mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-24 18:34:06 +00:00
536 lines
18 KiB
C
536 lines
18 KiB
C
/**
|
|
* \file
|
|
*
|
|
* \author Marko Viitanen ( fador@iki.fi ),
|
|
* Tampere University of Technology,
|
|
* Department of Pervasive Computing.
|
|
* \author Ari Koivula ( ari@koivu.la ),
|
|
* Tampere University of Technology,
|
|
* Department of Pervasive Computing.
|
|
*/
|
|
|
|
#include "search.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "config.h"
|
|
#include "bitstream.h"
|
|
#include "picture.h"
|
|
#include "intra.h"
|
|
#include "inter.h"
|
|
#include "filter.h"
|
|
#include "debug.h"
|
|
|
|
|
|
// Temporarily for debugging.
|
|
#define USE_INTRA_IN_P 1
|
|
//#define RENDER_CU encoder->frame==2
|
|
#define RENDER_CU 0
|
|
#define SEARCH_MV_FULL_RADIUS 0
|
|
|
|
#define IN_FRAME(x, y, width, height, block_width, block_height) \
|
|
((x) >= 0 && (y) >= 0 \
|
|
&& (x) + (block_width) <= (width) \
|
|
&& (y) + (block_height) <= (height))
|
|
|
|
/**
|
|
* This is used in the hexagon_search to select 3 points to search.
|
|
*
|
|
* The start of the hexagonal pattern has been repeated at the end so that
|
|
* the indices between 1-6 can be used as the start of a 3-point list of new
|
|
* points to search.
|
|
*
|
|
* 6 o-o 1 / 7
|
|
* / \
|
|
* 5 o 0 o 2 / 8
|
|
* \ /
|
|
* 4 o-o 3
|
|
*/
|
|
const vector2d large_hexbs[10] = {
|
|
{ 0, 0 },
|
|
{ 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 },
|
|
{ 1, -2 }, { 2, 0 }
|
|
};
|
|
|
|
/**
|
|
* This is used as the last step of the hexagon search.
|
|
*/
|
|
const vector2d small_hexbs[5] = {
|
|
{ 0, 0 },
|
|
{ -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 }
|
|
};
|
|
|
|
int calc_mvd_cost(int x, int y, const vector2d *pred)
|
|
{
|
|
int cost = 0;
|
|
|
|
// Get the absolute difference vector and count the bits.
|
|
x = abs(abs(x) - abs(pred->x));
|
|
y = abs(abs(y) - abs(pred->y));
|
|
while (x >>= 1) {
|
|
++cost;
|
|
}
|
|
while (y >>= 1) {
|
|
++cost;
|
|
}
|
|
|
|
// I don't know what is a good cost function for this. It probably doesn't
|
|
// have to aproximate the actual cost of encoding the vector, but it's a
|
|
// place to start.
|
|
|
|
// Add two for quarter pixel resolution and multiply by two for Exp-Golomb.
|
|
return (cost ? (cost + 2) << 1 : 0);
|
|
}
|
|
|
|
/**
|
|
* \brief Do motion search using the HEXBS algorithm.
|
|
*
|
|
* \param depth log2 depth of the search
|
|
* \param pic Picture motion vector is searched for.
|
|
* \param ref Picture motion vector is searched from.
|
|
* \param orig Top left corner of the searched for block.
|
|
* \param mv_in_out Predicted mv in and best out. Quarter pixel precision.
|
|
*
|
|
* \returns Cost of the motion vector.
|
|
*
|
|
* Motion vector is searched by first searching iteratively with the large
|
|
* hexagon pattern until the best match is at the center of the hexagon.
|
|
* As a final step a smaller hexagon is used to check the adjacent pixels.
|
|
*
|
|
* If a non 0,0 predicted motion vector predictor is given as mv_in_out,
|
|
* the 0,0 vector is also tried. This is hoped to help in the case where
|
|
* the predicted motion vector is way off. In the future even more additional
|
|
* points like 0,0 might be used, such as vectors from top or left.
|
|
*/
|
|
unsigned hexagon_search(unsigned depth,
|
|
const picture *pic, const picture *ref,
|
|
const vector2d *orig, vector2d *mv_in_out)
|
|
{
|
|
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
|
|
int block_width = CU_WIDTH_FROM_DEPTH(depth);
|
|
unsigned best_cost = -1;
|
|
unsigned i;
|
|
unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs.
|
|
|
|
// Search the initial 7 points of the hexagon.
|
|
for (i = 0; i < 7; ++i) {
|
|
const vector2d *pattern = &large_hexbs[i];
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + mv.x + pattern->x, orig->y + mv.y + pattern->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(mv.x + pattern->x, orig->y + mv.y + pattern->y, mv_in_out);
|
|
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = i;
|
|
}
|
|
}
|
|
|
|
// Try the 0,0 vector.
|
|
if (!(mv.x == 0 && mv.y == 0)) {
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x, orig->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(0, 0, mv_in_out);
|
|
|
|
// If the 0,0 is better, redo the hexagon around that point.
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = 0;
|
|
mv.x = 0;
|
|
mv.y = 0;
|
|
|
|
for (i = 1; i < 7; ++i) {
|
|
const vector2d *pattern = &large_hexbs[i];
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + pattern->x,
|
|
orig->y + pattern->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(pattern->x, pattern->y, mv_in_out);
|
|
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Iteratively search the 3 new points around the best match, until the best
|
|
// match is in the center.
|
|
while (best_index != 0) {
|
|
unsigned start; // Starting point of the 3 offsets to be searched.
|
|
if (best_index == 1) {
|
|
start = 6;
|
|
} else if (best_index == 8) {
|
|
start = 1;
|
|
} else {
|
|
start = best_index - 1;
|
|
}
|
|
|
|
// Move the center to the best match.
|
|
mv.x += large_hexbs[best_index].x;
|
|
mv.y += large_hexbs[best_index].y;
|
|
best_index = 0;
|
|
|
|
// Iterate through the next 3 points.
|
|
for (i = 0; i < 3; ++i) {
|
|
const vector2d *offset = &large_hexbs[start + i];
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + mv.x + offset->x,
|
|
orig->y + mv.y + offset->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(mv.x + offset->x, mv.y + offset->y, mv_in_out);
|
|
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = start + i;
|
|
}
|
|
++offset;
|
|
}
|
|
}
|
|
|
|
// Move the center to the best match.
|
|
mv.x += large_hexbs[best_index].x;
|
|
mv.y += large_hexbs[best_index].y;
|
|
best_index = 0;
|
|
|
|
// Do the final step of the search with a small pattern.
|
|
for (i = 1; i < 5; ++i) {
|
|
const vector2d *offset = &small_hexbs[i];
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + mv.x + offset->x,
|
|
orig->y + mv.y + offset->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(mv.x + offset->x, mv.y + offset->y, mv_in_out);
|
|
|
|
if (cost > 0 && cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = i;
|
|
}
|
|
}
|
|
|
|
// Adjust the movement vector according to the final best match.
|
|
mv.x += small_hexbs[best_index].x;
|
|
mv.y += small_hexbs[best_index].y;
|
|
|
|
// Return final movement vector in quarter-pixel precision.
|
|
mv_in_out->x = mv.x << 2;
|
|
mv_in_out->y = mv.y << 2;
|
|
|
|
return best_cost;
|
|
}
|
|
|
|
unsigned search_mv_full(unsigned depth,
|
|
const picture *pic, const picture *ref,
|
|
const vector2d *orig, vector2d *mv_in_out)
|
|
{
|
|
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
|
|
int block_width = CU_WIDTH_FROM_DEPTH(depth);
|
|
unsigned best_cost = -1;
|
|
int x, y;
|
|
vector2d min_mv, max_mv;
|
|
|
|
/*if (abs(mv.x) > SEARCH_MV_FULL_RADIUS || abs(mv.y) > SEARCH_MV_FULL_RADIUS) {
|
|
best_cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x, orig->y,
|
|
block_width, block_width);
|
|
mv.x = 0;
|
|
mv.y = 0;
|
|
}*/
|
|
|
|
min_mv.x = mv.x - SEARCH_MV_FULL_RADIUS;
|
|
min_mv.y = mv.y - SEARCH_MV_FULL_RADIUS;
|
|
max_mv.x = mv.x + SEARCH_MV_FULL_RADIUS;
|
|
max_mv.y = mv.y + SEARCH_MV_FULL_RADIUS;
|
|
|
|
for (y = min_mv.y; y < max_mv.y; ++y) {
|
|
for (x = min_mv.x; x < max_mv.x; ++x) {
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + x,
|
|
orig->y + y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(x, y, mv_in_out);
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
mv.x = x;
|
|
mv.y = y;
|
|
}
|
|
}
|
|
}
|
|
|
|
mv_in_out->x = mv.x << 2;
|
|
mv_in_out->y = mv.y << 2;
|
|
|
|
return best_cost;
|
|
}
|
|
|
|
/**
|
|
* \brief
|
|
*/
|
|
void search_buildReferenceBorder(picture *pic, int32_t x_ctb, int32_t y_ctb,
|
|
int16_t outwidth, pixel *dst,
|
|
int32_t dststride, int8_t chroma)
|
|
{
|
|
int32_t left_col; // left column iterator
|
|
pixel val; // variable to store extrapolated value
|
|
int32_t i; // index iterator
|
|
pixel dc_val = 1 << (g_bitdepth - 1); // default predictor value
|
|
int32_t top_row; // top row iterator
|
|
int32_t src_width = (pic->width >> (chroma ? 1 : 0)); // source picture width
|
|
int32_t src_height = (pic->height >> (chroma ? 1 : 0)); // source picture height
|
|
pixel *src_pic = (!chroma) ? pic->y_data : ((chroma == 1) ? pic->u_data : pic->v_data); // input picture pointer
|
|
int16_t scu_width = LCU_WIDTH >> (MAX_DEPTH + (chroma ? 1 : 0)); // Smallest Coding Unit width
|
|
pixel *src_shifted = &src_pic[x_ctb * scu_width + (y_ctb * scu_width) * src_width]; // input picture pointer shifted to start from the left-top corner of the current block
|
|
int32_t width_in_scu = pic->width_in_lcu << MAX_DEPTH; // picture width in SCU
|
|
|
|
// Fill left column
|
|
if (x_ctb) {
|
|
// Loop SCU's
|
|
for (left_col = 1; left_col < outwidth / scu_width; left_col++) {
|
|
// If over the picture height or block not yet searched, stop
|
|
if ((y_ctb + left_col) * scu_width >= src_height
|
|
|| pic->cu_array[MAX_DEPTH][x_ctb - 1 + (y_ctb + left_col) * width_in_scu].type == CU_NOTSET) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Copy the pixels to output
|
|
for (i = 0; i < left_col * scu_width - 1; i++) {
|
|
dst[(i + 1) * dststride] = src_shifted[i * src_width - 1];
|
|
}
|
|
|
|
// if the loop was not completed, extrapolate the last pixel pushed to output
|
|
if (left_col != outwidth / scu_width) {
|
|
val = src_shifted[(left_col * scu_width - 1) * src_width - 1];
|
|
for (i = (left_col * scu_width); i < outwidth; i++) {
|
|
dst[i * dststride] = val;
|
|
}
|
|
}
|
|
} else { // If left column not available, copy from toprow or use the default predictor
|
|
val = y_ctb ? src_shifted[-src_width] : dc_val;
|
|
for (i = 0; i < outwidth; i++) {
|
|
dst[i * dststride] = val;
|
|
}
|
|
}
|
|
|
|
if (y_ctb) {
|
|
// Loop top SCU's
|
|
for (top_row = 1; top_row < outwidth / scu_width; top_row++) {
|
|
if ((x_ctb + top_row) * scu_width >= src_width
|
|
|| pic->cu_array[MAX_DEPTH][x_ctb + top_row + (y_ctb - 1) * width_in_scu].type
|
|
== CU_NOTSET) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < top_row * scu_width - 1; i++) {
|
|
dst[i + 1] = src_shifted[i - src_width];
|
|
}
|
|
|
|
if (top_row != outwidth / scu_width) {
|
|
val = src_shifted[(top_row * scu_width) - src_width - 1];
|
|
for (i = (top_row * scu_width); i < outwidth; i++) {
|
|
dst[i] = val;
|
|
}
|
|
}
|
|
} else {
|
|
val = x_ctb ? src_shifted[-1] : dc_val;
|
|
for (i = 1; i < outwidth; i++) {
|
|
dst[i] = val;
|
|
}
|
|
}
|
|
// Topleft corner
|
|
dst[0] = (x_ctb && y_ctb) ? src_shifted[-src_width - 1] : dst[dststride];
|
|
|
|
}
|
|
|
|
/**
|
|
* \brief
|
|
*/
|
|
void search_tree(encoder_control *encoder,
|
|
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
|
|
{
|
|
uint8_t border_x = ((encoder->in.width) < (x_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
|
|
uint8_t border_y = ((encoder->in.height) < (y_ctb * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> depth))) ? 1 : 0;
|
|
uint8_t border_split_x = ((encoder->in.width) < ((x_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
|
|
uint8_t border_split_y = ((encoder->in.height) < ((y_ctb + 1) * (LCU_WIDTH >> MAX_DEPTH) + (LCU_WIDTH >> (depth + 1)))) ? 0 : 1;
|
|
uint8_t border = border_x | border_y; // are we in any border CU
|
|
|
|
picture *cur_pic = encoder->in.cur_pic;
|
|
cu_info *cur_cu = &cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
|
|
|
|
cur_cu->intra.cost = 0xffffffff;
|
|
cur_cu->inter.cost = 0xffffffff;
|
|
|
|
// Force split on border
|
|
if (depth != MAX_DEPTH) {
|
|
if (border) {
|
|
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
|
|
search_tree(encoder, x_ctb, y_ctb, depth + 1);
|
|
if (!border_x || border_split_x) {
|
|
search_tree(encoder, x_ctb + change, y_ctb, depth + 1);
|
|
}
|
|
if (!border_y || border_split_y) {
|
|
search_tree(encoder, x_ctb, y_ctb + change, depth + 1);
|
|
}
|
|
if (!border || (border_split_x && border_split_y)) {
|
|
search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// INTER SEARCH
|
|
if (cur_pic->slicetype != SLICE_I
|
|
&& depth >= MIN_INTER_SEARCH_DEPTH && depth <= MAX_INTER_SEARCH_DEPTH) {
|
|
|
|
picture *ref_pic = encoder->ref->pics[0];
|
|
unsigned width_in_scu = NO_SCU_IN_LCU(ref_pic->width_in_lcu);
|
|
cu_info *ref_cu = &ref_pic->cu_array[MAX_DEPTH][y_ctb * width_in_scu + x_ctb];
|
|
|
|
vector2d orig, mv;
|
|
orig.x = x_ctb * CU_MIN_SIZE_PIXELS;
|
|
orig.y = y_ctb * CU_MIN_SIZE_PIXELS;
|
|
mv.x = 0;
|
|
mv.y = 0;
|
|
if (ref_cu->type == CU_INTER) {
|
|
mv.x = ref_cu->inter.mv[0];
|
|
mv.y = ref_cu->inter.mv[1];
|
|
}
|
|
|
|
#if SEARCH_MV_FULL_RADIUS
|
|
cur_cu->inter.cost = search_mv_full(depth, cur_pic, ref_pic, &orig, &mv);
|
|
#else
|
|
cur_cu->inter.cost = hexagon_search(depth, cur_pic, ref_pic, &orig, &mv);
|
|
#endif
|
|
|
|
cur_cu->inter.mv_dir = 1;
|
|
cur_cu->inter.mv[0] = mv.x;
|
|
cur_cu->inter.mv[1] = mv.y;
|
|
}
|
|
|
|
// INTRA SEARCH
|
|
if (depth >= MIN_INTRA_SEARCH_DEPTH && depth <= MAX_INTRA_SEARCH_DEPTH
|
|
&& (encoder->in.cur_pic->slicetype == SLICE_I || USE_INTRA_IN_P)) {
|
|
int x = 0, y = 0;
|
|
pixel *base = &encoder->in.cur_pic->y_data[x_ctb * (LCU_WIDTH >> (MAX_DEPTH)) + (y_ctb * (LCU_WIDTH >> (MAX_DEPTH))) * encoder->in.width];
|
|
uint32_t width = LCU_WIDTH >> depth;
|
|
|
|
// INTRAPREDICTION
|
|
pixel pred[LCU_WIDTH * LCU_WIDTH + 1];
|
|
pixel rec[(LCU_WIDTH * 2 + 8) * (LCU_WIDTH * 2 + 8)];
|
|
pixel *recShift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1];
|
|
|
|
// Build reconstructed block to use in prediction with extrapolated borders
|
|
search_buildReferenceBorder(encoder->in.cur_pic, x_ctb, y_ctb,
|
|
(LCU_WIDTH >> (depth)) * 2 + 8, rec, (LCU_WIDTH >> (depth)) * 2 + 8, 0);
|
|
cur_cu->intra.mode = (uint8_t) intra_prediction(encoder->in.cur_pic->y_data,
|
|
encoder->in.width, recShift, (LCU_WIDTH >> (depth)) * 2 + 8,
|
|
x_ctb * (LCU_WIDTH >> (MAX_DEPTH)), y_ctb * (LCU_WIDTH >> (MAX_DEPTH)),
|
|
width, pred, width, &cur_cu->intra.cost);
|
|
//free(pred);
|
|
//free(rec);
|
|
}
|
|
|
|
// Split and search to max_depth
|
|
if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) {
|
|
// Split blocks and remember to change x and y block positions
|
|
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
|
|
search_tree(encoder, x_ctb, y_ctb, depth + 1);
|
|
search_tree(encoder, x_ctb + change, y_ctb, depth + 1);
|
|
search_tree(encoder, x_ctb, y_ctb + change, depth + 1);
|
|
search_tree(encoder, x_ctb + change, y_ctb + change, depth + 1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief
|
|
*/
|
|
uint32_t search_best_mode(encoder_control *encoder,
|
|
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
|
|
{
|
|
cu_info *cur_cu = &encoder->in.cur_pic->cu_array[depth]
|
|
[x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
|
|
uint32_t best_intra_cost = cur_cu->intra.cost;
|
|
uint32_t best_inter_cost = cur_cu->inter.cost;
|
|
uint32_t lambda_cost = (4 * g_lambda_cost[encoder->QP]) << 4; //<<5; //TODO: Correct cost calculation
|
|
|
|
if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) {
|
|
uint32_t cost = lambda_cost;
|
|
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
|
|
cost += search_best_mode(encoder, x_ctb, y_ctb, depth + 1);
|
|
cost += search_best_mode(encoder, x_ctb + change, y_ctb, depth + 1);
|
|
cost += search_best_mode(encoder, x_ctb, y_ctb + change, depth + 1);
|
|
cost += search_best_mode(encoder, x_ctb + change, y_ctb + change, depth + 1);
|
|
|
|
if (cost < best_intra_cost && cost < best_inter_cost)
|
|
{
|
|
// Better value was found at a lower level.
|
|
return cost;
|
|
}
|
|
}
|
|
|
|
// If search hasn't been peformed at all for this block, the cost will be
|
|
// max value, so it is safe to just compare costs. It just has to be made
|
|
// sure that no value overflows.
|
|
if (best_inter_cost <= best_intra_cost) {
|
|
inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu);
|
|
return best_inter_cost;
|
|
} else {
|
|
intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth,
|
|
cur_cu->intra.mode);
|
|
return best_intra_cost;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* \brief
|
|
*/
|
|
void search_slice_data(encoder_control *encoder)
|
|
{
|
|
int16_t x_lcu, y_lcu;
|
|
FILE *fp = 0, *fp2 = 0;
|
|
|
|
if (RENDER_CU) {
|
|
fp = open_cu_file("cu_search.html");
|
|
fp2 = open_cu_file("cu_best.html");
|
|
}
|
|
|
|
// Loop through every LCU in the slice
|
|
for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) {
|
|
for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) {
|
|
uint8_t depth = 0;
|
|
// Recursive function for looping through all the sub-blocks
|
|
search_tree(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
|
|
if (RENDER_CU) {
|
|
render_cu_file(encoder, encoder->in.cur_pic, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp);
|
|
}
|
|
|
|
// Decide actual coding modes
|
|
search_best_mode(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
|
|
if (RENDER_CU) {
|
|
render_cu_file(encoder, encoder->in.cur_pic, depth, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, fp2);
|
|
}
|
|
|
|
encode_block_residual(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
if (RENDER_CU && fp) {
|
|
close_cu_file(fp);
|
|
fp = 0;
|
|
}
|
|
if (RENDER_CU && fp2) {
|
|
close_cu_file(fp2);
|
|
fp2 = 0;
|
|
}
|
|
}
|