// tinyformat.h // Copyright (C) 2011, Chris Foster [chris42f (at) gmail (d0t) com] // // Boost Software License - Version 1.0 // // Permission is hereby granted, free of charge, to any person or organization // obtaining a copy of the software and accompanying documentation covered by // this license (the "Software") to use, reproduce, display, distribute, // execute, and transmit the Software, and to prepare derivative works of the // Software, and to permit third-parties to whom the Software is furnished to // do so, all subject to the following: // // The copyright notices in the Software and this entire statement, including // the above license grant, this restriction and the following disclaimer, // must be included in all copies of the Software, in whole or in part, and // all derivative works of the Software, unless such copies or derivative // works are solely in the form of machine-executable object code generated by // a source language processor. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. //------------------------------------------------------------------------------ // Tinyformat: A minimal type safe printf replacement // // tinyformat.h is a type safe printf replacement library in a single C++ // header file. Design goals include: // // * Type safety and extensibility for user defined types. // * C99 printf() compatibility, to the extent possible using std::ostream // * POSIX extension for positional arguments // * Simplicity and minimalism. A single header file to include and distribute // with your projects. // * Augment rather than replace the standard stream formatting mechanism // * C++98 support, with optional C++11 niceties // // // Main interface example usage // ---------------------------- // // To print a date to std::cout for American usage: // // std::string weekday = "Wednesday"; // const char* month = "July"; // size_t day = 27; // long hour = 14; // int min = 44; // // tfm::printf("%s, %s %d, %.2d:%.2d\n", weekday, month, day, hour, min); // // POSIX extension for positional arguments is available. // The ability to rearrange formatting arguments is an important feature // for localization because the word order may vary in different languages. // // Previous example for German usage. Arguments are reordered: // // tfm::printf("%1$s, %3$d. %2$s, %4$d:%5$.2d\n", weekday, month, day, hour, min); // // The strange types here emphasize the type safety of the interface; it is // possible to print a std::string using the "%s" conversion, and a // size_t using the "%d" conversion. A similar result could be achieved // using either of the tfm::format() functions. One prints on a user provided // stream: // // tfm::format(std::cerr, "%s, %s %d, %.2d:%.2d\n", // weekday, month, day, hour, min); // // The other returns a std::string: // // std::string date = tfm::format("%s, %s %d, %.2d:%.2d\n", // weekday, month, day, hour, min); // std::cout << date; // // These are the three primary interface functions. There is also a // convenience function printfln() which appends a newline to the usual result // of printf() for super simple logging. // // // User defined format functions // ----------------------------- // // Simulating variadic templates in C++98 is pretty painful since it requires // writing out the same function for each desired number of arguments. To make // this bearable tinyformat comes with a set of macros which are used // internally to generate the API, but which may also be used in user code. // // The three macros TINYFORMAT_ARGTYPES(n), TINYFORMAT_VARARGS(n) and // TINYFORMAT_PASSARGS(n) will generate a list of n argument types, // type/name pairs and argument names respectively when called with an integer // n between 1 and 16. We can use these to define a macro which generates the // desired user defined function with n arguments. To generate all 16 user // defined function bodies, use the macro TINYFORMAT_FOREACH_ARGNUM. For an // example, see the implementation of printf() at the end of the source file. // // Sometimes it's useful to be able to pass a list of format arguments through // to a non-template function. The FormatList class is provided as a way to do // this by storing the argument list in a type-opaque way. Continuing the // example from above, we construct a FormatList using makeFormatList(): // // FormatListRef formatList = tfm::makeFormatList(weekday, month, day, hour, min); // // The format list can now be passed into any non-template function and used // via a call to the vformat() function: // // tfm::vformat(std::cout, "%s, %s %d, %.2d:%.2d\n", formatList); // // // Additional API information // -------------------------- // // Error handling: Define TINYFORMAT_ERROR to customize the error handling for // format strings which are unsupported or have the wrong number of format // specifiers (calls assert() by default). // // User defined types: Uses operator<< for user defined types by default. // Overload formatValue() for more control. #ifndef TINYFORMAT_H_INCLUDED #define TINYFORMAT_H_INCLUDED namespace tinyformat {} //------------------------------------------------------------------------------ // Config section. Customize to your liking! // Namespace alias to encourage brevity namespace tfm = tinyformat; // Error handling; calls assert() by default. // #define TINYFORMAT_ERROR(reasonString) your_error_handler(reasonString) // Define for C++11 variadic templates which make the code shorter & more // general. If you don't define this, C++11 support is autodetected below. // #define TINYFORMAT_USE_VARIADIC_TEMPLATES //------------------------------------------------------------------------------ // Implementation details. #include #include #include #ifndef TINYFORMAT_ASSERT #include #define TINYFORMAT_ASSERT(cond) assert(cond) #endif #ifndef TINYFORMAT_ERROR #include #define TINYFORMAT_ERROR(reason) assert(0 && reason) #endif #if !defined(TINYFORMAT_USE_VARIADIC_TEMPLATES) && !defined(TINYFORMAT_NO_VARIADIC_TEMPLATES) #ifdef __GXX_EXPERIMENTAL_CXX0X__ #define TINYFORMAT_USE_VARIADIC_TEMPLATES #endif #endif #if defined(__GLIBCXX__) && __GLIBCXX__ < 20080201 // std::showpos is broken on old libstdc++ as provided with macOS. See // http://gcc.gnu.org/ml/libstdc++/2007-11/msg00075.html #define TINYFORMAT_OLD_LIBSTDCPLUSPLUS_WORKAROUND #endif #ifdef __APPLE__ // Workaround macOS linker warning: Xcode uses different default symbol // visibilities for static libs vs executables (see issue #25) #define TINYFORMAT_HIDDEN __attribute__((visibility("hidden"))) #else #define TINYFORMAT_HIDDEN #endif namespace tinyformat { //------------------------------------------------------------------------------ namespace detail { // Test whether type T1 is convertible to type T2 template struct is_convertible { private: // two types of different size struct fail { char dummy[2]; }; struct succeed { char dummy; }; // Try to convert a T1 to a T2 by plugging into tryConvert static fail tryConvert(...); static succeed tryConvert(const T2&); static const T1& makeT1(); public: #ifdef _MSC_VER // Disable spurious loss of precision warnings in tryConvert(makeT1()) #pragma warning(push) #pragma warning(disable : 4244) #pragma warning(disable : 4267) #endif // Standard trick: the (...) version of tryConvert will be chosen from // the overload set only if the version taking a T2 doesn't match. // Then we compare the sizes of the return types to check which // function matched. Very neat, in a disgusting kind of way :) static const bool value = sizeof(tryConvert(makeT1())) == sizeof(succeed); #ifdef _MSC_VER #pragma warning(pop) #endif }; // Detect when a type is not a wchar_t string template struct is_wchar { typedef int tinyformat_wchar_is_not_supported; }; template <> struct is_wchar {}; template <> struct is_wchar {}; template struct is_wchar {}; template struct is_wchar {}; // Format the value by casting to type fmtT. This default implementation // should never be called. template ::value> struct formatValueAsType { static void invoke(std::ostream& /*out*/, const T& /*value*/) { TINYFORMAT_ASSERT(0); } }; // Specialized version for types that can actually be converted to fmtT, as // indicated by the "convertible" template parameter. template struct formatValueAsType { static void invoke(std::ostream& out, const T& value) { out << static_cast(value); } }; #ifdef TINYFORMAT_OLD_LIBSTDCPLUSPLUS_WORKAROUND template ::value> struct formatZeroIntegerWorkaround { static bool invoke(std::ostream& /**/, const T& /**/) { return false; } }; template struct formatZeroIntegerWorkaround { static bool invoke(std::ostream& out, const T& value) { if (static_cast(value) == 0 && out.flags() & std::ios::showpos) { out << "+0"; return true; } return false; } }; #endif // TINYFORMAT_OLD_LIBSTDCPLUSPLUS_WORKAROUND // Convert an arbitrary type to integer. The version with convertible=false // throws an error. template ::value> struct convertToInt { static int invoke(const T& /*value*/) { TINYFORMAT_ERROR( "tinyformat: Cannot convert from argument type to " "integer for use as variable width or precision"); return 0; } }; // Specialization for convertToInt when conversion is possible template struct convertToInt { static int invoke(const T& value) { return static_cast(value); } }; // Format at most ntrunc characters to the given stream. template inline void formatTruncated(std::ostream& out, const T& value, int ntrunc) { std::ostringstream tmp; tmp << value; std::string result = tmp.str(); out.write(result.c_str(), (std::min)(ntrunc, static_cast(result.size()))); } #define TINYFORMAT_DEFINE_FORMAT_TRUNCATED_CSTR(type) \ inline void formatTruncated(std::ostream& out, type* value, int ntrunc) { \ std::streamsize len = 0; \ while (len < ntrunc && value[len] != 0) ++len; \ out.write(value, len); \ } // Overload for const char* and char*. Could overload for signed & unsigned // char too, but these are technically unneeded for printf compatibility. TINYFORMAT_DEFINE_FORMAT_TRUNCATED_CSTR(const char) TINYFORMAT_DEFINE_FORMAT_TRUNCATED_CSTR(char) #undef TINYFORMAT_DEFINE_FORMAT_TRUNCATED_CSTR } // namespace detail //------------------------------------------------------------------------------ // Variable formatting functions. May be overridden for user-defined types if // desired. /// Format a value into a stream, delegating to operator<< by default. /// /// Users may override this for their own types. When this function is called, /// the stream flags will have been modified according to the format string. /// The format specification is provided in the range [fmtBegin, fmtEnd). For /// truncating conversions, ntrunc is set to the desired maximum number of /// characters, for example "%.7s" calls formatValue with ntrunc = 7. /// /// By default, formatValue() uses the usual stream insertion operator /// operator<< to format the type T, with special cases for the %c and %p /// conversions. template inline void formatValue(std::ostream& out, const char* /*fmtBegin*/, const char* fmtEnd, int ntrunc, const T& value) { #ifndef TINYFORMAT_ALLOW_WCHAR_STRINGS // Since we don't support printing of wchar_t using "%ls", make it fail at // compile time in preference to printing as a void* at runtime. typedef typename detail::is_wchar::tinyformat_wchar_is_not_supported DummyType; (void)DummyType(); // avoid unused type warning with gcc-4.8 #endif // The mess here is to support the %c and %p conversions: if these // conversions are active we try to convert the type to a char or const // void* respectively and format that instead of the value itself. For the // %p conversion it's important to avoid dereferencing the pointer, which // could otherwise lead to a crash when printing a dangling (const char*). const bool canConvertToChar = detail::is_convertible::value; const bool canConvertToVoidPtr = detail::is_convertible::value; if (canConvertToChar && *(fmtEnd - 1) == 'c') detail::formatValueAsType::invoke(out, value); else if (canConvertToVoidPtr && *(fmtEnd - 1) == 'p') detail::formatValueAsType::invoke(out, value); #ifdef TINYFORMAT_OLD_LIBSTDCPLUSPLUS_WORKAROUND else if (detail::formatZeroIntegerWorkaround::invoke(out, value)) /**/ ; #endif else if (ntrunc >= 0) { // Take care not to overread C strings in truncating conversions like // "%.4s" where at most 4 characters may be read. detail::formatTruncated(out, value, ntrunc); } else out << value; } // Overloaded version for char types to support printing as an integer #define TINYFORMAT_DEFINE_FORMATVALUE_CHAR(charType) \ inline void formatValue(std::ostream& out, const char* /*fmtBegin*/, const char* fmtEnd, int /**/, \ charType value) { \ switch (*(fmtEnd - 1)) { \ case 'u': \ case 'd': \ case 'i': \ case 'o': \ case 'X': \ case 'x': \ out << static_cast(value); \ break; \ default: \ out << value; \ break; \ } \ } // per 3.9.1: char, signed char and unsigned char are all distinct types TINYFORMAT_DEFINE_FORMATVALUE_CHAR(char) TINYFORMAT_DEFINE_FORMATVALUE_CHAR(signed char) TINYFORMAT_DEFINE_FORMATVALUE_CHAR(unsigned char) #undef TINYFORMAT_DEFINE_FORMATVALUE_CHAR //------------------------------------------------------------------------------ // Tools for emulating variadic templates in C++98. The basic idea here is // stolen from the boost preprocessor metaprogramming library and cut down to // be just general enough for what we need. #define TINYFORMAT_ARGTYPES(n) TINYFORMAT_ARGTYPES_##n #define TINYFORMAT_VARARGS(n) TINYFORMAT_VARARGS_##n #define TINYFORMAT_PASSARGS(n) TINYFORMAT_PASSARGS_##n #define TINYFORMAT_PASSARGS_TAIL(n) TINYFORMAT_PASSARGS_TAIL_##n // To keep it as transparent as possible, the macros below have been generated // using python via the excellent cog.py code generation script. This avoids // the need for a bunch of complex (but more general) preprocessor tricks as // used in boost.preprocessor. // // To rerun the code generation in place, use `cog.py -r tinyformat.h` // (see http://nedbatchelder.com/code/cog). Alternatively you can just create // extra versions by hand. /*[[[cog maxParams = 16 def makeCommaSepLists(lineTemplate, elemTemplate, startInd=1): for j in range(startInd,maxParams+1): list = ', '.join([elemTemplate % {'i':i} for i in range(startInd,j+1)]) cog.outl(lineTemplate % {'j':j, 'list':list}) makeCommaSepLists('#define TINYFORMAT_ARGTYPES_%(j)d %(list)s', 'class T%(i)d') cog.outl() makeCommaSepLists('#define TINYFORMAT_VARARGS_%(j)d %(list)s', 'const T%(i)d& v%(i)d') cog.outl() makeCommaSepLists('#define TINYFORMAT_PASSARGS_%(j)d %(list)s', 'v%(i)d') cog.outl() cog.outl('#define TINYFORMAT_PASSARGS_TAIL_1') makeCommaSepLists('#define TINYFORMAT_PASSARGS_TAIL_%(j)d , %(list)s', 'v%(i)d', startInd = 2) cog.outl() cog.outl('#define TINYFORMAT_FOREACH_ARGNUM(m) \\\n ' + ' '.join(['m(%d)' % (j,) for j in range(1,maxParams+1)])) ]]]*/ #define TINYFORMAT_ARGTYPES_1 class T1 #define TINYFORMAT_ARGTYPES_2 class T1, class T2 #define TINYFORMAT_ARGTYPES_3 class T1, class T2, class T3 #define TINYFORMAT_ARGTYPES_4 class T1, class T2, class T3, class T4 #define TINYFORMAT_ARGTYPES_5 class T1, class T2, class T3, class T4, class T5 #define TINYFORMAT_ARGTYPES_6 class T1, class T2, class T3, class T4, class T5, class T6 #define TINYFORMAT_ARGTYPES_7 class T1, class T2, class T3, class T4, class T5, class T6, class T7 #define TINYFORMAT_ARGTYPES_8 class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8 #define TINYFORMAT_ARGTYPES_9 class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9 #define TINYFORMAT_ARGTYPES_10 \ class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10 #define TINYFORMAT_ARGTYPES_11 \ class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11 #define TINYFORMAT_ARGTYPES_12 \ class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \ class T12 #define TINYFORMAT_ARGTYPES_13 \ class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \ class T12, class T13 #define TINYFORMAT_ARGTYPES_14 \ class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \ class T12, class T13, class T14 #define TINYFORMAT_ARGTYPES_15 \ class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \ class T12, class T13, class T14, class T15 #define TINYFORMAT_ARGTYPES_16 \ class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \ class T12, class T13, class T14, class T15, class T16 #define TINYFORMAT_VARARGS_1 const T1& v1 #define TINYFORMAT_VARARGS_2 const T1 &v1, const T2 &v2 #define TINYFORMAT_VARARGS_3 const T1 &v1, const T2 &v2, const T3 &v3 #define TINYFORMAT_VARARGS_4 const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4 #define TINYFORMAT_VARARGS_5 const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5 #define TINYFORMAT_VARARGS_6 const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6 #define TINYFORMAT_VARARGS_7 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7 #define TINYFORMAT_VARARGS_8 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8 #define TINYFORMAT_VARARGS_9 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \ const T9 &v9 #define TINYFORMAT_VARARGS_10 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \ const T9 &v9, const T10 &v10 #define TINYFORMAT_VARARGS_11 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \ const T9 &v9, const T10 &v10, const T11 &v11 #define TINYFORMAT_VARARGS_12 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \ const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12 #define TINYFORMAT_VARARGS_13 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \ const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12, const T13 &v13 #define TINYFORMAT_VARARGS_14 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \ const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12, const T13 &v13, const T14 &v14 #define TINYFORMAT_VARARGS_15 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \ const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12, const T13 &v13, const T14 &v14, const T15 &v15 #define TINYFORMAT_VARARGS_16 \ const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \ const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12, const T13 &v13, const T14 &v14, const T15 &v15, \ const T16 &v16 #define TINYFORMAT_PASSARGS_1 v1 #define TINYFORMAT_PASSARGS_2 v1, v2 #define TINYFORMAT_PASSARGS_3 v1, v2, v3 #define TINYFORMAT_PASSARGS_4 v1, v2, v3, v4 #define TINYFORMAT_PASSARGS_5 v1, v2, v3, v4, v5 #define TINYFORMAT_PASSARGS_6 v1, v2, v3, v4, v5, v6 #define TINYFORMAT_PASSARGS_7 v1, v2, v3, v4, v5, v6, v7 #define TINYFORMAT_PASSARGS_8 v1, v2, v3, v4, v5, v6, v7, v8 #define TINYFORMAT_PASSARGS_9 v1, v2, v3, v4, v5, v6, v7, v8, v9 #define TINYFORMAT_PASSARGS_10 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 #define TINYFORMAT_PASSARGS_11 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11 #define TINYFORMAT_PASSARGS_12 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12 #define TINYFORMAT_PASSARGS_13 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13 #define TINYFORMAT_PASSARGS_14 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14 #define TINYFORMAT_PASSARGS_15 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15 #define TINYFORMAT_PASSARGS_16 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16 #define TINYFORMAT_PASSARGS_TAIL_1 #define TINYFORMAT_PASSARGS_TAIL_2 , v2 #define TINYFORMAT_PASSARGS_TAIL_3 , v2, v3 #define TINYFORMAT_PASSARGS_TAIL_4 , v2, v3, v4 #define TINYFORMAT_PASSARGS_TAIL_5 , v2, v3, v4, v5 #define TINYFORMAT_PASSARGS_TAIL_6 , v2, v3, v4, v5, v6 #define TINYFORMAT_PASSARGS_TAIL_7 , v2, v3, v4, v5, v6, v7 #define TINYFORMAT_PASSARGS_TAIL_8 , v2, v3, v4, v5, v6, v7, v8 #define TINYFORMAT_PASSARGS_TAIL_9 , v2, v3, v4, v5, v6, v7, v8, v9 #define TINYFORMAT_PASSARGS_TAIL_10 , v2, v3, v4, v5, v6, v7, v8, v9, v10 #define TINYFORMAT_PASSARGS_TAIL_11 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11 #define TINYFORMAT_PASSARGS_TAIL_12 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12 #define TINYFORMAT_PASSARGS_TAIL_13 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13 #define TINYFORMAT_PASSARGS_TAIL_14 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14 #define TINYFORMAT_PASSARGS_TAIL_15 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15 #define TINYFORMAT_PASSARGS_TAIL_16 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16 #define TINYFORMAT_FOREACH_ARGNUM(m) \ m(1) m(2) m(3) m(4) m(5) m(6) m(7) m(8) m(9) m(10) m(11) m(12) m(13) m(14) m(15) m(16) //[[[end]]] namespace detail { // Type-opaque holder for an argument to format(), with associated actions on // the type held as explicit function pointers. This allows FormatArg's for // each argument to be allocated as a homogeneous array inside FormatList // whereas a naive implementation based on inheritance does not. class FormatArg { public: FormatArg() : m_value(NULL), m_formatImpl(NULL), m_toIntImpl(NULL) {} template FormatArg(const T& value) : m_value(static_cast(&value)), m_formatImpl(&formatImpl), m_toIntImpl(&toIntImpl) {} void format(std::ostream& out, const char* fmtBegin, const char* fmtEnd, int ntrunc) const { TINYFORMAT_ASSERT(m_value); TINYFORMAT_ASSERT(m_formatImpl); m_formatImpl(out, fmtBegin, fmtEnd, ntrunc, m_value); } int toInt() const { TINYFORMAT_ASSERT(m_value); TINYFORMAT_ASSERT(m_toIntImpl); return m_toIntImpl(m_value); } private: template TINYFORMAT_HIDDEN static void formatImpl(std::ostream& out, const char* fmtBegin, const char* fmtEnd, int ntrunc, const void* value) { formatValue(out, fmtBegin, fmtEnd, ntrunc, *static_cast(value)); } template TINYFORMAT_HIDDEN static int toIntImpl(const void* value) { return convertToInt::invoke(*static_cast(value)); } const void* m_value; void (*m_formatImpl)(std::ostream& out, const char* fmtBegin, const char* fmtEnd, int ntrunc, const void* value); int (*m_toIntImpl)(const void* value); }; // Parse and return an integer from the string c, as atoi() // On return, c is set to one past the end of the integer. inline int parseIntAndAdvance(const char*& c) { int i = 0; for (; *c >= '0' && *c <= '9'; ++c) i = 10 * i + (*c - '0'); return i; } // Parse width or precision `n` from format string pointer `c`, and advance it // to the next character. If an indirection is requested with `*`, the argument // is read from `args[argIndex]` and `argIndex` is incremented (or read // from `args[n]` in positional mode). Returns true if one or more // characters were read. inline bool parseWidthOrPrecision(int& n, const char*& c, bool positionalMode, const detail::FormatArg* args, int& argIndex, int numArgs) { if (*c >= '0' && *c <= '9') { n = parseIntAndAdvance(c); } else if (*c == '*') { ++c; n = 0; if (positionalMode) { int pos = parseIntAndAdvance(c) - 1; if (*c != '$') TINYFORMAT_ERROR("tinyformat: Non-positional argument used after a positional one"); if (pos >= 0 && pos < numArgs) n = args[pos].toInt(); else TINYFORMAT_ERROR("tinyformat: Positional argument out of range"); ++c; } else { if (argIndex < numArgs) n = args[argIndex++].toInt(); else TINYFORMAT_ERROR("tinyformat: Not enough arguments to read variable width or precision"); } } else { return false; } return true; } // Print literal part of format string and return next format spec position. // // Skips over any occurrences of '%%', printing a literal '%' to the output. // The position of the first % character of the next nontrivial format spec is // returned, or the end of string. inline const char* printFormatStringLiteral(std::ostream& out, const char* fmt) { const char* c = fmt; for (;; ++c) { if (*c == '\0') { out.write(fmt, c - fmt); return c; } else if (*c == '%') { out.write(fmt, c - fmt); if (*(c + 1) != '%') return c; // for "%%", tack trailing % onto next literal section. fmt = ++c; } } } // Parse a format string and set the stream state accordingly. // // The format mini-language recognized here is meant to be the one from C99, // with the form "%[flags][width][.precision][length]type" with POSIX // positional arguments extension. // // POSIX positional arguments extension: // Conversions can be applied to the nth argument after the format in // the argument list, rather than to the next unused argument. In this case, // the conversion specifier character % (see below) is replaced by the sequence // "%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}], // giving the position of the argument in the argument list. This feature // provides for the definition of format strings that select arguments // in an order appropriate to specific languages. // // The format can contain either numbered argument conversion specifications // (that is, "%n$" and "*m$"), or unnumbered argument conversion specifications // (that is, % and * ), but not both. The only exception to this is that %% // can be mixed with the "%n$" form. The results of mixing numbered and // unnumbered argument specifications in a format string are undefined. // When numbered argument specifications are used, specifying the Nth argument // requires that all the leading arguments, from the first to the (N-1)th, // are specified in the format string. // // In format strings containing the "%n$" form of conversion specification, // numbered arguments in the argument list can be referenced from the format // string as many times as required. // // Formatting options which can't be natively represented using the ostream // state are returned in spacePadPositive (for space padded positive numbers) // and ntrunc (for truncating conversions). argIndex is incremented if // necessary to pull out variable width and precision. The function returns a // pointer to the character after the end of the current format spec. inline const char* streamStateFromFormat(std::ostream& out, bool& positionalMode, bool& spacePadPositive, int& ntrunc, const char* fmtStart, const detail::FormatArg* args, int& argIndex, int numArgs) { TINYFORMAT_ASSERT(*fmtStart == '%'); // Reset stream state to defaults. out.width(0); out.precision(6); out.fill(' '); // Reset most flags; ignore irrelevant unitbuf & skipws. out.unsetf(std::ios::adjustfield | std::ios::basefield | std::ios::floatfield | std::ios::showbase | std::ios::boolalpha | std::ios::showpoint | std::ios::showpos | std::ios::uppercase); bool precisionSet = false; bool widthSet = false; int widthExtra = 0; const char* c = fmtStart + 1; // 1) Parse an argument index (if followed by '$') or a width possibly // preceded with '0' flag. if (*c >= '0' && *c <= '9') { const char tmpc = *c; int value = parseIntAndAdvance(c); if (*c == '$') { // value is an argument index if (value > 0 && value <= numArgs) argIndex = value - 1; else TINYFORMAT_ERROR("tinyformat: Positional argument out of range"); ++c; positionalMode = true; } else if (positionalMode) { TINYFORMAT_ERROR("tinyformat: Non-positional argument used after a positional one"); } else { if (tmpc == '0') { // Use internal padding so that numeric values are // formatted correctly, eg -00010 rather than 000-10 out.fill('0'); out.setf(std::ios::internal, std::ios::adjustfield); } if (value != 0) { // Nonzero value means that we parsed width. widthSet = true; out.width(value); } } } else if (positionalMode) { TINYFORMAT_ERROR("tinyformat: Non-positional argument used after a positional one"); } // 2) Parse flags and width if we did not do it in previous step. if (!widthSet) { // Parse flags for (;; ++c) { switch (*c) { case '#': out.setf(std::ios::showpoint | std::ios::showbase); continue; case '0': // overridden by left alignment ('-' flag) if (!(out.flags() & std::ios::left)) { // Use internal padding so that numeric values are // formatted correctly, eg -00010 rather than 000-10 out.fill('0'); out.setf(std::ios::internal, std::ios::adjustfield); } continue; case '-': out.fill(' '); out.setf(std::ios::left, std::ios::adjustfield); continue; case ' ': // overridden by show positive sign, '+' flag. if (!(out.flags() & std::ios::showpos)) spacePadPositive = true; continue; case '+': out.setf(std::ios::showpos); spacePadPositive = false; widthExtra = 1; continue; default: break; } break; } // Parse width int width = 0; widthSet = parseWidthOrPrecision(width, c, positionalMode, args, argIndex, numArgs); if (widthSet) { if (width < 0) { // negative widths correspond to '-' flag set out.fill(' '); out.setf(std::ios::left, std::ios::adjustfield); width = -width; } out.width(width); } } // 3) Parse precision if (*c == '.') { ++c; int precision = 0; parseWidthOrPrecision(precision, c, positionalMode, args, argIndex, numArgs); // Presence of `.` indicates precision set, unless the inferred value // was negative in which case the default is used. precisionSet = precision >= 0; if (precisionSet) out.precision(precision); } // 4) Ignore any C99 length modifier while (*c == 'l' || *c == 'h' || *c == 'L' || *c == 'j' || *c == 'z' || *c == 't') { ++c; } // 5) We're up to the conversion specifier character. // Set stream flags based on conversion specifier (thanks to the // boost::format class for forging the way here). bool intConversion = false; switch (*c) { case 'u': case 'd': case 'i': out.setf(std::ios::dec, std::ios::basefield); intConversion = true; break; case 'o': out.setf(std::ios::oct, std::ios::basefield); intConversion = true; break; case 'X': out.setf(std::ios::uppercase); // Falls through case 'x': case 'p': out.setf(std::ios::hex, std::ios::basefield); intConversion = true; break; case 'E': out.setf(std::ios::uppercase); // Falls through case 'e': out.setf(std::ios::scientific, std::ios::floatfield); out.setf(std::ios::dec, std::ios::basefield); break; case 'F': out.setf(std::ios::uppercase); // Falls through case 'f': out.setf(std::ios::fixed, std::ios::floatfield); break; case 'A': out.setf(std::ios::uppercase); // Falls through case 'a': #ifdef _MSC_VER // Workaround // https://developercommunity.visualstudio.com/content/problem/520472/hexfloat-stream-output-does-not-ignore-precision-a.html // by always setting maximum precision on MSVC to avoid precision // loss for doubles. out.precision(13); #endif out.setf(std::ios::fixed | std::ios::scientific, std::ios::floatfield); break; case 'G': out.setf(std::ios::uppercase); // Falls through case 'g': out.setf(std::ios::dec, std::ios::basefield); // As in boost::format, let stream decide float format. out.flags(out.flags() & ~std::ios::floatfield); break; case 'c': // Handled as special case inside formatValue() break; case 's': if (precisionSet) ntrunc = static_cast(out.precision()); // Make %s print Booleans as "true" and "false" out.setf(std::ios::boolalpha); break; case 'n': // Not supported - will cause problems! TINYFORMAT_ERROR("tinyformat: %n conversion spec not supported"); break; case '\0': TINYFORMAT_ERROR( "tinyformat: Conversion spec incorrectly " "terminated by end of string"); return c; default: break; } if (intConversion && precisionSet && !widthSet) { // "precision" for integers gives the minimum number of digits (to be // padded with zeros on the left). This isn't really supported by the // iostreams, but we can approximately simulate it with the width if // the width isn't otherwise used. out.width(out.precision() + widthExtra); out.setf(std::ios::internal, std::ios::adjustfield); out.fill('0'); } return c + 1; } //------------------------------------------------------------------------------ inline void formatImpl(std::ostream& out, const char* fmt, const detail::FormatArg* args, int numArgs) { // Saved stream state std::streamsize origWidth = out.width(); std::streamsize origPrecision = out.precision(); std::ios::fmtflags origFlags = out.flags(); char origFill = out.fill(); // "Positional mode" means all format specs should be of the form "%n$..." // with `n` an integer. We detect this in `streamStateFromFormat`. bool positionalMode = false; int argIndex = 0; while (true) { fmt = printFormatStringLiteral(out, fmt); if (*fmt == '\0') { if (!positionalMode && argIndex < numArgs) { TINYFORMAT_ERROR("tinyformat: Not enough conversion specifiers in format string"); } break; } bool spacePadPositive = false; int ntrunc = -1; const char* fmtEnd = streamStateFromFormat(out, positionalMode, spacePadPositive, ntrunc, fmt, args, argIndex, numArgs); // NB: argIndex may be incremented by reading variable width/precision // in `streamStateFromFormat`, so do the bounds check here. if (argIndex >= numArgs) { TINYFORMAT_ERROR("tinyformat: Too many conversion specifiers in format string"); return; } const FormatArg& arg = args[argIndex]; // Format the arg into the stream. if (!spacePadPositive) { arg.format(out, fmt, fmtEnd, ntrunc); } else { // The following is a special case with no direct correspondence // between stream formatting and the printf() behaviour. Simulate // it crudely by formatting into a temporary string stream and // munging the resulting string. std::ostringstream tmpStream; tmpStream.copyfmt(out); tmpStream.setf(std::ios::showpos); arg.format(tmpStream, fmt, fmtEnd, ntrunc); std::string result = tmpStream.str(); // allocates... yuck. for (size_t i = 0, iend = result.size(); i < iend; ++i) { if (result[i] == '+') result[i] = ' '; } out << result; } if (!positionalMode) ++argIndex; fmt = fmtEnd; } // Restore stream state out.width(origWidth); out.precision(origPrecision); out.flags(origFlags); out.fill(origFill); } } // namespace detail /// List of template arguments format(), held in a type-opaque way. /// /// A const reference to FormatList (typedef'd as FormatListRef) may be /// conveniently used to pass arguments to non-template functions: All type /// information has been stripped from the arguments, leaving just enough of a /// common interface to perform formatting as required. class FormatList { public: FormatList(detail::FormatArg* args, int N) : m_args(args), m_N(N) {} friend void vformat(std::ostream& out, const char* fmt, const FormatList& list); private: const detail::FormatArg* m_args; int m_N; }; /// Reference to type-opaque format list for passing to vformat() typedef const FormatList& FormatListRef; namespace detail { // Format list subclass with fixed storage to avoid dynamic allocation template class FormatListN : public FormatList { public: #ifdef TINYFORMAT_USE_VARIADIC_TEMPLATES template FormatListN(const Args&... args) : FormatList(&m_formatterStore[0], N), m_formatterStore{FormatArg(args)...} { static_assert(sizeof...(args) == N, "Number of args must be N"); } #else // C++98 version void init(int) {} #define TINYFORMAT_MAKE_FORMATLIST_CONSTRUCTOR(n) \ \ template \ FormatListN(TINYFORMAT_VARARGS(n)) : FormatList(&m_formatterStore[0], n) { \ TINYFORMAT_ASSERT(n == N); \ init(0, TINYFORMAT_PASSARGS(n)); \ } \ \ template \ void init(int i, TINYFORMAT_VARARGS(n)) { \ m_formatterStore[i] = FormatArg(v1); \ init(i + 1 TINYFORMAT_PASSARGS_TAIL(n)); \ } TINYFORMAT_FOREACH_ARGNUM(TINYFORMAT_MAKE_FORMATLIST_CONSTRUCTOR) #undef TINYFORMAT_MAKE_FORMATLIST_CONSTRUCTOR #endif private: FormatArg m_formatterStore[N]; }; // Special 0-arg version - MSVC says zero-sized C array in struct is nonstandard template <> class FormatListN<0> : public FormatList { public: FormatListN() : FormatList(0, 0) {} }; } // namespace detail //------------------------------------------------------------------------------ // Primary API functions #ifdef TINYFORMAT_USE_VARIADIC_TEMPLATES /// Make type-agnostic format list from list of template arguments. /// /// The exact return type of this function is an implementation detail and /// shouldn't be relied upon. Instead it should be stored as a FormatListRef: /// /// FormatListRef formatList = makeFormatList( /*...*/ ); template detail::FormatListN makeFormatList(const Args&... args) { return detail::FormatListN(args...); } #else // C++98 version inline detail::FormatListN<0> makeFormatList() { return detail::FormatListN<0>(); } #define TINYFORMAT_MAKE_MAKEFORMATLIST(n) \ template \ detail::FormatListN makeFormatList(TINYFORMAT_VARARGS(n)) { \ return detail::FormatListN(TINYFORMAT_PASSARGS(n)); \ } TINYFORMAT_FOREACH_ARGNUM(TINYFORMAT_MAKE_MAKEFORMATLIST) #undef TINYFORMAT_MAKE_MAKEFORMATLIST #endif /// Format list of arguments to the stream according to the given format string. /// /// The name vformat() is chosen for the semantic similarity to vprintf(): the /// list of format arguments is held in a single function argument. inline void vformat(std::ostream& out, const char* fmt, FormatListRef list) { detail::formatImpl(out, fmt, list.m_args, list.m_N); } #ifdef TINYFORMAT_USE_VARIADIC_TEMPLATES /// Format list of arguments to the stream according to given format string. template void format(std::ostream& out, const char* fmt, const Args&... args) { vformat(out, fmt, makeFormatList(args...)); } /// Format list of arguments according to the given format string and return /// the result as a string. template std::string format(const char* fmt, const Args&... args) { std::ostringstream oss; format(oss, fmt, args...); return oss.str(); } /// Format list of arguments to std::cout, according to the given format string template void printf(const char* fmt, const Args&... args) { format(std::cout, fmt, args...); } template void printfln(std::ostream& out, const char* fmt, const Args&... args) { format(out, fmt, args...); out << '\n'; } /// Additional functions by Kampersanda template void printfln(const char* fmt, const Args&... args) { format(std::cout, fmt, args...); std::cout << '\n'; } template inline void errorf(const char* fmt, const Args&... args) { static const char* RED_COLOR = "\033[0;31m"; std::cerr << RED_COLOR << "ERROR: "; format(std::cerr, fmt, args...); std::cerr << "\033[0;0m"; } template inline void warnf(const char* fmt, const Args&... args) { static const char* YELLOW_COLOR = "\033[0;33m"; std::cerr << YELLOW_COLOR << "WARNING: "; format(std::cerr, fmt, args...); std::cerr << "\033[0;0m"; } template inline void reportf(const char* fmt, const Args&... args) { static const char* GREEN_COLOR = "\033[0;32m"; std::cout << GREEN_COLOR; format(std::cout, fmt, args...); std::cout << "\033[0;0m"; } template inline void errorfln(const char* fmt, const Args&... args) { static const char* RED_COLOR = "\033[0;31m"; std::cerr << RED_COLOR << "ERROR: "; format(std::cerr, fmt, args...); std::cerr << "\033[0;0m" << std::endl; } template inline void warnfln(const char* fmt, const Args&... args) { static const char* YELLOW_COLOR = "\033[0;33m"; std::cerr << YELLOW_COLOR << "WARNING: "; format(std::cerr, fmt, args...); std::cerr << "\033[0;0m" << std::endl; } template inline void reportfln(const char* fmt, const Args&... args) { static const char* GREEN_COLOR = "\033[0;32m"; std::cout << GREEN_COLOR; format(std::cout, fmt, args...); std::cout << "\033[0;0m" << std::endl; } #else // C++98 version inline void format(std::ostream& out, const char* fmt) { vformat(out, fmt, makeFormatList()); } inline std::string format(const char* fmt) { std::ostringstream oss; format(oss, fmt); return oss.str(); } inline void printf(const char* fmt) { format(std::cout, fmt); } inline void printfln(const char* fmt) { format(std::cout, fmt); std::cout << '\n'; } #define TINYFORMAT_MAKE_FORMAT_FUNCS(n) \ \ template \ void format(std::ostream& out, const char* fmt, TINYFORMAT_VARARGS(n)) { \ vformat(out, fmt, makeFormatList(TINYFORMAT_PASSARGS(n))); \ } \ \ template \ std::string format(const char* fmt, TINYFORMAT_VARARGS(n)) { \ std::ostringstream oss; \ format(oss, fmt, TINYFORMAT_PASSARGS(n)); \ return oss.str(); \ } \ \ template \ void printf(const char* fmt, TINYFORMAT_VARARGS(n)) { \ format(std::cout, fmt, TINYFORMAT_PASSARGS(n)); \ } \ \ template \ void printfln(const char* fmt, TINYFORMAT_VARARGS(n)) { \ format(std::cout, fmt, TINYFORMAT_PASSARGS(n)); \ std::cout << '\n'; \ } TINYFORMAT_FOREACH_ARGNUM(TINYFORMAT_MAKE_FORMAT_FUNCS) #undef TINYFORMAT_MAKE_FORMAT_FUNCS #endif } // namespace tinyformat #endif // TINYFORMAT_H_INCLUDED