mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-28 03:34:06 +00:00
495 lines
16 KiB
C
495 lines
16 KiB
C
/*****************************************************************************
|
|
* This file is part of Kvazaar HEVC encoder.
|
|
*
|
|
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
|
|
* COPYING file).
|
|
*
|
|
* Kvazaar is free software: you can redistribute it and/or modify it under
|
|
* the terms of the GNU Lesser General Public License as published by the
|
|
* Free Software Foundation; either version 2.1 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
|
|
****************************************************************************/
|
|
|
|
#include "transform.h"
|
|
|
|
#include "image.h"
|
|
#include "kvazaar.h"
|
|
#include "rdo.h"
|
|
#include "strategies/strategies-dct.h"
|
|
#include "strategies/strategies-quant.h"
|
|
#include "strategies/strategies-picture.h"
|
|
#include "tables.h"
|
|
|
|
/**
|
|
* \brief RDPCM direction.
|
|
*/
|
|
typedef enum rdpcm_dir {
|
|
RDPCM_VER = 0, // vertical
|
|
RDPCM_HOR = 1, // horizontal
|
|
} rdpcm_dir;
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// INITIALIZATIONS
|
|
//
|
|
|
|
|
|
const uint8_t kvz_g_chroma_scale[58]=
|
|
{
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,
|
|
17,18,19,20,21,22,23,24,25,26,27,28,29,29,30,31,32,
|
|
33,33,34,34,35,35,36,36,37,37,38,39,40,41,42,43,44,
|
|
45,46,47,48,49,50,51
|
|
};
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// FUNCTIONS
|
|
//
|
|
|
|
/**
|
|
* \brief Bypass transform and quantization.
|
|
*
|
|
* Copies the reference pixels directly to reconstruction and the residual
|
|
* directly to coefficients. Used when cu_transquant_bypass_flag is set.
|
|
* Parameters pred_in and rec_out may be aliased.
|
|
*
|
|
* \param width Transform width.
|
|
* \param in_stride Stride for ref_in and pred_in
|
|
* \param out_stride Stride for rec_out.
|
|
* \param ref_in Reference pixels.
|
|
* \param pred_in Predicted pixels.
|
|
* \param rec_out Returns the reconstructed pixels.
|
|
* \param coeff_out Returns the coefficients used for reconstruction of rec_out.
|
|
*
|
|
* \returns Whether coeff_out contains any non-zero coefficients.
|
|
*/
|
|
static bool bypass_transquant(const int width,
|
|
const int in_stride,
|
|
const int out_stride,
|
|
const kvz_pixel *const ref_in,
|
|
const kvz_pixel *const pred_in,
|
|
kvz_pixel *rec_out,
|
|
coeff_t *coeff_out)
|
|
{
|
|
bool nonzero_coeffs = false;
|
|
|
|
for (int y = 0; y < width; ++y) {
|
|
for (int x = 0; x < width; ++x) {
|
|
int32_t in_idx = x + y * in_stride;
|
|
int32_t out_idx = x + y * out_stride;
|
|
int32_t coeff_idx = x + y * width;
|
|
|
|
// The residual must be computed before writing to rec_out because
|
|
// pred_in and rec_out may point to the same array.
|
|
coeff_t coeff = (coeff_t)(ref_in[in_idx] - pred_in[in_idx]);
|
|
coeff_out[coeff_idx] = coeff;
|
|
rec_out[out_idx] = ref_in[in_idx];
|
|
|
|
nonzero_coeffs |= (coeff != 0);
|
|
}
|
|
}
|
|
|
|
return nonzero_coeffs;
|
|
}
|
|
|
|
/**
|
|
* Apply DPCM to residual.
|
|
*
|
|
* \param width width of the block
|
|
* \param dir RDPCM direction
|
|
* \param coeff coefficients (residual) to filter
|
|
*/
|
|
static void rdpcm(const int width,
|
|
const rdpcm_dir dir,
|
|
coeff_t *coeff)
|
|
{
|
|
const int offset = (dir == RDPCM_HOR) ? 1 : width;
|
|
const int min_x = (dir == RDPCM_HOR) ? 1 : 0;
|
|
const int min_y = (dir == RDPCM_HOR) ? 0 : 1;
|
|
|
|
for (int y = width - 1; y >= min_y; y--) {
|
|
for (int x = width - 1; x >= min_x; x--) {
|
|
const int index = x + y * width;
|
|
coeff[index] -= coeff[index - offset];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Get scaled QP used in quantization
|
|
*
|
|
*/
|
|
int32_t kvz_get_scaled_qp(int8_t type, int8_t qp, int8_t qp_offset)
|
|
{
|
|
int32_t qp_scaled = 0;
|
|
if(type == 0) {
|
|
qp_scaled = qp + qp_offset;
|
|
} else {
|
|
qp_scaled = CLIP(-qp_offset, 57, qp);
|
|
if(qp_scaled < 0) {
|
|
qp_scaled = qp_scaled + qp_offset;
|
|
} else {
|
|
qp_scaled = kvz_g_chroma_scale[qp_scaled] + qp_offset;
|
|
}
|
|
}
|
|
return qp_scaled;
|
|
}
|
|
|
|
/**
|
|
* \brief NxN inverse transform (2D)
|
|
* \param coeff input data (transform coefficients)
|
|
* \param block output data (residual)
|
|
* \param block_size input data (width of transform)
|
|
*/
|
|
void kvz_transformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size)
|
|
{
|
|
uint32_t log2_tr_size = kvz_g_convert_to_bit[block_size] + 2;
|
|
int32_t shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size;
|
|
int32_t j,k;
|
|
for (j = 0; j < block_size; j++) {
|
|
for(k = 0; k < block_size; k ++) {
|
|
// Casting back and forth to make UBSan not trigger due to left-shifting negatives
|
|
coeff[j * block_size + k] = (int16_t)((uint16_t)(block[j * block_size + k]) << shift);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief inverse transform skip
|
|
* \param coeff input data (transform coefficients)
|
|
* \param block output data (residual)
|
|
* \param block_size width of transform
|
|
*/
|
|
void kvz_itransformskip(const encoder_control_t * const encoder, int16_t *block,int16_t *coeff, int8_t block_size)
|
|
{
|
|
uint32_t log2_tr_size = kvz_g_convert_to_bit[block_size] + 2;
|
|
int32_t shift = MAX_TR_DYNAMIC_RANGE - encoder->bitdepth - log2_tr_size;
|
|
int32_t j,k;
|
|
int32_t offset;
|
|
offset = (1 << (shift -1)); // For rounding
|
|
for ( j = 0; j < block_size; j++ ) {
|
|
for(k = 0; k < block_size; k ++) {
|
|
block[j * block_size + k] = (coeff[j * block_size + k] + offset) >> shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief forward transform (2D)
|
|
* \param block input residual
|
|
* \param coeff transform coefficients
|
|
* \param block_size width of transform
|
|
*/
|
|
void kvz_transform2d(const encoder_control_t * const encoder,
|
|
int16_t *block,
|
|
int16_t *coeff,
|
|
int8_t block_size,
|
|
color_t color,
|
|
cu_type_t type)
|
|
{
|
|
dct_func *dct_func = kvz_get_dct_func(block_size, color, type);
|
|
dct_func(encoder->bitdepth, block, coeff);
|
|
}
|
|
|
|
void kvz_itransform2d(const encoder_control_t * const encoder,
|
|
int16_t *block,
|
|
int16_t *coeff,
|
|
int8_t block_size,
|
|
color_t color,
|
|
cu_type_t type)
|
|
{
|
|
dct_func *idct_func = kvz_get_idct_func(block_size, color, type);
|
|
idct_func(encoder->bitdepth, coeff, block);
|
|
}
|
|
|
|
/**
|
|
* \brief Like kvz_quantize_residual except that this uses trskip if that is better.
|
|
*
|
|
* Using this function saves one step of quantization and inverse quantization
|
|
* compared to doing the decision separately from the actual operation.
|
|
*
|
|
* \param width Transform width.
|
|
* \param color Color.
|
|
* \param scan_order Coefficient scan order.
|
|
* \param trskip_out Whether transform skip is used.
|
|
* \param stride Stride for ref_in, pred_in and rec_out.
|
|
* \param ref_in Reference pixels.
|
|
* \param pred_in Predicted pixels.
|
|
* \param rec_out Reconstructed pixels.
|
|
* \param coeff_out Coefficients used for reconstruction of rec_out.
|
|
*
|
|
* \returns Whether coeff_out contains any non-zero coefficients.
|
|
*/
|
|
int kvz_quantize_residual_trskip(
|
|
encoder_state_t *const state,
|
|
const cu_info_t *const cur_cu, const int width, const color_t color,
|
|
const coeff_scan_order_t scan_order, int8_t *trskip_out,
|
|
const int in_stride, const int out_stride,
|
|
const kvz_pixel *const ref_in, const kvz_pixel *const pred_in,
|
|
kvz_pixel *rec_out, coeff_t *coeff_out)
|
|
{
|
|
struct {
|
|
kvz_pixel rec[4*4];
|
|
coeff_t coeff[4*4];
|
|
uint32_t cost;
|
|
int has_coeffs;
|
|
} skip, noskip, *best;
|
|
|
|
const int bit_cost = (int)(state->lambda + 0.5);
|
|
|
|
noskip.has_coeffs = kvz_quantize_residual(
|
|
state, cur_cu, width, color, scan_order,
|
|
0, in_stride, 4,
|
|
ref_in, pred_in, noskip.rec, noskip.coeff);
|
|
noskip.cost = kvz_pixels_calc_ssd(ref_in, noskip.rec, in_stride, 4, 4);
|
|
noskip.cost += kvz_get_coeff_cost(state, noskip.coeff, 4, 0, scan_order) * bit_cost;
|
|
|
|
skip.has_coeffs = kvz_quantize_residual(
|
|
state, cur_cu, width, color, scan_order,
|
|
1, in_stride, 4,
|
|
ref_in, pred_in, skip.rec, skip.coeff);
|
|
skip.cost = kvz_pixels_calc_ssd(ref_in, skip.rec, in_stride, 4, 4);
|
|
skip.cost += kvz_get_coeff_cost(state, skip.coeff, 4, 0, scan_order) * bit_cost;
|
|
|
|
if (noskip.cost <= skip.cost) {
|
|
*trskip_out = 0;
|
|
best = &noskip;
|
|
} else {
|
|
*trskip_out = 1;
|
|
best = &skip;
|
|
}
|
|
|
|
if (best->has_coeffs || rec_out != pred_in) {
|
|
// If there is no residual and reconstruction is already in rec_out,
|
|
// we can skip this.
|
|
kvz_pixels_blit(best->rec, rec_out, width, width, 4, out_stride);
|
|
}
|
|
copy_coeffs(best->coeff, coeff_out, width);
|
|
|
|
return best->has_coeffs;
|
|
}
|
|
|
|
/**
|
|
* Calculate the residual coefficients for a single TU.
|
|
*/
|
|
static void quantize_tr_residual(encoder_state_t * const state,
|
|
const color_t color,
|
|
const int32_t x,
|
|
const int32_t y,
|
|
const uint8_t depth,
|
|
cu_info_t *cur_pu,
|
|
lcu_t* lcu)
|
|
{
|
|
const kvz_config *cfg = &state->encoder_control->cfg;
|
|
const int32_t shift = color == COLOR_Y ? 0 : 1;
|
|
const vector2d_t lcu_px = { SUB_SCU(x) >> shift, SUB_SCU(y) >> shift };
|
|
|
|
// If luma is 4x4, do chroma for the 8x8 luma area when handling the top
|
|
// left PU because the coordinates are correct.
|
|
bool handled_elsewhere = color != COLOR_Y &&
|
|
depth > MAX_DEPTH &&
|
|
(lcu_px.x % 4 != 0 || lcu_px.y % 4 != 0);
|
|
if (handled_elsewhere) {
|
|
return;
|
|
}
|
|
|
|
// Clear coded block flag structures for depths lower than current depth.
|
|
// This should ensure that the CBF data doesn't get corrupted if this function
|
|
// is called more than once.
|
|
cbf_clear(&cur_pu->cbf, depth, color);
|
|
|
|
int32_t tr_width;
|
|
if (color == COLOR_Y) {
|
|
tr_width = LCU_WIDTH >> depth;
|
|
} else {
|
|
const int chroma_depth = (depth == MAX_PU_DEPTH ? depth - 1 : depth);
|
|
tr_width = LCU_WIDTH_C >> chroma_depth;
|
|
}
|
|
const int32_t lcu_width = LCU_WIDTH >> shift;
|
|
const int8_t mode =
|
|
(color == COLOR_Y) ? cur_pu->intra.mode : cur_pu->intra.mode_chroma;
|
|
const coeff_scan_order_t scan_idx =
|
|
kvz_get_scan_order(cur_pu->type, mode, depth);
|
|
const int offset = lcu_px.x + lcu_px.y * lcu_width;
|
|
const int z_index = xy_to_zorder(lcu_width, lcu_px.x, lcu_px.y);
|
|
|
|
// Pointers to current location in arrays with prediction. The
|
|
// reconstruction will be written to this array.
|
|
kvz_pixel *pred = NULL;
|
|
// Pointers to current location in arrays with reference.
|
|
const kvz_pixel *ref = NULL;
|
|
// Pointers to current location in arrays with quantized coefficients.
|
|
coeff_t *coeff = NULL;
|
|
|
|
switch (color) {
|
|
case COLOR_Y:
|
|
pred = &lcu->rec.y[offset];
|
|
ref = &lcu->ref.y[offset];
|
|
coeff = &lcu->coeff.y[z_index];
|
|
break;
|
|
case COLOR_U:
|
|
pred = &lcu->rec.u[offset];
|
|
ref = &lcu->ref.u[offset];
|
|
coeff = &lcu->coeff.u[z_index];
|
|
break;
|
|
case COLOR_V:
|
|
pred = &lcu->rec.v[offset];
|
|
ref = &lcu->ref.v[offset];
|
|
coeff = &lcu->coeff.v[z_index];
|
|
break;
|
|
}
|
|
|
|
const bool can_use_trskip = tr_width == 4 &&
|
|
color == COLOR_Y &&
|
|
cfg->trskip_enable;
|
|
|
|
bool has_coeffs;
|
|
|
|
if (cfg->lossless) {
|
|
has_coeffs = bypass_transquant(tr_width,
|
|
lcu_width, // in stride
|
|
lcu_width, // out stride
|
|
ref,
|
|
pred,
|
|
pred,
|
|
coeff);
|
|
if (cfg->implicit_rdpcm && cur_pu->type == CU_INTRA) {
|
|
// implicit rdpcm for horizontal and vertical intra modes
|
|
if (mode == 10) {
|
|
rdpcm(tr_width, RDPCM_HOR, coeff);
|
|
} else if (mode == 26) {
|
|
rdpcm(tr_width, RDPCM_VER, coeff);
|
|
}
|
|
}
|
|
|
|
} else if (can_use_trskip) {
|
|
int8_t tr_skip = 0;
|
|
|
|
// Try quantization with trskip and use it if it's better.
|
|
has_coeffs = kvz_quantize_residual_trskip(state,
|
|
cur_pu,
|
|
tr_width,
|
|
color,
|
|
scan_idx,
|
|
&tr_skip,
|
|
lcu_width,
|
|
lcu_width,
|
|
ref,
|
|
pred,
|
|
pred,
|
|
coeff);
|
|
cur_pu->tr_skip = tr_skip;
|
|
} else {
|
|
has_coeffs = kvz_quantize_residual(state,
|
|
cur_pu,
|
|
tr_width,
|
|
color,
|
|
scan_idx,
|
|
false, // tr skip
|
|
lcu_width,
|
|
lcu_width,
|
|
ref,
|
|
pred,
|
|
pred,
|
|
coeff);
|
|
}
|
|
|
|
if (has_coeffs) {
|
|
cbf_set(&cur_pu->cbf, depth, color);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function calculates the residual coefficients for a region of the LCU
|
|
* (defined by x, y and depth) and updates the reconstruction with the
|
|
* kvantized residual. Processes the TU tree recursively.
|
|
*
|
|
* Inputs are:
|
|
* - lcu->rec pixels after prediction for the area
|
|
* - lcu->ref reference pixels for the area
|
|
* - lcu->cu for the area
|
|
*
|
|
* Outputs are:
|
|
* - lcu->rec reconstruction after quantized residual
|
|
* - lcu->coeff quantized coefficients for the area
|
|
* - lcu->cbf coded block flags for the area
|
|
* - lcu->cu.intra.tr_skip tr skip flags for the area (in case of luma)
|
|
*/
|
|
void kvz_quantize_lcu_residual(encoder_state_t * const state,
|
|
const bool luma,
|
|
const bool chroma,
|
|
const int32_t x,
|
|
const int32_t y,
|
|
const uint8_t depth,
|
|
cu_info_t *cur_pu,
|
|
lcu_t* lcu)
|
|
{
|
|
const int32_t width = LCU_WIDTH >> depth;
|
|
const vector2d_t lcu_px = { SUB_SCU(x), SUB_SCU(y) };
|
|
|
|
if (cur_pu == NULL) {
|
|
cur_pu = LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y);
|
|
}
|
|
|
|
// Tell clang-analyzer what is up. For some reason it can't figure out from
|
|
// asserting just depth.
|
|
assert(width == 4 ||
|
|
width == 8 ||
|
|
width == 16 ||
|
|
width == 32 ||
|
|
width == 64);
|
|
|
|
// Reset CBFs because CBFs might have been set
|
|
// for depth earlier
|
|
if (luma) {
|
|
cbf_clear(&cur_pu->cbf, depth, COLOR_Y);
|
|
}
|
|
if (chroma) {
|
|
cbf_clear(&cur_pu->cbf, depth, COLOR_U);
|
|
cbf_clear(&cur_pu->cbf, depth, COLOR_V);
|
|
}
|
|
|
|
if (depth == 0 || cur_pu->tr_depth > depth) {
|
|
|
|
// Split transform and increase depth
|
|
const int offset = width / 2;
|
|
const int32_t x2 = x + offset;
|
|
const int32_t y2 = y + offset;
|
|
|
|
kvz_quantize_lcu_residual(state, luma, chroma, x, y, depth + 1, NULL, lcu);
|
|
kvz_quantize_lcu_residual(state, luma, chroma, x2, y, depth + 1, NULL, lcu);
|
|
kvz_quantize_lcu_residual(state, luma, chroma, x, y2, depth + 1, NULL, lcu);
|
|
kvz_quantize_lcu_residual(state, luma, chroma, x2, y2, depth + 1, NULL, lcu);
|
|
|
|
// Propagate coded block flags from child CUs to parent CU.
|
|
uint16_t child_cbfs[3] = {
|
|
LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y )->cbf,
|
|
LCU_GET_CU_AT_PX(lcu, lcu_px.x, lcu_px.y + offset)->cbf,
|
|
LCU_GET_CU_AT_PX(lcu, lcu_px.x + offset, lcu_px.y + offset)->cbf,
|
|
};
|
|
|
|
if (depth <= MAX_DEPTH) {
|
|
cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_Y);
|
|
cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_U);
|
|
cbf_set_conditionally(&cur_pu->cbf, child_cbfs, depth, COLOR_V);
|
|
}
|
|
|
|
} else {
|
|
// Process a leaf TU.
|
|
if (luma) {
|
|
quantize_tr_residual(state, COLOR_Y, x, y, depth, cur_pu, lcu);
|
|
}
|
|
if (chroma) {
|
|
quantize_tr_residual(state, COLOR_U, x, y, depth, cur_pu, lcu);
|
|
quantize_tr_residual(state, COLOR_V, x, y, depth, cur_pu, lcu);
|
|
}
|
|
}
|
|
}
|