256i delta_lo = _mm256_sub_epi16 (diff_lo, offsets_lo);
__m256i delta_hi = _mm256_sub_epi16 (diff_hi, offsets_hi);
__m256i diff_lo_m = _mm256_andnot_si256 (offsets_0_lo, diff_lo);
__m256i diff_hi_m = _mm256_andnot_si256 (offsets_0_hi, diff_hi);
__m256i delta_lo_m = _mm256_andnot_si256 (offsets_0_lo, delta_lo);
__m256i delta_hi_m = _mm256_andnot_si256 (offsets_0_hi, delta_hi);
__m256i dd0_lo = _mm256_unpacklo_epi16(delta_lo_m, diff_lo_m);
__m256i dd0_hi = _mm256_unpackhi_epi16(delta_lo_m, diff_lo_m);
__m256i dd1_lo = _mm256_unpacklo_epi16(delta_hi_m, diff_hi_m);
__m256i dd1_hi = _mm256_unpackhi_epi16(delta_hi_m, diff_hi_m);
__m256i dd0_lo_n = _mm256_sign_epi16 (dd0_lo, negate_hiword);
__m256i dd0_hi_n = _mm256_sign_epi16 (dd0_hi, negate_hiword);
__m256i dd1_lo_n = _mm256_sign_epi16 (dd1_lo, negate_hiword);
__m256i dd1_hi_n = _mm256_sign_epi16 (dd1_hi, negate_hiword);
__m256i sum0_lo = _mm256_madd_epi16 (dd0_lo, dd0_lo_n);
__m256i sum0_hi = _mm256_madd_epi16 (dd0_hi, dd0_hi_n);
__m256i sum1_lo = _mm256_madd_epi16 (dd1_lo, dd1_lo_n);
__m256i sum1_hi = _mm256_madd_epi16 (dd1_hi, dd1_hi_n);
__m256i sum0 = _mm256_add_epi32 (sum0_lo, sum0_hi);
__m256i sum1 = _mm256_add_epi32 (sum1_lo, sum1_hi);
return _mm256_add_epi32 (sum0, sum1);
}
static INLINE __m256i FIX_W32 do_one_edge_ymm(const __m256i a,
const __m256i b,
const __m256i c,
const __m256i orig,
const __m256i badbyte_mask,
const __m256i offsets_256)
{
__m256i eo_cat = calc_eo_cat(a, b, c);
eo_cat = _mm256_or_si256 (eo_cat, badbyte_mask);
__m256i offset = _mm256_shuffle_epi8(offsets_256, eo_cat);
__m256i offset_lo, offset_hi;
cvt_epi8_epi16(offset, &offset_lo, &offset_hi);
__m256i diff_lo, diff_hi;
diff_epi8_epi16(orig, c, &diff_lo, &diff_hi);
return calc_diff_off_delta(diff_lo, diff_hi, offset, orig);
}
static int32_t sao_edge_ddistortion_avx2(const uint8_t *orig_data,
const uint8_t *rec_data,
int32_t block_width,
int32_t block_height,
int32_t eo_class,
const int32_t offsets[NUM_SAO_EDGE_CATEGORIES])
{
int32_t y, x;
vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1];
int32_t scan_width = block_width - 2;
uint32_t width_db32 = scan_width & ~31;
uint32_t width_db4 = scan_width & ~3;
uint32_t width_rest = scan_width & 3;
// Form the load&store mask
const __m256i wdb4_256 = _mm256_set1_epi32 (width_db4 & 31);
const __m256i indexes = _mm256_setr_epi32 (3, 7, 11, 15, 19, 23, 27, 31);
const __m256i db4_mask = _mm256_cmpgt_epi32(wdb4_256, indexes);
const __m256i zero = _mm256_setzero_si256();
__m128i offsets03 = _mm_loadu_si128((const __m128i *)offsets);
__m128i offsets4 = _mm_cvtsi32_si128(offsets[4]);
uint16_t offsets_ok = epi32v_fits_in_epi8s(offsets03) &
epi32v_fits_in_epi8s(offsets4);
assert(NUM_SAO_EDGE_CATEGORIES == 5);
if (offsets_ok != 0xffff) {
return sao_edge_ddistortion_generic(orig_data,
rec_data,
block_width,
block_height,
eo_class,
offsets);
}
__m128i offsets03_8b = truncate_epi32_epi8(offsets03);
__m128i offsets4_8b = truncate_epi32_epi8(offsets4);
__m128i offsets_8b = _mm_unpacklo_epi32 (offsets03_8b, offsets4_8b);
__m256i offsets_256 = broadcast_xmm2ymm (offsets_8b);
__m256i sum = _mm256_setzero_si256();
for (y = 1; y < block_height - 1; y++) {
for (x = 1; x < width_db32 + 1; x += 32) {
uint32_t c_pos = y * block_width + x;
uint32_t a_pos = (y + a_ofs.y) * block_width + x + a_ofs.x;
uint32_t b_pos = (y + b_ofs.y) * block_width + x + b_ofs.x;
__m256i a = _mm256_loadu_si256((const __m256i *)(rec_data + a_pos));
__m256i b = _mm256_loadu_si256((const __m256i *)(rec_data + b_pos));
__m256i c = _mm256_loadu_si256((const __m256i *)(rec_data + c_pos));
__m256i orig = _mm256_loadu_si256((const __m256i *)(orig_data + c_pos));
__m256i curr = do_one_edge_ymm(a, b, c, orig, zero, offsets_256);
sum = _mm256_add_epi32(sum, curr);
}
if (scan_width > width_db32) {
const uint32_t curr_cpos = y * block_width + x;
const uint32_t rest_cpos = y * block_width + width_db4 + 1;
const int32_t curr_apos = (y + a_ofs.y) * block_width + x + a_ofs.x;
const int32_t rest_apos = (y + a_ofs.y) * block_width + width_db4 + a_ofs.x + 1;
const int32_t curr_bpos = (y + b_ofs.y) * block_width + x + b_ofs.x;
const int32_t rest_bpos = (y + b_ofs.y) * block_width + width_db4 + b_ofs.x + 1;
// Same trick to read a narrow line as there is in the band SAO routine
uint32_t a_last = load_border_bytes(rec_data, rest_apos, width_rest);
uint32_t b_last = load_border_bytes(rec_data, rest_bpos, width_rest);
uint32_t c_last = load_border_bytes(rec_data, rest_cpos, width_rest);
uint32_t orig_last = load_border_bytes(orig_data, rest_cpos, width_rest);
const int32_t *a_ptr = (const int32_t *)(rec_data + curr_apos);
const int32_t *b_ptr = (const int32_t *)(rec_data + curr_bpos);
const int32_t *c_ptr = (const int32_t *)(rec_data + curr_cpos);
const int32_t *orig_ptr = (const int32_t *)(orig_data + curr_cpos);
__m256i a = _mm256_maskload_epi32(a_ptr, db4_mask);
__m256i b = _mm256_maskload_epi32(b_ptr, db4_mask);
__m256i c = _mm256_maskload_epi32(c_ptr, db4_mask);
__m256i orig = _mm256_maskload_epi32(orig_ptr, db4_mask);
a = _mm256_insert_epi32 (a, a_last, 7);
b = _mm256_insert_epi32 (b, b_last, 7);
c = _mm256_insert_epi32 (c, c_last, 7);
orig = _mm256_insert_epi32 (orig, orig_last, 7);
// Mask all unused bytes to 0xFF, so they won't count anywhere
__m256i badbyte_mask = gen_badbyte_mask(db4_mask, width_rest);
__m256i curr = do_one_edge_ymm(a, b, c, orig, badbyte_mask, offsets_256);
sum = _mm256_add_epi32(sum, curr);
}
}
return hsum_8x32b(sum);
}
static void FIX_W32 calc_edge_dir_one_ymm(const __m256i a,
const __m256i b,
const __m256i c,
const __m256i orig,
const __m256i badbyte_mask,
__m256i *diff_accum,
int32_t *hit_cnt)
{
const __m256i ones_16 = _mm256_set1_epi16(1);
__m256i eo_cat = calc_eo_cat (a, b, c);
eo_cat = _mm256_or_si256 (eo_cat, badbyte_mask);
__m256i diffs_lo, diffs_hi;
diff_epi8_epi16(orig, c, &diffs_lo, &diffs_hi);
for (uint32_t i = 0; i < 5; i++) {
__m256i curr_id = _mm256_set1_epi8 (i);
__m256i eoc_mask = _mm256_cmpeq_epi8 (eo_cat, curr_id);
uint32_t eoc_bits = _mm256_movemask_epi8(eoc_mask);
uint32_t eoc_hits = _mm_popcnt_u32 (eoc_bits);
__m256i eoc_mask_lo = _mm256_unpacklo_epi8(eoc_mask, eoc_mask);
__m256i eoc_mask_hi = _mm256_unpackhi_epi8(eoc_mask, eoc_mask);
__m256i eoc_diffs_lo = _mm256_and_si256 (diffs_lo, eoc_mask_lo);
__m256i eoc_diffs_hi = _mm256_and_si256 (diffs_hi, eoc_mask_hi);
__m256i eoc_diffs_16 = _mm256_add_epi16 (eoc_diffs_lo, eoc_diffs_hi);
__m256i eoc_diffs_32 = _mm256_madd_epi16 (eoc_diffs_16, ones_16);
diff_accum[i] = _mm256_add_epi32 (diff_accum[i], eoc_diffs_32);
hit_cnt[i] += eoc_hits;
}
}
static void calc_sao_edge_dir_avx2(const uint8_t *orig_data,
const uint8_t *rec_data,
int32_t eo_class,
int32_t block_width,
int32_t block_height,
int32_t cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES])
{
vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1];
int32_t *diff_sum = cat_sum_cnt[0];
int32_t *hit_cnt = cat_sum_cnt[1];
int32_t scan_width = block_width - 2;
int32_t width_db32 = scan_width & ~31;
int32_t width_db4 = scan_width & ~3;
int32_t width_rest = scan_width & 3;
const __m256i zero = _mm256_setzero_si256();
// Form the load&store mask
const __m256i wdb4_256 = _mm256_set1_epi32 (width_db4 & 31);
const __m256i indexes = _mm256_setr_epi32 (3, 7, 11, 15, 19, 23, 27, 31);
const __m256i db4_mask = _mm256_cmpgt_epi32(wdb4_256, indexes);
__m256i diff_accum[5] = { _mm256_setzero_si256() };
int32_t y, x;
for (y = 1; y < block_height - 1; y++) {
for (x = 1; x < width_db32 + 1; x += 32) {
const uint32_t a_off = (y + a_ofs.y) * block_width + x + a_ofs.x;
const uint32_t b_off = (y + b_ofs.y) * block_width + x + b_ofs.x;
const uint32_t c_off = y * block_width + x;
__m256i a = _mm256_loadu_si256((const __m256i *)(rec_data + a_off));
__m256i b = _mm256_loadu_si256((const __m256i *)(rec_data + b_off));
__m256i c = _mm256_loadu_si256((const __m256i *)(rec_data + c_off));
__m256i orig = _mm256_loadu_si256((const __m256i *)(orig_data + c_off));
calc_edge_dir_one_ymm(a, b, c, orig, zero, diff_accum, hit_cnt);
}
if (scan_width > width_db32) {
const uint32_t curr_cpos = y * block_width + x;
const uint32_t rest_cpos = y * block_width + width_db4 + 1;
const int32_t curr_apos = (y + a_ofs.y) * block_width + x + a_ofs.x;
const int32_t rest_apos = (y + a_ofs.y) * block_width + width_db4 + a_ofs.x + 1;
const int32_t curr_bpos = (y + b_ofs.y) * block_width + x + b_ofs.x;
const int32_t rest_bpos = (y + b_ofs.y) * block_width + width_db4 + b_ofs.x + 1;
uint32_t a_last = load_border_bytes(rec_data, rest_apos, width_rest);
uint32_t b_last = load_border_bytes(rec_data, rest_bpos, width_rest);
uint32_t c_last = load_border_bytes(rec_data, rest_cpos, width_rest);
uint32_t orig_last = load_border_bytes(orig_data, rest_cpos, width_rest);
const int32_t *a_ptr = (const int32_t *)(rec_data + curr_apos);
const int32_t *b_ptr = (const int32_t *)(rec_data + curr_bpos);
const int32_t *c_ptr = (const int32_t *)(rec_data + curr_cpos);
const int32_t *orig_ptr = (const int32_t *)(orig_data + curr_cpos);
__m256i a = _mm256_maskload_epi32(a_ptr, db4_mask);
__m256i b = _mm256_maskload_epi32(b_ptr, db4_mask);
__m256i c = _mm256_maskload_epi32(c_ptr, db4_mask);
__m256i orig = _mm256_maskload_epi32(orig_ptr, db4_mask);
a = _mm256_insert_epi32 (a, a_last, 7);
b = _mm256_insert_epi32 (b, b_last, 7);
c = _mm256_insert_epi32 (c, c_last, 7);
orig = _mm256_insert_epi32 (orig, orig_last, 7);
__m256i badbyte_mask = gen_badbyte_mask(db4_mask, width_rest);
calc_edge_dir_one_ymm(a, b, c, orig, badbyte_mask, diff_accum, hit_cnt);
}
}
for (uint32_t i = 0; i < 5; i++) {
int32_t sum = hsum_8x32b(diff_accum[i]);
diff_sum[i] += sum;
}
}
/*
* Calculate an array of intensity correlations for each intensity value.
* Return array as 16 YMM vectors, each containing 2x16 unsigned bytes
* (to ease array lookup from YMMs using the shuffle trick, the low and
* high lanes of each vector are duplicates). Have fun scaling this to
* 16-bit picture data!
*/
static void calc_sao_offset_array_avx2(const encoder_control_t *encoder,
const sao_info_t *sao,
__m256i *offsets,
color_t color_i)
{
const uint32_t band_pos = (color_i == COLOR_V) ? 1 : 0;
const int32_t cur_bp = sao->band_position[band_pos];
const __m256i zero = _mm256_setzero_si256();
const __m256i threes = _mm256_set1_epi8 ( 3);
const __m256i band_pos_v = _mm256_set1_epi8 (band_pos << 2);
const __m256i cur_bp_v = _mm256_set1_epi8 (cur_bp);
const __m256i val_incr = _mm256_set1_epi8 (16);
const __m256i band_incr = _mm256_set1_epi8 ( 2);
__m256i vals = _mm256_setr_epi8 ( 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15);
__m256i bands = _mm256_setr_epi32 (0, 0, 0x01010101, 0x01010101,
0, 0, 0x01010101, 0x01010101);
// We'll only ever address SAO offsets 1, 2, 3, 4, 6, 7, 8, 9, so only load
// them and truncate into signed 16 bits (anything out of that range will
// anyway saturate anything they're used to do)
__m128i sao_offs_lo = _mm_loadu_si128((const __m128i *)(sao->offsets + 1));
__m128i sao_offs_hi = _mm_loadu_si128((const __m128i *)(sao->offsets + 6));
__m128i sao_offs_xmm = _mm_packs_epi32 (sao_offs_lo, sao_offs_hi);
__m256i sao_offs = broadcast_xmm2ymm(sao_offs_xmm);
for (uint32_t i = 0; i < 16; i++) {
// bands will always be in [0, 31], and cur_bp in [0, 27], so no overflow
// can occur
__m256i band_m_bp = _mm256_sub_epi8 (bands, cur_bp_v);
// If (x & ~3) != 0 for any signed x, then x < 0 or x > 3
__m256i bmbp_bads = _mm256_andnot_si256(threes, band_m_bp);
__m256i in_band = _mm256_cmpeq_epi8 (zero, bmbp_bads);
__m256i offset_id = _mm256_add_epi8 (band_m_bp, band_pos_v);
__m256i val_lo, val_hi;
cvt_epu8_epi16(vals, &val_lo, &val_hi);
__m256i offid_lo, offid_hi;
cvt_shufmask_epi8_epi16(offset_id, &offid_lo, &offid_hi);
__m256i offs_lo = _mm256_shuffle_epi8(sao_offs, offid_lo);
__m256i offs_hi = _mm256_shuffle_epi8(sao_offs, offid_hi);
__m256i sums_lo = _mm256_adds_epi16 (val_lo, offs_lo);
__m256i sums_hi = _mm256_adds_epi16 (val_hi, offs_hi);
sums_lo = _mm256_max_epi16 (sums_lo, zero);
sums_hi = _mm256_max_epi16 (sums_hi, zero);
__m256i offs = _mm256_packus_epi16(sums_lo, sums_hi);
offsets[i] = _mm256_blendv_epi8 (vals, offs, in_band);
vals = _mm256_add_epi8 (vals, val_incr);
bands = _mm256_add_epi8 (bands, band_incr);
}
}
static __m256i lookup_color_band_ymm(const __m256i curr_row,
const __m256i *offsets)
{
const __m256i select_nibble = _mm256_set1_epi8 (0x0f);
const __m256i lo_nibbles = _mm256_and_si256 (select_nibble, curr_row);
const __m256i hi_nibbles = _mm256_andnot_si256(select_nibble, curr_row);
// Loop through the offset vectors, the 0xi'th one always holding
// offsets 0xi0...0xif. Use shuffle to do a lookup on the current
// offset vector, then check which pixels actually should be looked
// up from this vector (ie. whether their values are 0xi0...0xif) and
// mask out any but correct ones.
__m256i result_row = _mm256_setzero_si256();
for (uint8_t i = 0; i < 16; i += 4) {
__m256i curr_hinib0 = _mm256_set1_epi8 ((i + 0) << 4);
__m256i curr_hinib1 = _mm256_set1_epi8 ((i + 1) << 4);
__m256i curr_hinib2 = _mm256_set1_epi8 ((i + 2) << 4);
__m256i curr_hinib3 = _mm256_set1_epi8 ((i + 3) << 4);
__m256i hinib_select0 = _mm256_cmpeq_epi8 (curr_hinib0, hi_nibbles);
__m256i hinib_select1 = _mm256_cmpeq_epi8 (curr_hinib1, hi_nibbles);
__m256i hinib_select2 = _mm256_cmpeq_epi8 (curr_hinib2, hi_nibbles);
__m256i hinib_select3 = _mm256_cmpeq_epi8 (curr_hinib3, hi_nibbles);
__m256i lonib_lookup0 = _mm256_shuffle_epi8(offsets[i + 0], lo_nibbles);
__m256i lonib_lookup1 = _mm256_shuffle_epi8(offsets[i + 1], lo_nibbles);
__m256i lonib_lookup2 = _mm256_shuffle_epi8(offsets[i + 2], lo_nibbles);
__m256i lonib_lookup3 = _mm256_shuffle_epi8(offsets[i + 3], lo_nibbles);
__m256i lookup_mskd0 = _mm256_and_si256 (hinib_select0, lonib_lookup0);
__m256i lookup_mskd1 = _mm256_and_si256 (hinib_select1, lonib_lookup1);
__m256i lookup_mskd2 = _mm256_and_si256 (hinib_select2, lonib_lookup2);
__m256i lookup_mskd3 = _mm256_and_si256 (hinib_select3, lonib_lookup3);
__m256i lookup_mskd01 = _mm256_or_si256 (lookup_mskd0, lookup_mskd1);
__m256i lookup_mskd23 = _mm256_or_si256 (lookup_mskd2, lookup_mskd3);
__m256i lookup_res = _mm256_or_si256 (lookup_mskd01, lookup_mskd23);
result_row = _mm256_or_si256 (result_row, lookup_res);
}
return result_row;
}
static INLINE void reconstruct_color_band(const encoder_control_t *encoder,
const uint8_t *rec_data,
uint8_t *new_rec_data,
const sao_info_t *sao,
int32_t stride,
int32_t new_stride,
int32_t block_width,
int32_t block_height,
color_t color_i)
{
const uint32_t width_db32 = block_width & ~31;
const uint32_t width_db4 = block_width & ~3;
const uint32_t width_rest = block_width & 3;
// Form the load&store mask
const __m256i wdb4_256 = _mm256_set1_epi32 (width_db4 & 31);
const __m256i indexes = _mm256_setr_epi32 (3, 7, 11, 15, 19, 23, 27, 31);
const __m256i db4_mask = _mm256_cmpgt_epi32(wdb4_256, indexes);
// Each of the 256 offsets is a byte, but only 16 are held in one YMM since
// lanes must be duplicated to use shuffle.
__m256i offsets[16];
calc_sao_offset_array_avx2(encoder, sao, offsets, color_i);
for (uint32_t y = 0; y < block_height; y++) {
uint32_t x = 0;
for (; x < width_db32; x += 32) {
const uint32_t curr_srcpos = y * stride + x;
const uint32_t curr_dstpos = y * new_stride + x;
__m256i curr_row = _mm256_loadu_si256((const __m256i *)(rec_data + curr_srcpos));
__m256i result = lookup_color_band_ymm(curr_row, offsets);
_mm256_storeu_si256((__m256i *)(new_rec_data + curr_dstpos), result);
}
if (block_width > width_db32) {
const uint32_t curr_srcpos = y * stride + x;
const uint32_t curr_dstpos = y * new_stride + x;
const uint32_t rest_srcpos = y * stride + width_db4;
const uint32_t rest_dstpos = y * new_stride + width_db4;
// Read the very last pixels byte by byte and pack them into one dword.
// Piggyback said dword as the highest dword of the row vector variable,
// that particular place can never be loaded into by the maskmove
// (otherwise that vector would go through the divisible-by-32 code
// path).
uint32_t last_dword = load_border_bytes(rec_data, rest_srcpos, width_rest);
const int32_t *src_ptr = (const int32_t *)( rec_data + curr_srcpos);
int32_t *dst_ptr = ( int32_t *)(new_rec_data + curr_dstpos);
__m256i curr_row = _mm256_maskload_epi32(src_ptr, db4_mask);
curr_row = _mm256_insert_epi32 (curr_row, last_dword, 7);
__m256i result = lookup_color_band_ymm(curr_row, offsets);
_mm256_maskstore_epi32(dst_ptr, db4_mask, result);
uint32_t last_dword_dst = _mm256_extract_epi32(result, 7);
store_border_bytes(new_rec_data, rest_dstpos, width_rest, last_dword_dst);
}
}
}
static __m256i FIX_W32 do_one_nonband_ymm(const __m256i a,
const __m256i b,
const __m256i c,
const __m256i sao_offs)
{
const __m256i zero = _mm256_setzero_si256();
__m256i eo_cat = calc_eo_cat(a, b, c);
__m256i eo_cat_lo, eo_cat_hi, c_lo, c_hi;
cvt_shufmask_epi8_epi16(eo_cat, &eo_cat_lo, &eo_cat_hi);
cvt_epu8_epi16 (c, &c_lo, &c_hi);
__m256i offs_lo = _mm256_shuffle_epi8(sao_offs, eo_cat_lo);
__m256i offs_hi = _mm256_shuffle_epi8(sao_offs, eo_cat_hi);
__m256i res_lo = _mm256_adds_epi16 (offs_lo, c_lo);
__m256i res_hi = _mm256_adds_epi16 (offs_hi, c_hi);
res_lo = _mm256_max_epi16 (res_lo, zero);
res_hi = _mm256_max_epi16 (res_hi, zero);
__m256i res = _mm256_packus_epi16(res_lo, res_hi);
return res;
}
static INLINE void reconstruct_color_other(const encoder_control_t *encoder,
const uint8_t *rec_data,
uint8_t *new_rec_data,
const sao_info_t *sao,
int32_t stride,
int32_t new_stride,
int32_t block_width,
int32_t block_height,
color_t color_i)
{
const uint32_t offset_v = color_i == COLOR_V ? 5 : 0;
const vector2d_t a_ofs = g_sao_edge_offsets[sao->eo_class][0];
const vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1];
const uint32_t width_db32 = block_width & ~31;
const uint32_t width_db4 = block_width & ~3;
const uint32_t width_rest = block_width & 3;
// Form the load&store mask
const __m256i wdb4_256 = _mm256_set1_epi32 (width_db4 & 31);
const __m256i indexes = _mm256_setr_epi32 (3, 7, 11, 15, 19, 23, 27, 31);
const __m256i db4_mask = _mm256_cmpgt_epi32(wdb4_256, indexes);
// Again, saturate offsets to signed 16 bits, because anything outside of
// [-255, 255] will saturate anything these are used with
const __m128i sao_offs_lo = _mm_loadu_si128 ((const __m128i *)(sao->offsets + offset_v + 0));
const __m128i sao_offs_hi = _mm_cvtsi32_si128(sao->offsets[offset_v + 4]);
const __m128i sao_offs_16 = _mm_packs_epi32 (sao_offs_lo, sao_offs_hi);
const __m256i sao_offs = broadcast_xmm2ymm(sao_offs_16);
for (uint32_t y = 0; y < block_height; y++) {
uint32_t x;
for (x = 0; x < width_db32; x += 32) {
const uint32_t src_pos = y * stride + x;
const uint32_t dst_pos = y * new_stride + x;
// TODO: these will go negative, but that's a defect of the original
// code already since 2013 (98f2a1aedc5f4933c2729ae15412549dea9e5549)
const int32_t a_pos = (y + a_ofs.y) * stride + x + a_ofs.x;
const int32_t b_pos = (y + b_ofs.y) * stride + x + b_ofs.x;
__m256i a = _mm256_loadu_si256((const __m256i *)(rec_data + a_pos));
__m256i b = _mm256_loadu_si256((const __m256i *)(rec_data + b_pos));
__m256i c = _mm256_loadu_si256((const __m256i *)(rec_data + src_pos));
__m256i res = do_one_nonband_ymm(a, b, c, sao_offs);
_mm256_storeu_si256((__m256i *)(new_rec_data + dst_pos), res);
}
if (block_width > width_db32) {
const uint32_t curr_srcpos = y * stride + x;
const uint32_t rest_srcpos = y * stride + width_db4;
const int32_t curr_apos = (y + a_ofs.y) * stride + a_ofs.x + x;
const int32_t rest_apos = (y + a_ofs.y) * stride + a_ofs.x + width_db4;
const int32_t curr_bpos = (y + b_ofs.y) * stride + b_ofs.x + x;
const int32_t rest_bpos = (y + b_ofs.y) * stride + b_ofs.x + width_db4;
const uint32_t curr_dstpos = y * new_stride + x;
const uint32_t rest_dstpos = y * new_stride + width_db4;
uint32_t a_last = load_border_bytes(rec_data, rest_apos, width_rest);
uint32_t b_last = load_border_bytes(rec_data, rest_bpos, width_rest);
uint32_t c_last = load_border_bytes(rec_data, rest_srcpos, width_rest);
const int32_t *a_ptr = (const int32_t *)( rec_data + curr_apos);
const int32_t *b_ptr = (const int32_t *)( rec_data + curr_bpos);
const int32_t *c_ptr = (const int32_t *)( rec_data + curr_srcpos);
int32_t *dst_ptr = ( int32_t *)(new_rec_data + curr_dstpos);
__m256i a = _mm256_maskload_epi32(a_ptr, db4_mask);
__m256i b = _mm256_maskload_epi32(b_ptr, db4_mask);
__m256i c = _mm256_maskload_epi32(c_ptr, db4_mask);
a = _mm256_insert_epi32 (a, a_last, 7);
b = _mm256_insert_epi32 (b, b_last, 7);
c = _mm256_insert_epi32 (c, c_last, 7);
__m256i res = do_one_nonband_ymm(a, b, c, sao_offs);
_mm256_maskstore_epi32(dst_ptr, db4_mask, res);
uint32_t last_dword = _mm256_extract_epi32(res, 7);
store_border_bytes(new_rec_data, rest_dstpos, width_rest, last_dword);
}
}
}
static void sao_reconstruct_color_avx2(const encoder_control_t *encoder,
const uint8_t *rec_data,
uint8_t *new_rec_data,
const sao_info_t *sao,
int32_t stride,
int32_t new_stride,
int32_t block_width,
int32_t block_height,
color_t color_i)
{
if (sao->type == SAO_TYPE_BAND) {
reconstruct_color_band (encoder, rec_data, new_rec_data, sao, stride, new_stride, block_width, block_height, color_i);
} else {
reconstruct_color_other(encoder, rec_data, new_rec_data, sao, stride, new_stride, block_width, block_height, color_i);
}
}
static int32_t sao_band_ddistortion_avx2(const encoder_state_t *state,
const uint8_t *orig_data,
const uint8_t *rec_data,
int32_t block_width,
int32_t block_height,
int32_t band_pos,
const int32_t sao_bands[4])
{
const uint32_t bitdepth = 8;
const uint32_t shift = bitdepth - 5;
// Clamp band_pos to 32 from above. It'll be subtracted from the shifted
// rec_data values, which in 8-bit depth will always be clamped to [0, 31],
// so if it ever exceeds 32, all the band values will be negative and
// ignored. Ditto for less than -4.
__m128i bp_128 = _mm_cvtsi32_si128 (band_pos);
__m128i hilimit = _mm_cvtsi32_si128 (32);
__m128i lolimit = _mm_cvtsi32_si128 (-4);
bp_128 = _mm_min_epi8 (bp_128, hilimit);
bp_128 = _mm_max_epi8 (bp_128, lolimit);
__m256i bp_256 = _mm256_broadcastb_epi8(bp_128);
__m128i sbs_32 = _mm_loadu_si128((const __m128i *)sao_bands);
__m128i sbs_8 = truncate_epi32_epi8(sbs_32);
__m256i sb_256 = broadcast_xmm2ymm (sbs_8);
// These should trigger like, never, at least the later condition of block
// not being a multiple of 32 wide. Rather safe than sorry though, huge SAO
// bands are more tricky of these two because the algorithm needs a complete
// reimplementation to work on 16-bit values.
if (epi32v_fits_in_epi8s(sbs_32) != 0xffff)
goto use_generic;
// If VVC or something will start using SAO on blocks with width a multiple
// of 16, feel free to implement a XMM variant of this algorithm
if ((block_width & 31) != 0)
goto use_generic;
const __m256i zero = _mm256_setzero_si256();
const __m256i threes = _mm256_set1_epi8 (3);
__m256i sum = _mm256_setzero_si256();
for (uint32_t y = 0; y < block_height; y++) {
for (uint32_t x = 0; x < block_width; x += 32) {
const int32_t curr_pos = y * block_width + x;
__m256i rd = _mm256_loadu_si256((const __m256i *)( rec_data + curr_pos));
__m256i orig = _mm256_loadu_si256((const __m256i *)(orig_data + curr_pos));
__m256i orig_lo, orig_hi, rd_lo, rd_hi;
cvt_epu8_epi16(orig, &orig_lo, &orig_hi);
cvt_epu8_epi16(rd, &rd_lo, &rd_hi);
__m256i diff_lo = _mm256_sub_epi16 (orig_lo, rd_lo);
__m256i diff_hi = _mm256_sub_epi16 (orig_hi, rd_hi);
// The shift will clamp band to 0...31; band_pos on the other
// hand is always between 0...32, so band will be -1...31. Anything
// below zero is ignored, so we can clamp band_pos to 32.
__m256i rd_divd = srli_epi8 (rd, shift);
__m256i band = _mm256_sub_epi8 (rd_divd, bp_256);
// Force all <0 or >3 bands to 0xff, which will zero the shuffle result
__m256i band_lt_0 = _mm256_cmpgt_epi8 (zero, band);
__m256i band_gt_3 = _mm256_cmpgt_epi8 (band, threes);
__m256i band_inv = _mm256_or_si256 (band_lt_0, band_gt_3);
band = _mm256_or_si256 (band, band_inv);
__m256i offsets = _mm256_shuffle_epi8 (sb_256, band);
__m256i curr_sum = calc_diff_off_delta (diff_lo, diff_hi, offsets, orig);
sum = _mm256_add_epi32 (sum, curr_sum);
}
}
return hsum_8x32b(sum);
use_generic:
return sao_band_ddistortion_generic(state, orig_data, rec_data, block_width,
block_height, band_pos, sao_bands);
}
#endif // KVZ_BIT_DEPTH == 8
#endif //COMPILE_INTEL_AVX2
int kvz_strategy_register_sao_avx2(void* opaque, uint8_t bitdepth)
{
bool success = true;
#if COMPILE_INTEL_AVX2
#if KVZ_BIT_DEPTH == 8
if (bitdepth == 8) {
success &= kvz_strategyselector_register(opaque, "sao_edge_ddistortion", "avx2", 40, &sao_edge_ddistortion_avx2);
success &= kvz_strategyselector_register(opaque, "calc_sao_edge_dir", "avx2", 40, &calc_sao_edge_dir_avx2);
success &= kvz_strategyselector_register(opaque, "sao_reconstruct_color", "avx2", 40, &sao_reconstruct_color_avx2);
success &= kvz_strategyselector_register(opaque, "sao_band_ddistortion", "avx2", 40, &sao_band_ddistortion_avx2);
}
#endif // KVZ_BIT_DEPTH == 8
#endif //COMPILE_INTEL_AVX2
return success;
}