Created by Shunsuke Kanda
Xcdat is a C++ library that implements static compressed string dictionaries based on an improved double-array trie.
The double array (Aoe, 1989) is known as the fastest trie representation and has been used in many trie libraries. On the other hand, it has a space efficiency problem because of a pointer-based data structure. Xcdat solves the problem using the XOR-compressed double-array methods described in the following article.
Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. Compressed double-array tries for string dictionaries supporting fast lookup. Knowledge and Information Systems, 51(3): 1023–1042, 2017.
Xcdat can implement trie dictionaries in smaller space compared to the other double-array libraries. In addition, the lookup speed is relatively fast in compressed data structures from the double-array advantage.
Xcdat is available at GitHub repsitory.
XCDAT_X64
; therefore, the dictionary can be constructed from a very large dataset. The construction space becomes large, but the output dictionary size is nearly equal.xcdat::TrieBuilder::build()
to true
.You can download and compile Xcdat as the following commands.
$ git clone https://github.com/kampersanda/xcdat.git
$ cd xcdat
$ mkdir build
$ cd build
$ cmake ..
$ make
$ make install
If you want to use a 64-bit setting, please add -DXCDAT_X64=ON
to the CMake option. In addition, you can use the SSE4.2 POPCNT instruction by adding -DXCDAT_USE_POPCNT=ON
for Rank/Select operations. The code has been tested only on Mac OS X and Linux. That is, this library considers only UNIX-compatible OS.
xcdat
is a general-purpose command line tool to provide three modes as follows.
$ xcdat
xcdat build <type> <key> <dict>
<type> 1: DACs, 2: FDACs
<key> Input file name of a set of keys (must be sorted)
<dict> Output file name of the dictionary (optional)
If omitted, <key>.dacs or <key>.fdacs is output
xcdat query <type> <dict> <limit>
<type> 1: DACs, 2: FDACs
<dict> Input file name of the dictionary
<limit> Limit of #results (optional, default=10)
xcdat bench <type> <dict> <key>
<type> 1: DACs, 2: FDACs
<dict> Input file name of the dictionary
<key> Input file name of keys for benchmark
Command xcdat build [params...]
builds Xcdat dictionaries from a given dataset and saves it to a file, as follows.
$ xcdat build 1 jawiki-all-titles
constr. time: 1.58574 sec
cmpr. ratio: 0.524287 over the raw size
basic statistics of xcdat::Trie<false>
num keys: 1738995
alphabet size: 189
num nodes: 4042496
num used nodes: 4034357
num free nodes: 8139
size in bytes: 20546967
member size statistics of xcdat::Trie<false>
bc: 13879098 0.675482
terminal_flags: 708448 0.0344794
tail: 5958655 0.290002
boundary_flags: 40 1.94676e-06
basic statistics of xcdat::DacBc
num links: 1499605
bytes per node: 3.4333
member size statistics of xcdat::DacBc
values_L0: 8085000 0.582531
values_L1: 746760 0.0538046
values_L2: 22581 0.00162698
flags_L0: 1389660 0.100126
flags_L1: 128400 0.00925132
leaves: 694856 0.0500649
links: 2811784 0.202591
output -> jawiki-all-titles.dac
Command xcdat query [params...]
loads a dictionary file and tests lookup operations, as follows.
$ xcdat query 1 jawiki-all-titles.dac
> NEW_GAME!
Lookup
125989 NEW_GAME!
Common Prefix Lookup
28 N
124185 NE
125428 NEW
125988 NEW_GAME
125989 NEW_GAME!
5 found
Predictive Lookup
125989 NEW_GAME!
126003 NEW_GAME!!
126059 NEW_GAME!_-THE_CHALLENGE_STAGE!-
3 found
Command xcdat bench [params...]
tests time performances of a given dictionary, as follows.
$ xcdat bench 1 jawiki-all-titles.dac jawiki-all-titles.rnd
Warm up
Lookup benchmark on 10 runs
1.5065 us per str
Access benchmark on 10 runs
1.81289 us per ID
The following code shows an easy routine sample.
#include <iostream>
#include <xcdat.hpp>
int main() {
std::vector<std::string> keys_buf = {
"Aoba", "Yun", "Hajime", "Hihumi", "Kou", "Rin",
"Hazuki", "Umiko", "Nene", "Nenecchi"
};
// Convert to the input format
std::vector<std::string_view> keys(keys_buf.size());
for (size_t i = 0; i < keys.size(); ++i) {
keys[i] = std::string_view{keys_buf[i]};
}
// Input data must be sorted.
std::sort(std::begin(keys), std::end(keys));
// Dictionary class
using Trie = xcdat::Trie<true>;
try {
// Builds a dictionary from the keys
Trie trie = xcdat::TrieBuilder::build<true>(keys); // move
// Writes the dictionary to a file.
std::ofstream ofs{"sample.bin"};
trie.write(ofs);
} catch (const xcdat::TrieBuilder::Exception& ex) {
// Abort if something went wrong...
std::cerr << ex.what() << std::endl;
return 1;
}
// Creates an empty dictionary
Trie trie;
{
// Reads the dictionary to the file.
std::ifstream ifs{"sample.bin"};
trie = Trie{ifs}; // move
}
std::cout << "Performing basic operations..." << std::endl;
{
// lookup() obtains the unique ID for a given key
xcdat::id_type key_id = trie.lookup("Rin");
// access() decodes the key from a given ID
std::cout << key_id << " : " << trie.access(key_id) << std::endl;
// Given an unregistered key, lookup() returns NOT_FOUND.
if (trie.lookup("Hotaru") == Trie::NOT_FOUND) {
std::cout << "? : " << "Hotaru" << std::endl;
}
}
std::cout << "Performing a common prefix operation..." << std::endl;
{
// Common prefix operation is implemented using PrefixIterator, created by
// make_prefix_iterator().
Trie::PrefixIterator it = trie.make_prefix_iterator("Nenecchi");
// next() continues to obtain the next key until false is returned.
while (it.next()) {
std::cout << it.id() << " : " << it.key() << std::endl;
}
}
std::cout << "Performing a predictive operation..." << std::endl;
{
// Predictive operation is implemented using PredictiveIterator, created by
// make_predictive_iterator().
Trie::PredictiveIterator it = trie.make_predictive_iterator("Ha");
// next() continues to obtain the next key until false is returned in
// lexicographical order.
while (it.next()) {
std::cout << it.id() << " : " << it.key() << std::endl;
}
}
std::cout << "Enumerating all registered keys..." << std::endl;
{
// PredictiveIterator for an empty string provides enumeration of all
// registered keys in lexicographical order.
Trie::PredictiveIterator it = trie.make_predictive_iterator("");
while (it.next()) {
std::cout << it.id() << " : " << it.key() << std::endl;
}
}
return 0;
}
The standard output is as follows.
Performing basic operations...
7 : Rin
? : Hotaru
Performing common prefix operations...
4 : Nene
6 : Nenecchi
Performing predictive operations...
3 : Hajime
5 : Hazuki
Enumerating all registered keys...
0 : Aoba
3 : Hajime
5 : Hazuki
1 : Hihumi
2 : Kou
4 : Nene
6 : Nenecchi
7 : Rin
8 : Umiko
9 : Yun
As shown in the output, xcdat::Trie
assigns unique integer IDs to each registered key. The ID order is random, depending on node arrangement.
You can build a dictionary using static member function xcdat::TrieBuilder::build<bool>()
. This function receives a set of keywords and returns the resulting class object of xcdat::Trie<bool>
. For the usage, refer to the header comments of xcdat::TrieBuilder.hpp. Also for the usage of xcdat::Trie
, refer to the header comments of xcdat::Trie.
The detailed descriptions of AIP are under construction…
Work in progress…
This library is free software provided under the MIT License.
If you use the library in academic settings, please cite the following paper.
@article{kanda2017compressed,
title={Compressed double-array tries for string dictionaries supporting fast lookup},
author={Kanda, Shunsuke and Morita, Kazuhiro and Fuketa, Masao},
journal={Knowledge and Information Systems},
volume={51},
number={3},
pages={1023--1042},
year={2017},
publisher={Springer}
}