mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-28 11:44:08 +00:00
fb9e3ad1d2
This does not currently affect the search primary search defining the used block sizes, only the refining second intra search. Gain 1.9% BD-rate on All Intra 600f of BQMall QP 22,27,32,37.
859 lines
27 KiB
C
859 lines
27 KiB
C
/*****************************************************************************
|
|
* This file is part of Kvazaar HEVC encoder.
|
|
*
|
|
* Copyright (C) 2013-2014 Tampere University of Technology and others (see
|
|
* COPYING file).
|
|
*
|
|
* Kvazaar is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation.
|
|
*
|
|
* Kvazaar is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* \file
|
|
*/
|
|
|
|
#include "search.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "config.h"
|
|
#include "bitstream.h"
|
|
#include "picture.h"
|
|
#include "intra.h"
|
|
#include "inter.h"
|
|
#include "filter.h"
|
|
|
|
|
|
// Temporarily for debugging.
|
|
#define USE_INTRA_IN_P 1
|
|
//#define RENDER_CU encoder->frame==2
|
|
#define RENDER_CU 0
|
|
#define SEARCH_MV_FULL_RADIUS 0
|
|
|
|
#define IN_FRAME(x, y, width, height, block_width, block_height) \
|
|
((x) >= 0 && (y) >= 0 \
|
|
&& (x) + (block_width) <= (width) \
|
|
&& (y) + (block_height) <= (height))
|
|
|
|
/**
|
|
* This is used in the hexagon_search to select 3 points to search.
|
|
*
|
|
* The start of the hexagonal pattern has been repeated at the end so that
|
|
* the indices between 1-6 can be used as the start of a 3-point list of new
|
|
* points to search.
|
|
*
|
|
* 6 o-o 1 / 7
|
|
* / \
|
|
* 5 o 0 o 2 / 8
|
|
* \ /
|
|
* 4 o-o 3
|
|
*/
|
|
const vector2d large_hexbs[10] = {
|
|
{ 0, 0 },
|
|
{ 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 }, { -1, -2 },
|
|
{ 1, -2 }, { 2, 0 }
|
|
};
|
|
|
|
/**
|
|
* This is used as the last step of the hexagon search.
|
|
*/
|
|
const vector2d small_hexbs[5] = {
|
|
{ 0, 0 },
|
|
{ -1, -1 }, { -1, 0 }, { 1, 0 }, { 1, 1 }
|
|
};
|
|
|
|
static int calc_mvd_cost(int x, int y, const vector2d *pred)
|
|
{
|
|
int cost = 0;
|
|
|
|
// Get the absolute difference vector and count the bits.
|
|
x = abs(abs(x) - abs(pred->x));
|
|
y = abs(abs(y) - abs(pred->y));
|
|
while (x >>= 1) {
|
|
++cost;
|
|
}
|
|
while (y >>= 1) {
|
|
++cost;
|
|
}
|
|
|
|
// I don't know what is a good cost function for this. It probably doesn't
|
|
// have to aproximate the actual cost of encoding the vector, but it's a
|
|
// place to start.
|
|
|
|
// Add two for quarter pixel resolution and multiply by two for Exp-Golomb.
|
|
return (cost ? (cost + 2) << 1 : 0);
|
|
}
|
|
|
|
/**
|
|
* \brief Do motion search using the HEXBS algorithm.
|
|
*
|
|
* \param depth log2 depth of the search
|
|
* \param pic Picture motion vector is searched for.
|
|
* \param ref Picture motion vector is searched from.
|
|
* \param orig Top left corner of the searched for block.
|
|
* \param mv_in_out Predicted mv in and best out. Quarter pixel precision.
|
|
*
|
|
* \returns Cost of the motion vector.
|
|
*
|
|
* Motion vector is searched by first searching iteratively with the large
|
|
* hexagon pattern until the best match is at the center of the hexagon.
|
|
* As a final step a smaller hexagon is used to check the adjacent pixels.
|
|
*
|
|
* If a non 0,0 predicted motion vector predictor is given as mv_in_out,
|
|
* the 0,0 vector is also tried. This is hoped to help in the case where
|
|
* the predicted motion vector is way off. In the future even more additional
|
|
* points like 0,0 might be used, such as vectors from top or left.
|
|
*/
|
|
static unsigned hexagon_search(unsigned depth,
|
|
const picture *pic, const picture *ref,
|
|
const vector2d *orig, vector2d *mv_in_out)
|
|
{
|
|
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
|
|
int block_width = CU_WIDTH_FROM_DEPTH(depth);
|
|
unsigned best_cost = UINT32_MAX;
|
|
unsigned i;
|
|
unsigned best_index = 0; // Index of large_hexbs or finally small_hexbs.
|
|
|
|
// Search the initial 7 points of the hexagon.
|
|
for (i = 0; i < 7; ++i) {
|
|
const vector2d *pattern = &large_hexbs[i];
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + mv.x + pattern->x, orig->y + mv.y + pattern->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(mv.x + pattern->x, mv.y + pattern->y, mv_in_out);
|
|
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = i;
|
|
}
|
|
}
|
|
|
|
// Try the 0,0 vector.
|
|
if (!(mv.x == 0 && mv.y == 0)) {
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x, orig->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(0, 0, mv_in_out);
|
|
|
|
// If the 0,0 is better, redo the hexagon around that point.
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = 0;
|
|
mv.x = 0;
|
|
mv.y = 0;
|
|
|
|
for (i = 1; i < 7; ++i) {
|
|
const vector2d *pattern = &large_hexbs[i];
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + pattern->x,
|
|
orig->y + pattern->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(pattern->x, pattern->y, mv_in_out);
|
|
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Iteratively search the 3 new points around the best match, until the best
|
|
// match is in the center.
|
|
while (best_index != 0) {
|
|
unsigned start; // Starting point of the 3 offsets to be searched.
|
|
if (best_index == 1) {
|
|
start = 6;
|
|
} else if (best_index == 8) {
|
|
start = 1;
|
|
} else {
|
|
start = best_index - 1;
|
|
}
|
|
|
|
// Move the center to the best match.
|
|
mv.x += large_hexbs[best_index].x;
|
|
mv.y += large_hexbs[best_index].y;
|
|
best_index = 0;
|
|
|
|
// Iterate through the next 3 points.
|
|
for (i = 0; i < 3; ++i) {
|
|
const vector2d *offset = &large_hexbs[start + i];
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + mv.x + offset->x,
|
|
orig->y + mv.y + offset->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(mv.x + offset->x, mv.y + offset->y, mv_in_out);
|
|
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = start + i;
|
|
}
|
|
++offset;
|
|
}
|
|
}
|
|
|
|
// Move the center to the best match.
|
|
mv.x += large_hexbs[best_index].x;
|
|
mv.y += large_hexbs[best_index].y;
|
|
best_index = 0;
|
|
|
|
// Do the final step of the search with a small pattern.
|
|
for (i = 1; i < 5; ++i) {
|
|
const vector2d *offset = &small_hexbs[i];
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + mv.x + offset->x,
|
|
orig->y + mv.y + offset->y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(mv.x + offset->x, mv.y + offset->y, mv_in_out);
|
|
|
|
if (cost > 0 && cost < best_cost) {
|
|
best_cost = cost;
|
|
best_index = i;
|
|
}
|
|
}
|
|
|
|
// Adjust the movement vector according to the final best match.
|
|
mv.x += small_hexbs[best_index].x;
|
|
mv.y += small_hexbs[best_index].y;
|
|
|
|
// Return final movement vector in quarter-pixel precision.
|
|
mv_in_out->x = mv.x << 2;
|
|
mv_in_out->y = mv.y << 2;
|
|
|
|
return best_cost;
|
|
}
|
|
|
|
#if SEARCH_MV_FULL_RADIUS
|
|
static unsigned search_mv_full(unsigned depth,
|
|
const picture *pic, const picture *ref,
|
|
const vector2d *orig, vector2d *mv_in_out)
|
|
{
|
|
vector2d mv = { mv_in_out->x >> 2, mv_in_out->y >> 2 };
|
|
int block_width = CU_WIDTH_FROM_DEPTH(depth);
|
|
unsigned best_cost = UINT32_MAX;
|
|
int x, y;
|
|
vector2d min_mv, max_mv;
|
|
|
|
/*if (abs(mv.x) > SEARCH_MV_FULL_RADIUS || abs(mv.y) > SEARCH_MV_FULL_RADIUS) {
|
|
best_cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x, orig->y,
|
|
block_width, block_width);
|
|
mv.x = 0;
|
|
mv.y = 0;
|
|
}*/
|
|
|
|
min_mv.x = mv.x - SEARCH_MV_FULL_RADIUS;
|
|
min_mv.y = mv.y - SEARCH_MV_FULL_RADIUS;
|
|
max_mv.x = mv.x + SEARCH_MV_FULL_RADIUS;
|
|
max_mv.y = mv.y + SEARCH_MV_FULL_RADIUS;
|
|
|
|
for (y = min_mv.y; y < max_mv.y; ++y) {
|
|
for (x = min_mv.x; x < max_mv.x; ++x) {
|
|
unsigned cost = calc_sad(pic, ref, orig->x, orig->y,
|
|
orig->x + x,
|
|
orig->y + y,
|
|
block_width, block_width);
|
|
cost += calc_mvd_cost(x, y, mv_in_out);
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
mv.x = x;
|
|
mv.y = y;
|
|
}
|
|
}
|
|
}
|
|
|
|
mv_in_out->x = mv.x << 2;
|
|
mv_in_out->y = mv.y << 2;
|
|
|
|
return best_cost;
|
|
}
|
|
#endif
|
|
|
|
static void search_inter(encoder_control *encoder, uint16_t x_ctb,
|
|
uint16_t y_ctb, uint8_t depth)
|
|
{
|
|
picture *cur_pic = encoder->in.cur_pic;
|
|
int32_t ref_idx = 0;
|
|
cu_info *cur_cu = &cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
|
|
cur_cu->inter.cost = UINT_MAX;
|
|
|
|
for (ref_idx = 0; ref_idx < encoder->ref->used_size; ref_idx++) {
|
|
picture *ref_pic = encoder->ref->pics[ref_idx];
|
|
unsigned width_in_scu = NO_SCU_IN_LCU(ref_pic->width_in_lcu);
|
|
cu_info *ref_cu = &ref_pic->cu_array[MAX_DEPTH][y_ctb * width_in_scu + x_ctb];
|
|
uint32_t temp_cost = (int)(g_lambda_cost[encoder->QP] * ref_idx);
|
|
vector2d orig, mv;
|
|
orig.x = x_ctb * CU_MIN_SIZE_PIXELS;
|
|
orig.y = y_ctb * CU_MIN_SIZE_PIXELS;
|
|
mv.x = 0;
|
|
mv.y = 0;
|
|
if (ref_cu->type == CU_INTER) {
|
|
mv.x = ref_cu->inter.mv[0];
|
|
mv.y = ref_cu->inter.mv[1];
|
|
}
|
|
|
|
#if SEARCH_MV_FULL_RADIUS
|
|
cur_cu->inter.cost = search_mv_full(depth, cur_pic, ref_pic, &orig, &mv);
|
|
#else
|
|
temp_cost += hexagon_search(depth, cur_pic, ref_pic, &orig, &mv);
|
|
#endif
|
|
if(temp_cost < cur_cu->inter.cost) {
|
|
cur_cu->inter.mv_ref = ref_idx;
|
|
cur_cu->inter.mv_dir = 1;
|
|
cur_cu->inter.mv[0] = (int16_t)mv.x;
|
|
cur_cu->inter.mv[1] = (int16_t)mv.y;
|
|
cur_cu->inter.cost = temp_cost;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Width from top left of the LCU, so +1 for ref buffer size.
|
|
#define LCU_REF_PX_WIDTH (LCU_WIDTH + LCU_WIDTH / 2)
|
|
|
|
/**
|
|
* Top and left intra reference pixels for LCU.
|
|
* - Intra needs maximum of 32 to the right and down from LCU border.
|
|
* - First pixel is the top-left pixel.
|
|
*/
|
|
typedef struct {
|
|
pixel y[LCU_REF_PX_WIDTH + 1];
|
|
pixel u[LCU_REF_PX_WIDTH / 2 + 1];
|
|
pixel v[LCU_REF_PX_WIDTH / 2 + 1];
|
|
} lcu_ref_px_t;
|
|
|
|
typedef struct {
|
|
pixel y[LCU_LUMA_SIZE];
|
|
pixel u[LCU_CHROMA_SIZE];
|
|
pixel v[LCU_CHROMA_SIZE];
|
|
} lcu_yuv_t;
|
|
|
|
typedef struct {
|
|
lcu_ref_px_t top_ref; //!< Reference pixels from adjacent LCUs.
|
|
lcu_ref_px_t left_ref; //!< Reference pixels from adjacent LCUs.
|
|
lcu_yuv_t ref; //!< LCU reference pixels
|
|
lcu_yuv_t rec; //!< LCU reconstructed pixels
|
|
|
|
/**
|
|
* A 9x9 CU array for the LCU, +1 CU.
|
|
* - Top reference CUs on row 0.
|
|
* - Left reference CUs on column 0.
|
|
* - All of LCUs CUs on 1:9, 1:9.
|
|
* - Top right reference CU on the last slot.
|
|
*/
|
|
cu_info cu[9*9+1];
|
|
} lcu_t;
|
|
|
|
|
|
/**
|
|
* Copy all non-reference CU data from depth+1 to depth.
|
|
*/
|
|
static void work_tree_copy_up(int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH])
|
|
{
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* Copy all non-reference CU data from depth to depth+1..MAX_PU_DEPTH.
|
|
*/
|
|
static void work_tree_copy_down(int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH])
|
|
{
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* Update lcu to have best modes at this depth.
|
|
* \return Cost of best mode.
|
|
*/
|
|
static int search_cu_inter(encoder_control *encoder, int x, int y, int depth, lcu_t lcu)
|
|
{
|
|
int cost = MAX_INT;
|
|
return cost;
|
|
}
|
|
|
|
|
|
/**
|
|
* Update lcu to have best modes at this depth.
|
|
* \return Cost of best mode.
|
|
*/
|
|
static int search_cu_intra(encoder_control *encoder, int x, int y, int depth, lcu_t lcu)
|
|
{
|
|
int cost = MAX_INT;
|
|
|
|
// reconstruct border
|
|
|
|
// find best intra mode
|
|
|
|
// reconstruct
|
|
|
|
return cost;
|
|
}
|
|
|
|
|
|
/**
|
|
* Search every mode from 0 to MAX_PU_DEPTH and return cost of best mode.
|
|
* - The recursion is started at depth 0 and goes in Z-order to MAX_PU_DEPTH.
|
|
* - Data structure work_tree is maintained such that the neighbouring SCUs
|
|
* and pixels to the left and up of current CU are the final CUs decided
|
|
* via the search. This is done by copying the relevant data to all
|
|
* relevant levels whenever a decision is made whether to split or not.
|
|
* - All the final data for the LCU gets eventually copied to depth 0, which
|
|
* will be the final output of the recursion.
|
|
*/
|
|
static int search_cu(encoder_control *encoder, int x, int y, int depth, lcu_t work_tree[MAX_PU_DEPTH])
|
|
{
|
|
int cu_width = LCU_WIDTH >> depth;
|
|
int cost = MAX_INT;
|
|
|
|
// Stop recursion if the CU is completely outside the frame.
|
|
if (x >= encoder->in.width || y >= encoder->in.height) {
|
|
// Return zero cost because this CU does not have to be coded.
|
|
return 0;
|
|
}
|
|
|
|
// If the CU is completely inside the frame at this depth, search for
|
|
// prediction modes at this depth.
|
|
if (x + cu_width <= encoder->in.width &&
|
|
y + cu_width <= encoder->in.height)
|
|
{
|
|
picture *cur_pic = encoder->in.cur_pic;
|
|
|
|
if (cur_pic->slicetype != SLICE_I &&
|
|
depth >= MIN_INTER_SEARCH_DEPTH &&
|
|
depth <= MAX_INTER_SEARCH_DEPTH)
|
|
{
|
|
int mode_cost = search_cu_inter(encoder, x, y, depth, work_tree[depth]);
|
|
if (mode_cost < cost) {
|
|
cost = mode_cost;
|
|
}
|
|
}
|
|
|
|
if (depth >= MIN_INTRA_SEARCH_DEPTH &&
|
|
depth <= MAX_INTRA_SEARCH_DEPTH)
|
|
{
|
|
int mode_cost = search_cu_intra(encoder, x, y, depth, work_tree[depth]);
|
|
if (mode_cost < cost) {
|
|
cost = mode_cost;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Recursively split all the way to max search depth.
|
|
if (depth < MAX_INTRA_SEARCH_DEPTH || depth < MAX_INTER_SEARCH_DEPTH) {
|
|
int half_cu = cu_width / 2;
|
|
int split_cost = (int)(4.5 * g_lambda_cost[encoder->QP]);
|
|
split_cost += search_cu(encoder, x, y, depth + 1, work_tree);
|
|
split_cost += search_cu(encoder, x + half_cu, y, depth + 1, work_tree);
|
|
split_cost += search_cu(encoder, x, y + half_cu, depth + 1, work_tree);
|
|
split_cost += search_cu(encoder, x + half_cu, y + half_cu, depth + 1, work_tree);
|
|
|
|
if (split_cost < cost) {
|
|
// Copy split modes to this depth.
|
|
cost = split_cost;
|
|
work_tree_copy_up(x, y, depth, work_tree);
|
|
} else {
|
|
// Copy this CU's mode all the way down for use in adjacent CUs mode
|
|
// search.
|
|
work_tree_copy_down(x, y, depth, work_tree);
|
|
}
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
#define SUB_SCU_BIT_MASK (64 - 1);
|
|
#define SUB_SCU(xy) (xy & SUB_SCU_BIT_MASK)
|
|
#define LCU_CU_WIDTH 8
|
|
#define LCU_T_CU_WIDTH 9
|
|
|
|
/**
|
|
* Initialize lcu_t for search.
|
|
* - Copy reference CUs.
|
|
* - Copy reference pixels from neighbouring LCUs.
|
|
* - Copy reference pixels from this LCU.
|
|
*/
|
|
static void init_lcu_t(encoder_control *encoder, const int x, const int y, lcu_t *lcu)
|
|
{
|
|
// Copy reference cu_info structs from neighbouring LCUs.
|
|
{
|
|
const int x_cu = x >> MAX_DEPTH;
|
|
const int y_cu = y >> MAX_DEPTH;
|
|
const int cu_array_width = encoder->in.width_in_lcu << MAX_DEPTH;
|
|
cu_info *const cu_array = encoder->in.cur_pic->cu_array[MAX_DEPTH];
|
|
|
|
// Use top-left sub-cu of LCU as pointer to lcu->cu array to make things
|
|
// simpler.
|
|
cu_info *lcu_cu = &lcu->cu[1 + LCU_T_CU_WIDTH];
|
|
|
|
// Copy top CU row.
|
|
if (y_cu > 0) {
|
|
int i;
|
|
for (i = 0; i < LCU_CU_WIDTH; ++i) {
|
|
const cu_info *from_cu = &cu_array[(x_cu + i) + (y_cu - 1) * cu_array_width];
|
|
cu_info *to_cu = &lcu_cu[i - LCU_T_CU_WIDTH];
|
|
memcpy(to_cu, from_cu, sizeof(*to_cu));
|
|
}
|
|
}
|
|
// Copy left CU column.
|
|
if (x_cu > 0) {
|
|
int i;
|
|
for (i = 0; i < LCU_CU_WIDTH; ++i) {
|
|
const cu_info *from_cu = &cu_array[(x_cu - 1) + (y_cu + i) * cu_array_width];
|
|
cu_info *to_cu = &lcu_cu[-1 + i * LCU_T_CU_WIDTH];
|
|
memcpy(to_cu, from_cu, sizeof(*to_cu));
|
|
}
|
|
}
|
|
// Copy top-left CU.
|
|
if (x_cu > 0 && y_cu > 0) {
|
|
const cu_info *from_cu = &cu_array[(x_cu - 1) + (y_cu - 1) * cu_array_width];
|
|
cu_info *to_cu = &lcu_cu[-1 - LCU_T_CU_WIDTH];
|
|
memcpy(to_cu, from_cu, sizeof(*to_cu));
|
|
}
|
|
}
|
|
|
|
// Copy reference pixels.
|
|
{
|
|
const picture *pic = encoder->in.cur_pic;
|
|
|
|
const int pic_width = encoder->in.width;
|
|
const int pic_height = encoder->in.height;
|
|
const int ref_size = LCU_REF_PX_WIDTH;
|
|
|
|
const int pic_width_c = encoder->in.width / 2;
|
|
const int pic_height_c = encoder->in.height / 2;
|
|
const int ref_size_c = LCU_REF_PX_WIDTH / 2;
|
|
const int x_c = x / 2;
|
|
const int y_c = y / 2;
|
|
|
|
// Copy top reference pixels.
|
|
if (y > 0) {
|
|
int x_max = MIN(ref_size, pic_width - x);
|
|
int x_max_c = x_max / 2;
|
|
picture_blit_pixels(&pic->y_recdata[x + (y - 1) * pic_width],
|
|
&lcu->top_ref.y[1],
|
|
x_max, 1, pic_width, ref_size);
|
|
|
|
picture_blit_pixels(&pic->u_recdata[x_c + (x_c - 1) * pic_width_c],
|
|
&lcu->top_ref.u[1],
|
|
x_max, 1, pic_width_c, ref_size_c);
|
|
picture_blit_pixels(&pic->v_recdata[x_c + (x_c - 1) * pic_width_c],
|
|
&lcu->top_ref.v[1],
|
|
x_max, 1, pic_width_c, ref_size_c);
|
|
}
|
|
// Copy left reference pixels.
|
|
if (x > 0) {
|
|
int y_max = MIN(LCU_REF_PX_WIDTH, pic_height - y);
|
|
int y_max_c = y_max / 2;
|
|
picture_blit_pixels(&pic->y_recdata[(x - 1) + y * pic_width],
|
|
&lcu->left_ref.y[1],
|
|
1, y_max, pic_width, 1);
|
|
|
|
picture_blit_pixels(&pic->u_recdata[(x_c - 1) + (y_c) * pic_width_c],
|
|
&lcu->left_ref.u[1],
|
|
1, y_max_c, pic_width_c, 1);
|
|
picture_blit_pixels(&pic->v_recdata[(x_c - 1) + (y_c) * pic_width_c],
|
|
&lcu->left_ref.v[1],
|
|
1, y_max_c, pic_width_c, 1);
|
|
}
|
|
// Copy top-left reference pixel.
|
|
if (x > 0 && y > 0) {
|
|
lcu->top_ref.y[0] = pic->y_recdata[(x - 1) + (y - 1) * pic_width];
|
|
lcu->left_ref.y[0] = pic->y_recdata[(x - 1) + (y - 1) * pic_width];
|
|
}
|
|
}
|
|
|
|
// Copy LCU pixels.
|
|
{
|
|
const picture *pic = encoder->in.cur_pic;
|
|
int pic_width = encoder->in.width;
|
|
int x_max = MIN(x + LCU_WIDTH, pic_width) - x;
|
|
int y_max = MIN(y + LCU_WIDTH, encoder->in.height) - y;
|
|
|
|
int x_c = x / 2;
|
|
int y_c = y / 2;
|
|
int pic_width_c = pic_width / 2;
|
|
int x_max_c = x_max / 2;
|
|
int y_max_c = y_max / 2;
|
|
|
|
picture_blit_pixels(&pic->y_recdata[x + y * pic_width], lcu->rec.y,
|
|
x_max, y_max, pic_width, LCU_WIDTH);
|
|
picture_blit_pixels(&pic->y_data[x + y * pic_width], lcu->ref.y,
|
|
x_max, y_max, pic_width, LCU_WIDTH);
|
|
|
|
picture_blit_pixels(&pic->u_recdata[x_c + y_c * pic_width_c], lcu->rec.u,
|
|
x_max_c, y_max_c, pic_width_c, LCU_WIDTH / 2);
|
|
picture_blit_pixels(&pic->u_data[x_c + y_c * pic_width_c], lcu->ref.u,
|
|
x_max_c, y_max_c, pic_width_c, LCU_WIDTH / 2);
|
|
|
|
picture_blit_pixels(&pic->v_recdata[x_c + y_c * pic_width_c], lcu->rec.v,
|
|
x_max_c, y_max_c, pic_width_c, LCU_WIDTH / 2);
|
|
picture_blit_pixels(&pic->v_data[x_c + y_c * pic_width_c], lcu->ref.v,
|
|
x_max_c, y_max_c, pic_width_c, LCU_WIDTH / 2);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Copy CU and pixel data to it's place in picture datastructure.
|
|
*/
|
|
static void copy_lcu_to_cu_data(encoder_control *encoder, int x, int y, lcu_t *lcu)
|
|
{
|
|
// TODO:
|
|
}
|
|
|
|
|
|
/**
|
|
* Search LCU for modes.
|
|
* - Best mode gets copied to current picture.
|
|
*/
|
|
static void search_lcu(encoder_control *encoder, int x, int y)
|
|
{
|
|
lcu_t work_tree[MAX_PU_DEPTH];
|
|
int depth;
|
|
|
|
// Initialize work tree.
|
|
for (depth = 0; depth < MAX_PU_DEPTH; ++depth) {
|
|
init_lcu_t(encoder, x, y, &work_tree[depth]);
|
|
}
|
|
|
|
// Start search from depth 0.
|
|
search_cu(encoder, x, y, 0, work_tree);
|
|
|
|
copy_lcu_to_cu_data(encoder, x, y, &work_tree[0]);
|
|
}
|
|
|
|
|
|
/**
|
|
* Perform mode search for every LCU in the current picture.
|
|
*/
|
|
static void search_frame(encoder_control *encoder)
|
|
{
|
|
int y_lcu, x_lcu;
|
|
for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) {
|
|
for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) {
|
|
search_lcu(encoder, x_lcu * LCU_WIDTH, y_lcu * LCU_WIDTH);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void search_intra(encoder_control *encoder, uint16_t x_ctb,
|
|
uint16_t y_ctb, uint8_t depth)
|
|
{
|
|
int16_t x = x_ctb * (LCU_WIDTH >> MAX_DEPTH);
|
|
int16_t y = y_ctb * (LCU_WIDTH >> MAX_DEPTH);
|
|
picture *cur_pic = encoder->in.cur_pic;
|
|
uint8_t width = LCU_WIDTH >> depth;
|
|
cu_info *cur_cu = &cur_pic->cu_array[depth][x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
|
|
|
|
// INTRAPREDICTION
|
|
pixel pred[LCU_WIDTH * LCU_WIDTH + 1];
|
|
pixel rec[(LCU_WIDTH * 2 + 1) * (LCU_WIDTH * 2 + 1)];
|
|
pixel *recShift = &rec[(LCU_WIDTH >> (depth)) * 2 + 8 + 1];
|
|
|
|
int8_t merge[3] = {-1,-1,-1};
|
|
|
|
// Build reconstructed block to use in prediction with extrapolated borders
|
|
intra_build_reference_border(cur_pic, cur_pic->y_data,
|
|
x, y,
|
|
(int16_t)width * 2 + 8, rec, (int16_t)width * 2 + 8, 0);
|
|
cur_cu->intra[0].mode = (int8_t)intra_prediction(encoder->in.cur_pic->y_data,
|
|
encoder->in.width, recShift, width * 2 + 8, x, y,
|
|
width, pred, width, &cur_cu->intra[0].cost,merge);
|
|
cur_cu->part_size = SIZE_2Nx2N;
|
|
|
|
// Do search for NxN split.
|
|
if (0 && depth == MAX_DEPTH) { //TODO: reactivate NxN when _something_ is done to make it better
|
|
// Save 2Nx2N information to compare with NxN.
|
|
int nn_cost = cur_cu->intra[0].cost;
|
|
int8_t nn_mode = cur_cu->intra[0].mode;
|
|
int i;
|
|
int cost = (int)(g_lambda_cost[encoder->QP] * 4.5); // round to nearest
|
|
static vector2d offsets[4] = {{0,0},{1,0},{0,1},{1,1}};
|
|
width = 4;
|
|
recShift = &rec[width * 2 + 8 + 1];
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
int x_pos = x + offsets[i].x * width;
|
|
int y_pos = y + offsets[i].y * width;
|
|
intra_build_reference_border(cur_pic, cur_pic->y_data,
|
|
x_pos, y_pos,
|
|
(int16_t)width * 2 + 8, rec, (int16_t)width * 2 + 8, 0);
|
|
cur_cu->intra[i].mode = (int8_t)intra_prediction(encoder->in.cur_pic->y_data,
|
|
encoder->in.width, recShift, width * 2 + 8, (int16_t)x_pos, (int16_t)y_pos,
|
|
width, pred, width, &cur_cu->intra[i].cost,merge);
|
|
cost += cur_cu->intra[i].cost;
|
|
}
|
|
|
|
// Choose between 2Nx2N and NxN.
|
|
if (nn_cost <= cost) {
|
|
cur_cu->intra[0].cost = nn_cost;
|
|
cur_cu->intra[0].mode = nn_mode;
|
|
} else {
|
|
cur_cu->intra[0].cost = cost;
|
|
cur_cu->part_size = SIZE_NxN;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Search best modes at each depth for the whole picture.
|
|
*
|
|
* This function fills the cur_pic->cu_array of the current picture
|
|
* with the best mode and it's cost for each CU at each depth for the whole
|
|
* frame.
|
|
*/
|
|
void search_tree(encoder_control *encoder,
|
|
int x, int y, uint8_t depth)
|
|
{
|
|
int cu_width = LCU_WIDTH >> depth;
|
|
uint16_t x_ctb = (uint16_t)x / (LCU_WIDTH >> MAX_DEPTH);
|
|
uint16_t y_ctb = (uint16_t)y / (LCU_WIDTH >> MAX_DEPTH);
|
|
|
|
// Stop recursion if the CU is completely outside the frame.
|
|
if (x >= encoder->in.width || y >= encoder->in.height) {
|
|
return;
|
|
}
|
|
|
|
// If the CU is partially outside the frame, split.
|
|
if (x + cu_width > encoder->in.width ||
|
|
y + cu_width > encoder->in.height)
|
|
{
|
|
int half_cu = cu_width / 2;
|
|
|
|
search_tree(encoder, x, y, depth + 1);
|
|
search_tree(encoder, x + half_cu, y, depth + 1);
|
|
search_tree(encoder, x, y + half_cu, depth + 1);
|
|
search_tree(encoder, x + half_cu, y + half_cu, depth + 1);
|
|
|
|
return;
|
|
}
|
|
|
|
// CU is completely inside the frame, so search for best prediction mode at
|
|
// this depth.
|
|
{
|
|
picture *cur_pic = encoder->in.cur_pic;
|
|
|
|
if (cur_pic->slicetype != SLICE_I &&
|
|
depth >= MIN_INTER_SEARCH_DEPTH &&
|
|
depth <= MAX_INTER_SEARCH_DEPTH)
|
|
{
|
|
search_inter(encoder, x_ctb, y_ctb, depth);
|
|
}
|
|
|
|
if (depth >= MIN_INTRA_SEARCH_DEPTH &&
|
|
depth <= MAX_INTRA_SEARCH_DEPTH)
|
|
{
|
|
search_intra(encoder, x_ctb, y_ctb, depth);
|
|
}
|
|
}
|
|
|
|
// Recurse to max search depth.
|
|
if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) {
|
|
int half_cu = cu_width / 2;;
|
|
|
|
search_tree(encoder, x, y, depth + 1);
|
|
search_tree(encoder, x + half_cu, y, depth + 1);
|
|
search_tree(encoder, x, y + half_cu, depth + 1);
|
|
search_tree(encoder, x + half_cu, y + half_cu, depth + 1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief
|
|
*/
|
|
uint32_t search_best_mode(encoder_control *encoder,
|
|
uint16_t x_ctb, uint16_t y_ctb, uint8_t depth)
|
|
{
|
|
cu_info *cur_cu = &encoder->in.cur_pic->cu_array[depth]
|
|
[x_ctb + y_ctb * (encoder->in.width_in_lcu << MAX_DEPTH)];
|
|
uint32_t best_intra_cost = cur_cu->intra[0].cost;
|
|
uint32_t best_inter_cost = cur_cu->inter.cost;
|
|
uint32_t lambda_cost = (int)(4.5 * g_lambda_cost[encoder->QP]); //TODO: Correct cost calculation
|
|
|
|
if (depth < MAX_INTRA_SEARCH_DEPTH && depth < MAX_INTER_SEARCH_DEPTH) {
|
|
uint32_t cost = lambda_cost;
|
|
uint8_t change = 1 << (MAX_DEPTH - 1 - depth);
|
|
cost += search_best_mode(encoder, x_ctb, y_ctb, depth + 1);
|
|
cost += search_best_mode(encoder, x_ctb + change, y_ctb, depth + 1);
|
|
cost += search_best_mode(encoder, x_ctb, y_ctb + change, depth + 1);
|
|
cost += search_best_mode(encoder, x_ctb + change, y_ctb + change, depth + 1);
|
|
|
|
if (cost < best_intra_cost && cost < best_inter_cost)
|
|
{
|
|
// Better value was found at a lower level.
|
|
return cost;
|
|
}
|
|
}
|
|
|
|
// If search hasn't been peformed at all for this block, the cost will be
|
|
// max value, so it is safe to just compare costs. It just has to be made
|
|
// sure that no value overflows.
|
|
if (best_inter_cost <= best_intra_cost) {
|
|
inter_set_block(encoder->in.cur_pic, x_ctb, y_ctb, depth, cur_cu);
|
|
return best_inter_cost;
|
|
} else {
|
|
intra_set_block_mode(encoder->in.cur_pic, x_ctb, y_ctb, depth,
|
|
cur_cu->intra[0].mode, cur_cu->part_size);
|
|
return best_intra_cost;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief
|
|
*/
|
|
void search_slice_data(encoder_control *encoder)
|
|
{
|
|
#ifdef USE_NEW_SEARCH
|
|
search_frame(encoder);
|
|
#else
|
|
int16_t x_lcu, y_lcu;
|
|
|
|
// Initialize the costs in the cu-array used for searching.
|
|
{
|
|
int d, x_cu, y_cu;
|
|
|
|
for (y_cu = 0; y_cu < encoder->in.height / CU_MIN_SIZE_PIXELS; ++y_cu) {
|
|
for (x_cu = 0; x_cu < encoder->in.width / CU_MIN_SIZE_PIXELS; ++x_cu) {
|
|
for (d = 0; d <= MAX_DEPTH; ++d) {
|
|
picture *cur_pic = encoder->in.cur_pic;
|
|
cu_info *cur_cu = &cur_pic->cu_array[d][x_cu + y_cu * (encoder->in.width_in_lcu << MAX_DEPTH)];
|
|
cur_cu->intra[0].cost = UINT32_MAX;
|
|
cur_cu->inter.cost = UINT32_MAX;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loop through every LCU in the slice
|
|
for (y_lcu = 0; y_lcu < encoder->in.height_in_lcu; y_lcu++) {
|
|
for (x_lcu = 0; x_lcu < encoder->in.width_in_lcu; x_lcu++) {
|
|
uint8_t depth = 0;
|
|
|
|
// Recursive function for looping through all the sub-blocks
|
|
search_tree(encoder, x_lcu * LCU_WIDTH, y_lcu * LCU_WIDTH, depth);
|
|
|
|
// Decide actual coding modes
|
|
search_best_mode(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
|
|
|
|
encode_block_residual(encoder, x_lcu << MAX_DEPTH, y_lcu << MAX_DEPTH, depth);
|
|
|
|
}
|
|
}
|
|
#endif
|
|
}
|