mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-28 03:34:06 +00:00
738 lines
24 KiB
C
738 lines
24 KiB
C
/*****************************************************************************
|
|
* This file is part of Kvazaar HEVC encoder.
|
|
*
|
|
* Copyright (C) 2013-2014 Tampere University of Technology and others (see
|
|
* COPYING file).
|
|
*
|
|
* Kvazaar is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation.
|
|
*
|
|
* Kvazaar is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* \file
|
|
*/
|
|
|
|
#include "threads.h"
|
|
#include "image.h"
|
|
#include "strategyselector.h"
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
#include "checkpoint.h"
|
|
#include "sao.h"
|
|
|
|
/**
|
|
* \brief Allocate new image
|
|
* \return image pointer
|
|
*/
|
|
image *image_alloc(const int32_t width, const int32_t height, const int32_t poc)
|
|
{
|
|
image *im = MALLOC(image, 1);
|
|
|
|
unsigned int luma_size = width * height;
|
|
unsigned int chroma_size = luma_size / 4;
|
|
|
|
//Assert that we have a well defined image
|
|
assert((width % 2) == 0);
|
|
assert((height % 2) == 0);
|
|
|
|
if (!im) return NULL;
|
|
|
|
im->width = width;
|
|
im->height = height;
|
|
im->stride = width;
|
|
|
|
im->base_image = im;
|
|
|
|
im->refcount = 1; //We give a reference to caller
|
|
|
|
im->poc = poc;
|
|
|
|
//Allocate memory
|
|
im->fulldata = MALLOC(pixel, (luma_size + 2*chroma_size));
|
|
im->y = im->data[COLOR_Y] = &im->fulldata[0];
|
|
im->u = im->data[COLOR_U] = &im->fulldata[luma_size];
|
|
im->v = im->data[COLOR_V] = &im->fulldata[luma_size + chroma_size];
|
|
|
|
return im;
|
|
}
|
|
|
|
/**
|
|
* \brief Free memory allocated to picture (if we have no reference left)
|
|
* \param pic picture pointer
|
|
* \return 1 on success, 0 on failure
|
|
*/
|
|
int image_free(image * const im)
|
|
{
|
|
//Nothing to do
|
|
if (!im) return 1;
|
|
|
|
//Either we are the base image, or we should have no references
|
|
assert(im->base_image == im || im->refcount == 0);
|
|
|
|
int32_t new_refcount = ATOMIC_DEC(&(im->base_image->refcount));
|
|
//If we're freeing a subimage, then we must free the pointer
|
|
//Base image may be stored in image_list, and should not be freed
|
|
//FIXME I don't find this very clean...
|
|
if (new_refcount > 0 && im->base_image != im) free(im);
|
|
if (new_refcount > 0) return 1;
|
|
FREE_POINTER(im->base_image->fulldata);
|
|
|
|
//Just to make the program crash when using those values after the free
|
|
im->y = im->u = im->v = im->data[COLOR_Y] = im->data[COLOR_U] = im->data[COLOR_V] = NULL;
|
|
|
|
free(im);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
image *image_make_subimage(image * const orig_image, const unsigned int x_offset, const unsigned int y_offset, const unsigned int width, const unsigned int height)
|
|
{
|
|
image *im = MALLOC(image, 1);
|
|
if (!im) return NULL;
|
|
|
|
im->base_image = orig_image->base_image;
|
|
ATOMIC_INC(&(im->base_image->refcount));
|
|
|
|
assert(x_offset + width <= orig_image->width);
|
|
assert(y_offset + height <= orig_image->height);
|
|
|
|
//Assert that we have a well defined image
|
|
assert((width % 2) == 0);
|
|
assert((height % 2) == 0);
|
|
|
|
assert((x_offset % 2) == 0);
|
|
assert((y_offset % 2) == 0);
|
|
|
|
im->stride = orig_image->stride;
|
|
im->refcount = 0; //No references on subimages
|
|
|
|
im->width = width;
|
|
im->height = height;
|
|
|
|
im->y = im->data[COLOR_Y] = &orig_image->y[x_offset + y_offset * orig_image->stride];
|
|
im->u = im->data[COLOR_U] = &orig_image->u[x_offset/2 + y_offset/2 * orig_image->stride/2];
|
|
im->v = im->data[COLOR_V] = &orig_image->v[x_offset/2 + y_offset/2 * orig_image->stride/2];
|
|
|
|
return im;
|
|
}
|
|
|
|
yuv_t * yuv_t_alloc(int luma_size)
|
|
{
|
|
// Get buffers with separate mallocs in order to take advantage of
|
|
// automatic buffer overrun checks.
|
|
yuv_t *yuv = (yuv_t *)malloc(sizeof(*yuv));
|
|
yuv->y = (pixel *)malloc(luma_size * sizeof(*yuv->y));
|
|
yuv->u = (pixel *)malloc(luma_size / 2 * sizeof(*yuv->u));
|
|
yuv->v = (pixel *)malloc(luma_size / 2 * sizeof(*yuv->v));
|
|
yuv->size = luma_size;
|
|
|
|
return yuv;
|
|
}
|
|
|
|
void yuv_t_free(yuv_t * yuv)
|
|
{
|
|
free(yuv->y);
|
|
free(yuv->u);
|
|
free(yuv->v);
|
|
free(yuv);
|
|
}
|
|
|
|
/**
|
|
* \brief Diagonally interpolate SAD outside the frame.
|
|
*
|
|
* \param data1 Starting point of the first picture.
|
|
* \param data2 Starting point of the second picture.
|
|
* \param width Width of the region for which SAD is calculated.
|
|
* \param height Height of the region for which SAD is calculated.
|
|
* \param width Width of the pixel array.
|
|
*
|
|
* \returns Sum of Absolute Differences
|
|
*/
|
|
static unsigned cor_sad(const pixel *pic_data, const pixel *ref_data,
|
|
int block_width, int block_height, unsigned pic_stride)
|
|
{
|
|
pixel ref = *ref_data;
|
|
int x, y;
|
|
unsigned sad = 0;
|
|
|
|
for (y = 0; y < block_height; ++y) {
|
|
for (x = 0; x < block_width; ++x) {
|
|
sad += abs(pic_data[y * pic_stride + x] - ref);
|
|
}
|
|
}
|
|
|
|
return sad;
|
|
}
|
|
|
|
/**
|
|
* \brief Vertically interpolate SAD outside the frame.
|
|
*
|
|
* \param data1 Starting point of the first picture.
|
|
* \param data2 Starting point of the second picture.
|
|
* \param width Width of the region for which SAD is calculated.
|
|
* \param height Height of the region for which SAD is calculated.
|
|
* \param width Width of the pixel array.
|
|
*
|
|
* \returns Sum of Absolute Differences
|
|
*/
|
|
static unsigned ver_sad(const pixel *pic_data, const pixel *ref_data,
|
|
int block_width, int block_height, unsigned pic_stride)
|
|
{
|
|
int x, y;
|
|
unsigned sad = 0;
|
|
|
|
for (y = 0; y < block_height; ++y) {
|
|
for (x = 0; x < block_width; ++x) {
|
|
sad += abs(pic_data[y * pic_stride + x] - ref_data[x]);
|
|
}
|
|
}
|
|
|
|
return sad;
|
|
}
|
|
|
|
/**
|
|
* \brief Horizontally interpolate SAD outside the frame.
|
|
*
|
|
* \param data1 Starting point of the first picture.
|
|
* \param data2 Starting point of the second picture.
|
|
* \param width Width of the region for which SAD is calculated.
|
|
* \param height Height of the region for which SAD is calculated.
|
|
* \param width Width of the pixel array.
|
|
*
|
|
* \returns Sum of Absolute Differences
|
|
*/
|
|
static unsigned hor_sad(const pixel *pic_data, const pixel *ref_data,
|
|
int block_width, int block_height, unsigned pic_stride, unsigned ref_stride)
|
|
{
|
|
int x, y;
|
|
unsigned sad = 0;
|
|
|
|
for (y = 0; y < block_height; ++y) {
|
|
for (x = 0; x < block_width; ++x) {
|
|
sad += abs(pic_data[y * pic_stride + x] - ref_data[y * ref_stride]);
|
|
}
|
|
}
|
|
|
|
return sad;
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Handle special cases of comparing blocks that are not completely
|
|
* inside the frame.
|
|
*
|
|
* \param pic First frame.
|
|
* \param ref Second frame.
|
|
* \param pic_x X coordinate of the first block.
|
|
* \param pic_y Y coordinate of the first block.
|
|
* \param ref_x X coordinate of the second block.
|
|
* \param ref_y Y coordinate of the second block.
|
|
* \param block_width Width of the blocks.
|
|
* \param block_height Height of the blocks.
|
|
*/
|
|
static unsigned image_interpolated_sad(const image *pic, const image *ref,
|
|
int pic_x, int pic_y, int ref_x, int ref_y,
|
|
int block_width, int block_height)
|
|
{
|
|
pixel *pic_data, *ref_data;
|
|
|
|
int left, right, top, bottom;
|
|
int result = 0;
|
|
|
|
// Change the movement vector to point right next to the frame. This doesn't
|
|
// affect the result but removes some special cases.
|
|
if (ref_x > ref->width) ref_x = ref->width;
|
|
if (ref_y > ref->height) ref_y = ref->height;
|
|
if (ref_x + block_width < 0) ref_x = -block_width;
|
|
if (ref_y + block_height < 0) ref_y = -block_height;
|
|
|
|
// These are the number of pixels by how far the movement vector points
|
|
// outside the frame. They are always >= 0. If all of them are 0, the
|
|
// movement vector doesn't point outside the frame.
|
|
left = (ref_x < 0) ? -ref_x : 0;
|
|
top = (ref_y < 0) ? -ref_y : 0;
|
|
right = (ref_x + block_width > ref->width) ? ref_x + block_width - ref->width : 0;
|
|
bottom = (ref_y + block_height > ref->height) ? ref_y + block_height - ref->height : 0;
|
|
|
|
// Center picture to the current block and reference to the point where
|
|
// movement vector is pointing to. That point might be outside the buffer,
|
|
// but that is ok because we project the movement vector to the buffer
|
|
// before dereferencing the pointer.
|
|
pic_data = &pic->y[pic_y * pic->stride + pic_x];
|
|
ref_data = &ref->y[ref_y * ref->stride + ref_x];
|
|
|
|
// The handling of movement vectors that point outside the picture is done
|
|
// in the following way.
|
|
// - Correct the index of ref_data so that it points to the top-left
|
|
// of the area we want to compare against.
|
|
// - Correct the index of pic_data to point inside the current block, so
|
|
// that we compare the right part of the block to the ref_data.
|
|
// - Reduce block_width and block_height so that the the size of the area
|
|
// being compared is correct.
|
|
if (top && left) {
|
|
result += cor_sad(pic_data,
|
|
&ref_data[top * ref->stride + left],
|
|
left, top, pic->stride);
|
|
result += ver_sad(&pic_data[left],
|
|
&ref_data[top * ref->stride + left],
|
|
block_width - left, top, pic->stride);
|
|
result += hor_sad(&pic_data[top * pic->stride],
|
|
&ref_data[top * ref->stride + left],
|
|
left, block_height - top, pic->stride, ref->stride);
|
|
result += reg_sad(&pic_data[top * pic->stride + left],
|
|
&ref_data[top * ref->stride + left],
|
|
block_width - left, block_height - top, pic->stride, ref->stride);
|
|
} else if (top && right) {
|
|
result += ver_sad(pic_data,
|
|
&ref_data[top * ref->stride],
|
|
block_width - right, top, pic->stride);
|
|
result += cor_sad(&pic_data[block_width - right],
|
|
&ref_data[top * ref->stride + (block_width - right - 1)],
|
|
right, top, pic->stride);
|
|
result += reg_sad(&pic_data[top * pic->stride],
|
|
&ref_data[top * ref->stride],
|
|
block_width - right, block_height - top, pic->stride, ref->stride);
|
|
result += hor_sad(&pic_data[top * pic->stride + (block_width - right)],
|
|
&ref_data[top * ref->stride + (block_width - right - 1)],
|
|
right, block_height - top, pic->stride, ref->stride);
|
|
} else if (bottom && left) {
|
|
result += hor_sad(pic_data,
|
|
&ref_data[left],
|
|
left, block_height - bottom, pic->stride, ref->stride);
|
|
result += reg_sad(&pic_data[left],
|
|
&ref_data[left],
|
|
block_width - left, block_height - bottom, pic->stride, ref->stride);
|
|
result += cor_sad(&pic_data[(block_height - bottom) * pic->stride],
|
|
&ref_data[(block_height - bottom - 1) * ref->stride + left],
|
|
left, bottom, pic->stride);
|
|
result += ver_sad(&pic_data[(block_height - bottom) * pic->stride + left],
|
|
&ref_data[(block_height - bottom - 1) * ref->stride + left],
|
|
block_width - left, bottom, pic->stride);
|
|
} else if (bottom && right) {
|
|
result += reg_sad(pic_data,
|
|
ref_data,
|
|
block_width - right, block_height - bottom, pic->stride, ref->stride);
|
|
result += hor_sad(&pic_data[block_width - right],
|
|
&ref_data[block_width - right - 1],
|
|
right, block_height - bottom, pic->stride, ref->stride);
|
|
result += ver_sad(&pic_data[(block_height - bottom) * pic->stride],
|
|
&ref_data[(block_height - bottom - 1) * ref->stride],
|
|
block_width - right, bottom, pic->stride);
|
|
result += cor_sad(&pic_data[(block_height - bottom) * pic->stride + block_width - right],
|
|
&ref_data[(block_height - bottom - 1) * ref->stride + block_width - right - 1],
|
|
right, bottom, pic->stride);
|
|
} else if (top) {
|
|
result += ver_sad(pic_data,
|
|
&ref_data[top * ref->stride],
|
|
block_width, top, pic->stride);
|
|
result += reg_sad(&pic_data[top * pic->stride],
|
|
&ref_data[top * ref->stride],
|
|
block_width, block_height - top, pic->stride, ref->stride);
|
|
} else if (bottom) {
|
|
result += reg_sad(pic_data,
|
|
ref_data,
|
|
block_width, block_height - bottom, pic->stride, ref->stride);
|
|
result += ver_sad(&pic_data[(block_height - bottom) * pic->stride],
|
|
&ref_data[(block_height - bottom - 1) * ref->stride],
|
|
block_width, bottom, pic->stride);
|
|
} else if (left) {
|
|
result += hor_sad(pic_data,
|
|
&ref_data[left],
|
|
left, block_height, pic->stride, ref->stride);
|
|
result += reg_sad(&pic_data[left],
|
|
&ref_data[left],
|
|
block_width - left, block_height, pic->stride, ref->stride);
|
|
} else if (right) {
|
|
result += reg_sad(pic_data,
|
|
ref_data,
|
|
block_width - right, block_height, pic->stride, ref->stride);
|
|
result += hor_sad(&pic_data[block_width - right],
|
|
&ref_data[block_width - right - 1],
|
|
right, block_height, pic->stride, ref->stride);
|
|
} else {
|
|
result += reg_sad(pic_data, ref_data, block_width, block_height, pic->stride, ref->stride);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
unsigned image_calc_sad(const image *pic, const image *ref, int pic_x, int pic_y, int ref_x, int ref_y,
|
|
int block_width, int block_height) {
|
|
assert(pic_x >= 0 && pic_x <= pic->width - block_width);
|
|
assert(pic_y >= 0 && pic_y <= pic->height - block_height);
|
|
if (ref_x >= 0 && ref_x <= ref->width - block_width &&
|
|
ref_y >= 0 && ref_y <= ref->height - block_height)
|
|
{
|
|
// Reference block is completely inside the frame, so just calculate the
|
|
// SAD directly. This is the most common case, which is why it's first.
|
|
const pixel *pic_data = &pic->y[pic_y * pic->stride + pic_x];
|
|
const pixel *ref_data = &ref->y[ref_y * ref->stride + ref_x];
|
|
return reg_sad(pic_data, ref_data, block_width, block_height, pic->stride, ref->stride);
|
|
} else {
|
|
// Call a routine that knows how to interpolate pixels outside the frame.
|
|
return image_interpolated_sad(pic, ref, pic_x, pic_y, ref_x, ref_y, block_width, block_height);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Calculate SATD between two 4x4 blocks inside bigger arrays.
|
|
* From HM 13.0
|
|
*/
|
|
static unsigned satd_16bit_4x4(const pixel *piOrg, const pixel *piCur)
|
|
{
|
|
int32_t k, satd = 0, diff[16], m[16], d[16];
|
|
for( k = 0; k < 16; ++k ) {
|
|
diff[k] = piOrg[k] - piCur[k];
|
|
}
|
|
|
|
/*===== hadamard transform =====*/
|
|
m[ 0] = diff[ 0] + diff[12];
|
|
m[ 1] = diff[ 1] + diff[13];
|
|
m[ 2] = diff[ 2] + diff[14];
|
|
m[ 3] = diff[ 3] + diff[15];
|
|
m[ 4] = diff[ 4] + diff[ 8];
|
|
m[ 5] = diff[ 5] + diff[ 9];
|
|
m[ 6] = diff[ 6] + diff[10];
|
|
m[ 7] = diff[ 7] + diff[11];
|
|
m[ 8] = diff[ 4] - diff[ 8];
|
|
m[ 9] = diff[ 5] - diff[ 9];
|
|
m[10] = diff[ 6] - diff[10];
|
|
m[11] = diff[ 7] - diff[11];
|
|
m[12] = diff[ 0] - diff[12];
|
|
m[13] = diff[ 1] - diff[13];
|
|
m[14] = diff[ 2] - diff[14];
|
|
m[15] = diff[ 3] - diff[15];
|
|
|
|
d[ 0] = m[ 0] + m[ 4];
|
|
d[ 1] = m[ 1] + m[ 5];
|
|
d[ 2] = m[ 2] + m[ 6];
|
|
d[ 3] = m[ 3] + m[ 7];
|
|
d[ 4] = m[ 8] + m[12];
|
|
d[ 5] = m[ 9] + m[13];
|
|
d[ 6] = m[10] + m[14];
|
|
d[ 7] = m[11] + m[15];
|
|
d[ 8] = m[ 0] - m[ 4];
|
|
d[ 9] = m[ 1] - m[ 5];
|
|
d[10] = m[ 2] - m[ 6];
|
|
d[11] = m[ 3] - m[ 7];
|
|
d[12] = m[12] - m[ 8];
|
|
d[13] = m[13] - m[ 9];
|
|
d[14] = m[14] - m[10];
|
|
d[15] = m[15] - m[11];
|
|
|
|
m[ 0] = d[ 0] + d[ 3];
|
|
m[ 1] = d[ 1] + d[ 2];
|
|
m[ 2] = d[ 1] - d[ 2];
|
|
m[ 3] = d[ 0] - d[ 3];
|
|
m[ 4] = d[ 4] + d[ 7];
|
|
m[ 5] = d[ 5] + d[ 6];
|
|
m[ 6] = d[ 5] - d[ 6];
|
|
m[ 7] = d[ 4] - d[ 7];
|
|
m[ 8] = d[ 8] + d[11];
|
|
m[ 9] = d[ 9] + d[10];
|
|
m[10] = d[ 9] - d[10];
|
|
m[11] = d[ 8] - d[11];
|
|
m[12] = d[12] + d[15];
|
|
m[13] = d[13] + d[14];
|
|
m[14] = d[13] - d[14];
|
|
m[15] = d[12] - d[15];
|
|
|
|
d[ 0] = m[ 0] + m[ 1];
|
|
d[ 1] = m[ 0] - m[ 1];
|
|
d[ 2] = m[ 2] + m[ 3];
|
|
d[ 3] = m[ 3] - m[ 2];
|
|
d[ 4] = m[ 4] + m[ 5];
|
|
d[ 5] = m[ 4] - m[ 5];
|
|
d[ 6] = m[ 6] + m[ 7];
|
|
d[ 7] = m[ 7] - m[ 6];
|
|
d[ 8] = m[ 8] + m[ 9];
|
|
d[ 9] = m[ 8] - m[ 9];
|
|
d[10] = m[10] + m[11];
|
|
d[11] = m[11] - m[10];
|
|
d[12] = m[12] + m[13];
|
|
d[13] = m[12] - m[13];
|
|
d[14] = m[14] + m[15];
|
|
d[15] = m[15] - m[14];
|
|
|
|
for (k=0; k<16; ++k) {
|
|
satd += abs(d[k]);
|
|
}
|
|
satd = ((satd+1)>>1);
|
|
|
|
return satd;
|
|
}
|
|
|
|
/**
|
|
* \brief Calculate SATD between two 8x8 blocks inside bigger arrays.
|
|
*/
|
|
unsigned satd_16bit_8x8_general(const pixel * piOrg, const int32_t iStrideOrg,
|
|
const pixel * piCur, const int32_t iStrideCur)
|
|
{
|
|
int32_t k, i, j, jj, sad=0;
|
|
int32_t diff[64], m1[8][8], m2[8][8], m3[8][8];
|
|
|
|
for (k = 0; k < 64; k += 8) {
|
|
diff[k+0] = piOrg[0] - piCur[0];
|
|
diff[k+1] = piOrg[1] - piCur[1];
|
|
diff[k+2] = piOrg[2] - piCur[2];
|
|
diff[k+3] = piOrg[3] - piCur[3];
|
|
diff[k+4] = piOrg[4] - piCur[4];
|
|
diff[k+5] = piOrg[5] - piCur[5];
|
|
diff[k+6] = piOrg[6] - piCur[6];
|
|
diff[k+7] = piOrg[7] - piCur[7];
|
|
|
|
piCur += iStrideCur;
|
|
piOrg += iStrideOrg;
|
|
}
|
|
|
|
// horizontal
|
|
for (j = 0; j < 8; ++j) {
|
|
jj = j << 3;
|
|
m2[j][0] = diff[jj ] + diff[jj+4];
|
|
m2[j][1] = diff[jj+1] + diff[jj+5];
|
|
m2[j][2] = diff[jj+2] + diff[jj+6];
|
|
m2[j][3] = diff[jj+3] + diff[jj+7];
|
|
m2[j][4] = diff[jj ] - diff[jj+4];
|
|
m2[j][5] = diff[jj+1] - diff[jj+5];
|
|
m2[j][6] = diff[jj+2] - diff[jj+6];
|
|
m2[j][7] = diff[jj+3] - diff[jj+7];
|
|
|
|
m1[j][0] = m2[j][0] + m2[j][2];
|
|
m1[j][1] = m2[j][1] + m2[j][3];
|
|
m1[j][2] = m2[j][0] - m2[j][2];
|
|
m1[j][3] = m2[j][1] - m2[j][3];
|
|
m1[j][4] = m2[j][4] + m2[j][6];
|
|
m1[j][5] = m2[j][5] + m2[j][7];
|
|
m1[j][6] = m2[j][4] - m2[j][6];
|
|
m1[j][7] = m2[j][5] - m2[j][7];
|
|
|
|
m2[j][0] = m1[j][0] + m1[j][1];
|
|
m2[j][1] = m1[j][0] - m1[j][1];
|
|
m2[j][2] = m1[j][2] + m1[j][3];
|
|
m2[j][3] = m1[j][2] - m1[j][3];
|
|
m2[j][4] = m1[j][4] + m1[j][5];
|
|
m2[j][5] = m1[j][4] - m1[j][5];
|
|
m2[j][6] = m1[j][6] + m1[j][7];
|
|
m2[j][7] = m1[j][6] - m1[j][7];
|
|
}
|
|
|
|
// vertical
|
|
for (i = 0; i < 8; ++i) {
|
|
m3[0][i] = m2[0][i] + m2[4][i];
|
|
m3[1][i] = m2[1][i] + m2[5][i];
|
|
m3[2][i] = m2[2][i] + m2[6][i];
|
|
m3[3][i] = m2[3][i] + m2[7][i];
|
|
m3[4][i] = m2[0][i] - m2[4][i];
|
|
m3[5][i] = m2[1][i] - m2[5][i];
|
|
m3[6][i] = m2[2][i] - m2[6][i];
|
|
m3[7][i] = m2[3][i] - m2[7][i];
|
|
|
|
m1[0][i] = m3[0][i] + m3[2][i];
|
|
m1[1][i] = m3[1][i] + m3[3][i];
|
|
m1[2][i] = m3[0][i] - m3[2][i];
|
|
m1[3][i] = m3[1][i] - m3[3][i];
|
|
m1[4][i] = m3[4][i] + m3[6][i];
|
|
m1[5][i] = m3[5][i] + m3[7][i];
|
|
m1[6][i] = m3[4][i] - m3[6][i];
|
|
m1[7][i] = m3[5][i] - m3[7][i];
|
|
|
|
m2[0][i] = m1[0][i] + m1[1][i];
|
|
m2[1][i] = m1[0][i] - m1[1][i];
|
|
m2[2][i] = m1[2][i] + m1[3][i];
|
|
m2[3][i] = m1[2][i] - m1[3][i];
|
|
m2[4][i] = m1[4][i] + m1[5][i];
|
|
m2[5][i] = m1[4][i] - m1[5][i];
|
|
m2[6][i] = m1[6][i] + m1[7][i];
|
|
m2[7][i] = m1[6][i] - m1[7][i];
|
|
}
|
|
|
|
for (i = 0; i < 64; ++i) {
|
|
sad += abs(((int*)m2)[i]);
|
|
}
|
|
|
|
sad = (sad + 2) >> 2;
|
|
|
|
return sad;
|
|
}
|
|
|
|
// Function macro for defining hadamard calculating functions
|
|
// for fixed size blocks. They calculate hadamard for integer
|
|
// multiples of 8x8 with the 8x8 hadamard function.
|
|
#define SATD_NXN(n, pixel_type, suffix) \
|
|
static unsigned satd_ ## suffix ## _ ## n ## x ## n( \
|
|
const pixel_type * const block1, const pixel_type * const block2) \
|
|
{ \
|
|
unsigned x, y; \
|
|
unsigned sum = 0; \
|
|
for (y = 0; y < (n); y += 8) { \
|
|
unsigned row = y * (n); \
|
|
for (x = 0; x < (n); x += 8) { \
|
|
sum += satd_16bit_8x8_general(&block1[row + x], (n), &block2[row + x], (n)); \
|
|
} \
|
|
} \
|
|
return sum; \
|
|
}
|
|
|
|
// These macros define sadt_16bit_NxN for N = 8, 16, 32, 64
|
|
SATD_NXN(8, pixel, 16bit)
|
|
SATD_NXN(16, pixel, 16bit)
|
|
SATD_NXN(32, pixel, 16bit)
|
|
SATD_NXN(64, pixel, 16bit)
|
|
|
|
// Function macro for defining SAD calculating functions
|
|
// for fixed size blocks.
|
|
#define SAD_NXN(n, pixel_type, suffix) \
|
|
static unsigned sad_ ## suffix ## _ ## n ## x ## n( \
|
|
const pixel_type * const block1, const pixel_type * const block2) \
|
|
{ \
|
|
unsigned i; \
|
|
unsigned sum = 0; \
|
|
for (i = 0; i < (n)*(n); ++i) { \
|
|
sum += abs(block1[i] - block2[i]); \
|
|
} \
|
|
return sum; \
|
|
}
|
|
|
|
// These macros define sad_16bit_nxn functions for n = 4, 8, 16, 32, 64
|
|
// with function signatures of cost_16bit_nxn_func.
|
|
// They are used through get_sad_16bit_nxn_func.
|
|
SAD_NXN(4, pixel, 16bit)
|
|
SAD_NXN(8, pixel, 16bit)
|
|
SAD_NXN(16, pixel, 16bit)
|
|
SAD_NXN(32, pixel, 16bit)
|
|
SAD_NXN(64, pixel, 16bit)
|
|
|
|
/**
|
|
* \brief Get a function that calculates SATD for NxN block.
|
|
*
|
|
* \param n Width of the region for which SATD is calculated.
|
|
*
|
|
* \returns Pointer to cost_16bit_nxn_func.
|
|
*/
|
|
cost_16bit_nxn_func get_satd_16bit_nxn_func(unsigned n)
|
|
{
|
|
switch (n) {
|
|
case 4:
|
|
return &satd_16bit_4x4;
|
|
case 8:
|
|
return &satd_16bit_8x8;
|
|
case 16:
|
|
return &satd_16bit_16x16;
|
|
case 32:
|
|
return &satd_16bit_32x32;
|
|
case 64:
|
|
return &satd_16bit_64x64;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Get a function that calculates SAD for NxN block.
|
|
*
|
|
* \param n Width of the region for which SAD is calculated.
|
|
*
|
|
* \returns Pointer to cost_16bit_nxn_func.
|
|
*/
|
|
cost_16bit_nxn_func get_sad_16bit_nxn_func(unsigned n)
|
|
{
|
|
switch (n) {
|
|
case 4:
|
|
return &sad_16bit_4x4;
|
|
case 8:
|
|
return &sad_16bit_8x8;
|
|
case 16:
|
|
return &sad_16bit_16x16;
|
|
case 32:
|
|
return &sad_16bit_32x32;
|
|
case 64:
|
|
return &sad_16bit_64x64;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
unsigned pixels_calc_ssd(const pixel *const ref, const pixel *const rec,
|
|
const int ref_stride, const int rec_stride,
|
|
const int width)
|
|
{
|
|
int ssd = 0;
|
|
int y, x;
|
|
|
|
for (y = 0; y < width; ++y) {
|
|
for (x = 0; x < width; ++x) {
|
|
int diff = ref[x + y * ref_stride] - rec[x + y * rec_stride];
|
|
ssd += diff * diff;
|
|
}
|
|
}
|
|
|
|
return ssd;
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief BLock Image Transfer from one buffer to another.
|
|
*
|
|
* It's a stupidly simple loop that copies pixels.
|
|
*
|
|
* \param orig Start of the originating buffer.
|
|
* \param dst Start of the destination buffer.
|
|
* \param width Width of the copied region.
|
|
* \param height Height of the copied region.
|
|
* \param orig_stride Width of a row in the originating buffer.
|
|
* \param dst_stride Width of a row in the destination buffer.
|
|
*
|
|
* This should be inlined, but it's defined here for now to see if Visual
|
|
* Studios LTCG will inline it.
|
|
*/
|
|
void pixels_blit(const pixel * const orig, pixel * const dst,
|
|
const unsigned width, const unsigned height,
|
|
const unsigned orig_stride, const unsigned dst_stride)
|
|
{
|
|
unsigned y;
|
|
//There is absolutely no reason to have a width greater than the source or the destination stride.
|
|
assert(width <= orig_stride);
|
|
assert(width <= dst_stride);
|
|
|
|
#ifdef CHECKPOINTS
|
|
for (y = 0; y < height; ++y) {
|
|
char buffer[3*width];
|
|
int p;
|
|
for (p = 0; p < width; ++p) {
|
|
sprintf((buffer + 3*p), "%02X ", orig[y*orig_stride]);
|
|
}
|
|
buffer[3*width] = 0;
|
|
CHECKPOINT("pixels_blit: %04d: %s", y, buffer);
|
|
}
|
|
#endif //CHECKPOINTS
|
|
|
|
if (orig == dst) {
|
|
//If we have the same array, then we should have the same stride
|
|
assert(orig_stride == dst_stride);
|
|
return;
|
|
}
|
|
assert(orig != dst || orig_stride == dst_stride);
|
|
|
|
for (y = 0; y < height; ++y) {
|
|
memcpy(&dst[y*dst_stride], &orig[y*orig_stride], width * sizeof(pixel));
|
|
}
|
|
}
|
|
|