#!/usr/bin/env python3 import xcdat import os # Prepare the dataset of keywords keyset = xcdat.Keyset() keyset.append('AirPods') keyset.append('AirTag') keyset.append('Mac') keyset.append('MacBook') keyset.append('MacBook_Air') keyset.append('MacBook_Pro') keyset.append('Mac_Mini') keyset.append('Mac_Pro') keyset.append('iMac') keyset.append('iPad') keyset.append('iPhone') keyset.append('iPhone_SE') keyset.complete() # You can choose the trie type from the four types. Trie = xcdat.Trie8 # Trie = xcdat.Trie16 # Trie = xcdat.Trie7 # Trie = xcdat.Trie15 # Build the trie dictionary trie = Trie(keyset) # Get the statistics print(f'Number of keys: {trie.num_keys()}') print(f'Number of trie nodes: {trie.num_nodes()}') print(f'Number of DA units: {trie.num_units()}') print(f'Memory usage in bytes: {trie.memory_in_bytes()}') # Lookup the ID for a query key. print(f'Lookup(Mac_Pro) = {trie.lookup("Mac_Pro")}') print(f'Lookup(Google_Pixel) = {trie.lookup("Google_Pixel")}') # Decode the key for a query ID. print(f'Decode(4) = {trie.decode(4)}') # Common prefix search print('CommonPrefixSearch(MacBook_Air) = {') itr = trie.make_prefix_iterator('MacBook_Air') while itr.next(): print(f' ({itr.decoded()}, {itr.id()})') print('}') # Predictive search (in lexicographical order). print('PredictiveSearch(Mac) = {') itr = trie.make_predictive_iterator('Mac') while itr.next(): print(f' ({itr.decoded()}, {itr.id()})') print('}') # Enumerate all the keys (in lexicographical order). print('Enumerate() = {') itr = trie.make_enumerative_iterator() while itr.next(): print(f' ({itr.decoded()}, {itr.id()})') print('}') # Save the trie to the file trie.save('dic.bin') # Load the trie from the file other = Trie('dic.bin') assert trie.num_keys() == other.num_keys() assert trie.num_nodes() == other.num_nodes() assert trie.num_units() == other.num_units() assert trie.memory_in_bytes() == other.memory_in_bytes() os.remove('dic.bin')