Xcdat: XOR-compressed double-array trie

Created by Shunsuke Kanda

Contents

What is Xcdat?

Xcdat is a C++ library that implements static compressed string dictionaries based on an improved double-array trie.

The double array (Aoe, 1989) is known as the fastest trie representation and has been used in many trie libraries. On the other hand, it has a space efficiency problem because of a pointer-based data structure. Xcdat solves the problem using the XOR-compressed double-array methods described in the following article.

Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. Compressed double-array tries for string dictionaries supporting fast lookup. Knowledge and Information Systems, 51(3): 1023–1042, 2017. [doi] [pdf]

Xcdat can implement trie dictionaries in smaller space compared to the other double-array libraries. In addition, the lookup speed is relatively fast in compressed data structures from the double-array advantage.

Xcdat is available at GitHub repsitory.

Features

Build Instructions

You can download and compile Xcdat as the following commands.

$ git clone https://github.com/kampersanda/xcdat.git
$ cd xcdat
$ mkdir build
$ cd build
$ cmake ..
$ make
$ make install

If you want to use a 64-bit setting, please add -DXCDAT_X64=ON to the CMake option. In addition, you can use the SSE4.2 POPCNT instruction by adding -DXCDAT_USE_POPCNT=ON for Rank/Select operations. The code has been tested only on Mac OS X and Linux. That is, this library considers only UNIX-compatible OS.

Command Line Tools

xcdat is a general-purpose command line tool to provide three modes as follows.

$ xcdat 
xcdat build <type> <key> <dict>
    <type>  1: DACs, 2: FDACs
    <key>   Input file name of a set of keys (must be sorted)
    <dict>  Output file name of the dictionary (optional)
            If omitted, <key>.dacs or <key>.fdacs is output
xcdat query <type> <dict> <limit>
    <type>  1: DACs, 2: FDACs
    <dict>  Input file name of the dictionary
    <limit> Limit of #results (optional, default=10)
xcdat bench <type> <dict> <key>
    <type>  1: DACs, 2: FDACs
    <dict>  Input file name of the dictionary
    <key>   Input file name of keys for benchmark

Example 1: Construction

Command xcdat build [params...] builds Xcdat dictionaries from a given dataset and saves it to a file, as follows.

$ xcdat build 1 jawiki-all-titles
constr. time:   1.58574 sec
cmpr. ratio:    0.524287 over the raw size

basic statistics of xcdat::Trie<false>
    num keys:       1738995
    alphabet size:  189
    num nodes:      4042496
    num used nodes: 4034357
    num free nodes: 8139
    size in bytes:  20546967
member size statistics of xcdat::Trie<false>
    bc:             13879098    0.675482
    terminal_flags: 708448  0.0344794
    tail:           5958655 0.290002
    boundary_flags: 40  1.94676e-06
basic statistics of xcdat::DacBc
    num links:      1499605
    bytes per node: 3.4333
member size statistics of xcdat::DacBc
    values_L0:  8085000 0.582531
    values_L1:  746760  0.0538046
    values_L2:  22581   0.00162698
    flags_L0:   1389660 0.100126
    flags_L1:   128400  0.00925132
    leaves:     694856  0.0500649
    links:      2811784 0.202591

output -> jawiki-all-titles.dac

Example 2: Query Processing

Command xcdat query [params...] loads a dictionary file and tests lookup operations, as follows.

$ xcdat query 1 jawiki-all-titles.dac
> NEW_GAME!
Lookup
125989  NEW_GAME!
Common Prefix Lookup
28  N
124185  NE
125428  NEW
125988  NEW_GAME
125989  NEW_GAME!
5 found
Predictive Lookup
125989  NEW_GAME!
126003  NEW_GAME!!
126059  NEW_GAME!_-THE_CHALLENGE_STAGE!-
3 found

Example 3: Benchmark Test

Command xcdat bench [params...] tests time performances of a given dictionary, as follows.

$ xcdat bench 1 jawiki-all-titles.dac jawiki-all-titles.rnd
Warm up
Lookup benchmark on 10 runs
1.5065 us per str
Access benchmark on 10 runs
1.81289 us per ID

Sample Usage

The following code shows an easy routine sample.

#include <iostream>
#include <xcdat.hpp>
int main() {
std::vector<std::string> keys_buf = {
"Aoba", "Yun", "Hajime", "Hihumi", "Kou", "Rin",
"Hazuki", "Umiko", "Nene", "Nenecchi"
};
// Convert to the input format
std::vector<std::string_view> keys(keys_buf.size());
for (size_t i = 0; i < keys.size(); ++i) {
keys[i] = std::string_view{keys_buf[i]};
}
// Input data must be sorted.
std::sort(std::begin(keys), std::end(keys));
// Dictionary class
using Trie = xcdat::Trie<true>;
try {
// Builds a dictionary from the keys
Trie trie = xcdat::TrieBuilder::build<true>(keys); // move
// Writes the dictionary to a file.
std::ofstream ofs{"sample.bin"};
trie.write(ofs);
} catch (const xcdat::TrieBuilder::Exception& ex) {
// Abort if something went wrong...
std::cerr << ex.what() << std::endl;
return 1;
}
// Creates an empty dictionary
Trie trie;
{
// Reads the dictionary to the file.
std::ifstream ifs{"sample.bin"};
trie = Trie{ifs}; // move
}
std::cout << "Performing basic operations..." << std::endl;
{
// lookup() obtains the unique ID for a given key
xcdat::id_type key_id = trie.lookup("Rin");
// access() decodes the key from a given ID
std::cout << key_id << " : " << trie.access(key_id) << std::endl;
// Given an unregistered key, lookup() returns NOT_FOUND.
if (trie.lookup("Hotaru") == Trie::NOT_FOUND) {
std::cout << "? : " << "Hotaru" << std::endl;
}
}
std::cout << "Performing a common prefix operation..." << std::endl;
{
// Common prefix operation is implemented using PrefixIterator, created by
// make_prefix_iterator().
Trie::PrefixIterator it = trie.make_prefix_iterator("Nenecchi");
// next() continues to obtain the next key until false is returned.
while (it.next()) {
std::cout << it.id() << " : " << it.key() << std::endl;
}
}
std::cout << "Performing a predictive operation..." << std::endl;
{
// Predictive operation is implemented using PredictiveIterator, created by
// make_predictive_iterator().
Trie::PredictiveIterator it = trie.make_predictive_iterator("Ha");
// next() continues to obtain the next key until false is returned in
// lexicographical order.
while (it.next()) {
std::cout << it.id() << " : " << it.key() << std::endl;
}
}
std::cout << "Enumerating all registered keys..." << std::endl;
{
// PredictiveIterator for an empty string provides enumeration of all
// registered keys in lexicographical order.
Trie::PredictiveIterator it = trie.make_predictive_iterator("");
while (it.next()) {
std::cout << it.id() << " : " << it.key() << std::endl;
}
}
return 0;
}

The standard output is as follows.

Performing basic operations...
7 : Rin
? : Hotaru
Performing common prefix operations...
4 : Nene
6 : Nenecchi
Performing predictive operations...
3 : Hajime
5 : Hazuki
Enumerating all registered keys...
0 : Aoba
3 : Hajime
5 : Hazuki
1 : Hihumi
2 : Kou
4 : Nene
6 : Nenecchi
7 : Rin
8 : Umiko
9 : Yun

As shown in the output, xcdat::Trie assigns unique integer IDs to each registered key. The ID order is random, depending on node arrangement.

API

You can build a dictionary using static member function xcdat::TrieBuilder::build(). This function receives a set of keywords and returns the resulting class object of xcdat::Trie. For the usage, refer to the header comments of xcdat::TrieBuilder.hpp. Also for the usage of xcdat::Trie, refer to the header comments of xcdat::Trie.

The detailed descriptions of AIP are under construction…

Benchmark

Work in progress…

To Do

Licensing

This library is free software provided under the MIT License.

Citation

If you use the library in academic settings, please cite the following paper.

@article{kanda2017compressed,
title={Compressed double-array tries for string dictionaries supporting fast lookup},
author={Kanda, Shunsuke and Morita, Kazuhiro and Fuketa, Masao},
journal={Knowledge and Information Systems},
volume={51},
number={3},
pages={1023--1042},
year={2017},
publisher={Springer}
}

References