xcdat/tools/tinyformat/tinyformat.h
Shunsuke Kanda eebe7ac0db update
2021-06-28 02:15:09 +09:00

1156 lines
50 KiB
C++

// tinyformat.h
// Copyright (C) 2011, Chris Foster [chris42f (at) gmail (d0t) com]
//
// Boost Software License - Version 1.0
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//------------------------------------------------------------------------------
// Tinyformat: A minimal type safe printf replacement
//
// tinyformat.h is a type safe printf replacement library in a single C++
// header file. Design goals include:
//
// * Type safety and extensibility for user defined types.
// * C99 printf() compatibility, to the extent possible using std::ostream
// * POSIX extension for positional arguments
// * Simplicity and minimalism. A single header file to include and distribute
// with your projects.
// * Augment rather than replace the standard stream formatting mechanism
// * C++98 support, with optional C++11 niceties
//
//
// Main interface example usage
// ----------------------------
//
// To print a date to std::cout for American usage:
//
// std::string weekday = "Wednesday";
// const char* month = "July";
// size_t day = 27;
// long hour = 14;
// int min = 44;
//
// tfm::printf("%s, %s %d, %.2d:%.2d\n", weekday, month, day, hour, min);
//
// POSIX extension for positional arguments is available.
// The ability to rearrange formatting arguments is an important feature
// for localization because the word order may vary in different languages.
//
// Previous example for German usage. Arguments are reordered:
//
// tfm::printf("%1$s, %3$d. %2$s, %4$d:%5$.2d\n", weekday, month, day, hour, min);
//
// The strange types here emphasize the type safety of the interface; it is
// possible to print a std::string using the "%s" conversion, and a
// size_t using the "%d" conversion. A similar result could be achieved
// using either of the tfm::format() functions. One prints on a user provided
// stream:
//
// tfm::format(std::cerr, "%s, %s %d, %.2d:%.2d\n",
// weekday, month, day, hour, min);
//
// The other returns a std::string:
//
// std::string date = tfm::format("%s, %s %d, %.2d:%.2d\n",
// weekday, month, day, hour, min);
// std::cout << date;
//
// These are the three primary interface functions. There is also a
// convenience function printfln() which appends a newline to the usual result
// of printf() for super simple logging.
//
//
// User defined format functions
// -----------------------------
//
// Simulating variadic templates in C++98 is pretty painful since it requires
// writing out the same function for each desired number of arguments. To make
// this bearable tinyformat comes with a set of macros which are used
// internally to generate the API, but which may also be used in user code.
//
// The three macros TINYFORMAT_ARGTYPES(n), TINYFORMAT_VARARGS(n) and
// TINYFORMAT_PASSARGS(n) will generate a list of n argument types,
// type/name pairs and argument names respectively when called with an integer
// n between 1 and 16. We can use these to define a macro which generates the
// desired user defined function with n arguments. To generate all 16 user
// defined function bodies, use the macro TINYFORMAT_FOREACH_ARGNUM. For an
// example, see the implementation of printf() at the end of the source file.
//
// Sometimes it's useful to be able to pass a list of format arguments through
// to a non-template function. The FormatList class is provided as a way to do
// this by storing the argument list in a type-opaque way. Continuing the
// example from above, we construct a FormatList using makeFormatList():
//
// FormatListRef formatList = tfm::makeFormatList(weekday, month, day, hour, min);
//
// The format list can now be passed into any non-template function and used
// via a call to the vformat() function:
//
// tfm::vformat(std::cout, "%s, %s %d, %.2d:%.2d\n", formatList);
//
//
// Additional API information
// --------------------------
//
// Error handling: Define TINYFORMAT_ERROR to customize the error handling for
// format strings which are unsupported or have the wrong number of format
// specifiers (calls assert() by default).
//
// User defined types: Uses operator<< for user defined types by default.
// Overload formatValue() for more control.
#ifndef TINYFORMAT_H_INCLUDED
#define TINYFORMAT_H_INCLUDED
namespace tinyformat {}
//------------------------------------------------------------------------------
// Config section. Customize to your liking!
// Namespace alias to encourage brevity
namespace tfm = tinyformat;
// Error handling; calls assert() by default.
// #define TINYFORMAT_ERROR(reasonString) your_error_handler(reasonString)
// Define for C++11 variadic templates which make the code shorter & more
// general. If you don't define this, C++11 support is autodetected below.
// #define TINYFORMAT_USE_VARIADIC_TEMPLATES
//------------------------------------------------------------------------------
// Implementation details.
#include <algorithm>
#include <iostream>
#include <sstream>
#ifndef TINYFORMAT_ASSERT
#include <cassert>
#define TINYFORMAT_ASSERT(cond) assert(cond)
#endif
#ifndef TINYFORMAT_ERROR
#include <cassert>
#define TINYFORMAT_ERROR(reason) assert(0 && reason)
#endif
#if !defined(TINYFORMAT_USE_VARIADIC_TEMPLATES) && !defined(TINYFORMAT_NO_VARIADIC_TEMPLATES)
#ifdef __GXX_EXPERIMENTAL_CXX0X__
#define TINYFORMAT_USE_VARIADIC_TEMPLATES
#endif
#endif
#if defined(__GLIBCXX__) && __GLIBCXX__ < 20080201
// std::showpos is broken on old libstdc++ as provided with macOS. See
// http://gcc.gnu.org/ml/libstdc++/2007-11/msg00075.html
#define TINYFORMAT_OLD_LIBSTDCPLUSPLUS_WORKAROUND
#endif
#ifdef __APPLE__
// Workaround macOS linker warning: Xcode uses different default symbol
// visibilities for static libs vs executables (see issue #25)
#define TINYFORMAT_HIDDEN __attribute__((visibility("hidden")))
#else
#define TINYFORMAT_HIDDEN
#endif
namespace tinyformat {
//------------------------------------------------------------------------------
namespace detail {
// Test whether type T1 is convertible to type T2
template <typename T1, typename T2>
struct is_convertible {
private:
// two types of different size
struct fail {
char dummy[2];
};
struct succeed {
char dummy;
};
// Try to convert a T1 to a T2 by plugging into tryConvert
static fail tryConvert(...);
static succeed tryConvert(const T2&);
static const T1& makeT1();
public:
#ifdef _MSC_VER
// Disable spurious loss of precision warnings in tryConvert(makeT1())
#pragma warning(push)
#pragma warning(disable : 4244)
#pragma warning(disable : 4267)
#endif
// Standard trick: the (...) version of tryConvert will be chosen from
// the overload set only if the version taking a T2 doesn't match.
// Then we compare the sizes of the return types to check which
// function matched. Very neat, in a disgusting kind of way :)
static const bool value = sizeof(tryConvert(makeT1())) == sizeof(succeed);
#ifdef _MSC_VER
#pragma warning(pop)
#endif
};
// Detect when a type is not a wchar_t string
template <typename T>
struct is_wchar {
typedef int tinyformat_wchar_is_not_supported;
};
template <>
struct is_wchar<wchar_t*> {};
template <>
struct is_wchar<const wchar_t*> {};
template <int n>
struct is_wchar<const wchar_t[n]> {};
template <int n>
struct is_wchar<wchar_t[n]> {};
// Format the value by casting to type fmtT. This default implementation
// should never be called.
template <typename T, typename fmtT, bool convertible = is_convertible<T, fmtT>::value>
struct formatValueAsType {
static void invoke(std::ostream& /*out*/, const T& /*value*/) {
TINYFORMAT_ASSERT(0);
}
};
// Specialized version for types that can actually be converted to fmtT, as
// indicated by the "convertible" template parameter.
template <typename T, typename fmtT>
struct formatValueAsType<T, fmtT, true> {
static void invoke(std::ostream& out, const T& value) {
out << static_cast<fmtT>(value);
}
};
#ifdef TINYFORMAT_OLD_LIBSTDCPLUSPLUS_WORKAROUND
template <typename T, bool convertible = is_convertible<T, int>::value>
struct formatZeroIntegerWorkaround {
static bool invoke(std::ostream& /**/, const T& /**/) {
return false;
}
};
template <typename T>
struct formatZeroIntegerWorkaround<T, true> {
static bool invoke(std::ostream& out, const T& value) {
if (static_cast<int>(value) == 0 && out.flags() & std::ios::showpos) {
out << "+0";
return true;
}
return false;
}
};
#endif // TINYFORMAT_OLD_LIBSTDCPLUSPLUS_WORKAROUND
// Convert an arbitrary type to integer. The version with convertible=false
// throws an error.
template <typename T, bool convertible = is_convertible<T, int>::value>
struct convertToInt {
static int invoke(const T& /*value*/) {
TINYFORMAT_ERROR(
"tinyformat: Cannot convert from argument type to "
"integer for use as variable width or precision");
return 0;
}
};
// Specialization for convertToInt when conversion is possible
template <typename T>
struct convertToInt<T, true> {
static int invoke(const T& value) {
return static_cast<int>(value);
}
};
// Format at most ntrunc characters to the given stream.
template <typename T>
inline void formatTruncated(std::ostream& out, const T& value, int ntrunc) {
std::ostringstream tmp;
tmp << value;
std::string result = tmp.str();
out.write(result.c_str(), (std::min)(ntrunc, static_cast<int>(result.size())));
}
#define TINYFORMAT_DEFINE_FORMAT_TRUNCATED_CSTR(type) \
inline void formatTruncated(std::ostream& out, type* value, int ntrunc) { \
std::streamsize len = 0; \
while (len < ntrunc && value[len] != 0) ++len; \
out.write(value, len); \
}
// Overload for const char* and char*. Could overload for signed & unsigned
// char too, but these are technically unneeded for printf compatibility.
TINYFORMAT_DEFINE_FORMAT_TRUNCATED_CSTR(const char)
TINYFORMAT_DEFINE_FORMAT_TRUNCATED_CSTR(char)
#undef TINYFORMAT_DEFINE_FORMAT_TRUNCATED_CSTR
} // namespace detail
//------------------------------------------------------------------------------
// Variable formatting functions. May be overridden for user-defined types if
// desired.
/// Format a value into a stream, delegating to operator<< by default.
///
/// Users may override this for their own types. When this function is called,
/// the stream flags will have been modified according to the format string.
/// The format specification is provided in the range [fmtBegin, fmtEnd). For
/// truncating conversions, ntrunc is set to the desired maximum number of
/// characters, for example "%.7s" calls formatValue with ntrunc = 7.
///
/// By default, formatValue() uses the usual stream insertion operator
/// operator<< to format the type T, with special cases for the %c and %p
/// conversions.
template <typename T>
inline void formatValue(std::ostream& out, const char* /*fmtBegin*/, const char* fmtEnd, int ntrunc, const T& value) {
#ifndef TINYFORMAT_ALLOW_WCHAR_STRINGS
// Since we don't support printing of wchar_t using "%ls", make it fail at
// compile time in preference to printing as a void* at runtime.
typedef typename detail::is_wchar<T>::tinyformat_wchar_is_not_supported DummyType;
(void)DummyType(); // avoid unused type warning with gcc-4.8
#endif
// The mess here is to support the %c and %p conversions: if these
// conversions are active we try to convert the type to a char or const
// void* respectively and format that instead of the value itself. For the
// %p conversion it's important to avoid dereferencing the pointer, which
// could otherwise lead to a crash when printing a dangling (const char*).
const bool canConvertToChar = detail::is_convertible<T, char>::value;
const bool canConvertToVoidPtr = detail::is_convertible<T, const void*>::value;
if (canConvertToChar && *(fmtEnd - 1) == 'c')
detail::formatValueAsType<T, char>::invoke(out, value);
else if (canConvertToVoidPtr && *(fmtEnd - 1) == 'p')
detail::formatValueAsType<T, const void*>::invoke(out, value);
#ifdef TINYFORMAT_OLD_LIBSTDCPLUSPLUS_WORKAROUND
else if (detail::formatZeroIntegerWorkaround<T>::invoke(out, value)) /**/
;
#endif
else if (ntrunc >= 0) {
// Take care not to overread C strings in truncating conversions like
// "%.4s" where at most 4 characters may be read.
detail::formatTruncated(out, value, ntrunc);
} else
out << value;
}
// Overloaded version for char types to support printing as an integer
#define TINYFORMAT_DEFINE_FORMATVALUE_CHAR(charType) \
inline void formatValue(std::ostream& out, const char* /*fmtBegin*/, const char* fmtEnd, int /**/, \
charType value) { \
switch (*(fmtEnd - 1)) { \
case 'u': \
case 'd': \
case 'i': \
case 'o': \
case 'X': \
case 'x': \
out << static_cast<int>(value); \
break; \
default: \
out << value; \
break; \
} \
}
// per 3.9.1: char, signed char and unsigned char are all distinct types
TINYFORMAT_DEFINE_FORMATVALUE_CHAR(char)
TINYFORMAT_DEFINE_FORMATVALUE_CHAR(signed char)
TINYFORMAT_DEFINE_FORMATVALUE_CHAR(unsigned char)
#undef TINYFORMAT_DEFINE_FORMATVALUE_CHAR
//------------------------------------------------------------------------------
// Tools for emulating variadic templates in C++98. The basic idea here is
// stolen from the boost preprocessor metaprogramming library and cut down to
// be just general enough for what we need.
#define TINYFORMAT_ARGTYPES(n) TINYFORMAT_ARGTYPES_##n
#define TINYFORMAT_VARARGS(n) TINYFORMAT_VARARGS_##n
#define TINYFORMAT_PASSARGS(n) TINYFORMAT_PASSARGS_##n
#define TINYFORMAT_PASSARGS_TAIL(n) TINYFORMAT_PASSARGS_TAIL_##n
// To keep it as transparent as possible, the macros below have been generated
// using python via the excellent cog.py code generation script. This avoids
// the need for a bunch of complex (but more general) preprocessor tricks as
// used in boost.preprocessor.
//
// To rerun the code generation in place, use `cog.py -r tinyformat.h`
// (see http://nedbatchelder.com/code/cog). Alternatively you can just create
// extra versions by hand.
/*[[[cog
maxParams = 16
def makeCommaSepLists(lineTemplate, elemTemplate, startInd=1):
for j in range(startInd,maxParams+1):
list = ', '.join([elemTemplate % {'i':i} for i in range(startInd,j+1)])
cog.outl(lineTemplate % {'j':j, 'list':list})
makeCommaSepLists('#define TINYFORMAT_ARGTYPES_%(j)d %(list)s',
'class T%(i)d')
cog.outl()
makeCommaSepLists('#define TINYFORMAT_VARARGS_%(j)d %(list)s',
'const T%(i)d& v%(i)d')
cog.outl()
makeCommaSepLists('#define TINYFORMAT_PASSARGS_%(j)d %(list)s', 'v%(i)d')
cog.outl()
cog.outl('#define TINYFORMAT_PASSARGS_TAIL_1')
makeCommaSepLists('#define TINYFORMAT_PASSARGS_TAIL_%(j)d , %(list)s',
'v%(i)d', startInd = 2)
cog.outl()
cog.outl('#define TINYFORMAT_FOREACH_ARGNUM(m) \\\n ' +
' '.join(['m(%d)' % (j,) for j in range(1,maxParams+1)]))
]]]*/
#define TINYFORMAT_ARGTYPES_1 class T1
#define TINYFORMAT_ARGTYPES_2 class T1, class T2
#define TINYFORMAT_ARGTYPES_3 class T1, class T2, class T3
#define TINYFORMAT_ARGTYPES_4 class T1, class T2, class T3, class T4
#define TINYFORMAT_ARGTYPES_5 class T1, class T2, class T3, class T4, class T5
#define TINYFORMAT_ARGTYPES_6 class T1, class T2, class T3, class T4, class T5, class T6
#define TINYFORMAT_ARGTYPES_7 class T1, class T2, class T3, class T4, class T5, class T6, class T7
#define TINYFORMAT_ARGTYPES_8 class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8
#define TINYFORMAT_ARGTYPES_9 class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9
#define TINYFORMAT_ARGTYPES_10 \
class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10
#define TINYFORMAT_ARGTYPES_11 \
class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11
#define TINYFORMAT_ARGTYPES_12 \
class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \
class T12
#define TINYFORMAT_ARGTYPES_13 \
class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \
class T12, class T13
#define TINYFORMAT_ARGTYPES_14 \
class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \
class T12, class T13, class T14
#define TINYFORMAT_ARGTYPES_15 \
class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \
class T12, class T13, class T14, class T15
#define TINYFORMAT_ARGTYPES_16 \
class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8, class T9, class T10, class T11, \
class T12, class T13, class T14, class T15, class T16
#define TINYFORMAT_VARARGS_1 const T1& v1
#define TINYFORMAT_VARARGS_2 const T1 &v1, const T2 &v2
#define TINYFORMAT_VARARGS_3 const T1 &v1, const T2 &v2, const T3 &v3
#define TINYFORMAT_VARARGS_4 const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4
#define TINYFORMAT_VARARGS_5 const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5
#define TINYFORMAT_VARARGS_6 const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6
#define TINYFORMAT_VARARGS_7 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7
#define TINYFORMAT_VARARGS_8 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8
#define TINYFORMAT_VARARGS_9 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \
const T9 &v9
#define TINYFORMAT_VARARGS_10 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \
const T9 &v9, const T10 &v10
#define TINYFORMAT_VARARGS_11 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \
const T9 &v9, const T10 &v10, const T11 &v11
#define TINYFORMAT_VARARGS_12 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \
const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12
#define TINYFORMAT_VARARGS_13 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \
const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12, const T13 &v13
#define TINYFORMAT_VARARGS_14 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \
const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12, const T13 &v13, const T14 &v14
#define TINYFORMAT_VARARGS_15 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \
const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12, const T13 &v13, const T14 &v14, const T15 &v15
#define TINYFORMAT_VARARGS_16 \
const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, \
const T9 &v9, const T10 &v10, const T11 &v11, const T12 &v12, const T13 &v13, const T14 &v14, const T15 &v15, \
const T16 &v16
#define TINYFORMAT_PASSARGS_1 v1
#define TINYFORMAT_PASSARGS_2 v1, v2
#define TINYFORMAT_PASSARGS_3 v1, v2, v3
#define TINYFORMAT_PASSARGS_4 v1, v2, v3, v4
#define TINYFORMAT_PASSARGS_5 v1, v2, v3, v4, v5
#define TINYFORMAT_PASSARGS_6 v1, v2, v3, v4, v5, v6
#define TINYFORMAT_PASSARGS_7 v1, v2, v3, v4, v5, v6, v7
#define TINYFORMAT_PASSARGS_8 v1, v2, v3, v4, v5, v6, v7, v8
#define TINYFORMAT_PASSARGS_9 v1, v2, v3, v4, v5, v6, v7, v8, v9
#define TINYFORMAT_PASSARGS_10 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10
#define TINYFORMAT_PASSARGS_11 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11
#define TINYFORMAT_PASSARGS_12 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12
#define TINYFORMAT_PASSARGS_13 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13
#define TINYFORMAT_PASSARGS_14 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14
#define TINYFORMAT_PASSARGS_15 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15
#define TINYFORMAT_PASSARGS_16 v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16
#define TINYFORMAT_PASSARGS_TAIL_1
#define TINYFORMAT_PASSARGS_TAIL_2 , v2
#define TINYFORMAT_PASSARGS_TAIL_3 , v2, v3
#define TINYFORMAT_PASSARGS_TAIL_4 , v2, v3, v4
#define TINYFORMAT_PASSARGS_TAIL_5 , v2, v3, v4, v5
#define TINYFORMAT_PASSARGS_TAIL_6 , v2, v3, v4, v5, v6
#define TINYFORMAT_PASSARGS_TAIL_7 , v2, v3, v4, v5, v6, v7
#define TINYFORMAT_PASSARGS_TAIL_8 , v2, v3, v4, v5, v6, v7, v8
#define TINYFORMAT_PASSARGS_TAIL_9 , v2, v3, v4, v5, v6, v7, v8, v9
#define TINYFORMAT_PASSARGS_TAIL_10 , v2, v3, v4, v5, v6, v7, v8, v9, v10
#define TINYFORMAT_PASSARGS_TAIL_11 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11
#define TINYFORMAT_PASSARGS_TAIL_12 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12
#define TINYFORMAT_PASSARGS_TAIL_13 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13
#define TINYFORMAT_PASSARGS_TAIL_14 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14
#define TINYFORMAT_PASSARGS_TAIL_15 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15
#define TINYFORMAT_PASSARGS_TAIL_16 , v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16
#define TINYFORMAT_FOREACH_ARGNUM(m) \
m(1) m(2) m(3) m(4) m(5) m(6) m(7) m(8) m(9) m(10) m(11) m(12) m(13) m(14) m(15) m(16)
//[[[end]]]
namespace detail {
// Type-opaque holder for an argument to format(), with associated actions on
// the type held as explicit function pointers. This allows FormatArg's for
// each argument to be allocated as a homogeneous array inside FormatList
// whereas a naive implementation based on inheritance does not.
class FormatArg {
public:
FormatArg() : m_value(NULL), m_formatImpl(NULL), m_toIntImpl(NULL) {}
template <typename T>
FormatArg(const T& value)
: m_value(static_cast<const void*>(&value)), m_formatImpl(&formatImpl<T>), m_toIntImpl(&toIntImpl<T>) {}
void format(std::ostream& out, const char* fmtBegin, const char* fmtEnd, int ntrunc) const {
TINYFORMAT_ASSERT(m_value);
TINYFORMAT_ASSERT(m_formatImpl);
m_formatImpl(out, fmtBegin, fmtEnd, ntrunc, m_value);
}
int toInt() const {
TINYFORMAT_ASSERT(m_value);
TINYFORMAT_ASSERT(m_toIntImpl);
return m_toIntImpl(m_value);
}
private:
template <typename T>
TINYFORMAT_HIDDEN static void formatImpl(std::ostream& out, const char* fmtBegin, const char* fmtEnd, int ntrunc,
const void* value) {
formatValue(out, fmtBegin, fmtEnd, ntrunc, *static_cast<const T*>(value));
}
template <typename T>
TINYFORMAT_HIDDEN static int toIntImpl(const void* value) {
return convertToInt<T>::invoke(*static_cast<const T*>(value));
}
const void* m_value;
void (*m_formatImpl)(std::ostream& out, const char* fmtBegin, const char* fmtEnd, int ntrunc, const void* value);
int (*m_toIntImpl)(const void* value);
};
// Parse and return an integer from the string c, as atoi()
// On return, c is set to one past the end of the integer.
inline int parseIntAndAdvance(const char*& c) {
int i = 0;
for (; *c >= '0' && *c <= '9'; ++c) i = 10 * i + (*c - '0');
return i;
}
// Parse width or precision `n` from format string pointer `c`, and advance it
// to the next character. If an indirection is requested with `*`, the argument
// is read from `args[argIndex]` and `argIndex` is incremented (or read
// from `args[n]` in positional mode). Returns true if one or more
// characters were read.
inline bool parseWidthOrPrecision(int& n, const char*& c, bool positionalMode, const detail::FormatArg* args,
int& argIndex, int numArgs) {
if (*c >= '0' && *c <= '9') {
n = parseIntAndAdvance(c);
} else if (*c == '*') {
++c;
n = 0;
if (positionalMode) {
int pos = parseIntAndAdvance(c) - 1;
if (*c != '$') TINYFORMAT_ERROR("tinyformat: Non-positional argument used after a positional one");
if (pos >= 0 && pos < numArgs)
n = args[pos].toInt();
else
TINYFORMAT_ERROR("tinyformat: Positional argument out of range");
++c;
} else {
if (argIndex < numArgs)
n = args[argIndex++].toInt();
else
TINYFORMAT_ERROR("tinyformat: Not enough arguments to read variable width or precision");
}
} else {
return false;
}
return true;
}
// Print literal part of format string and return next format spec position.
//
// Skips over any occurrences of '%%', printing a literal '%' to the output.
// The position of the first % character of the next nontrivial format spec is
// returned, or the end of string.
inline const char* printFormatStringLiteral(std::ostream& out, const char* fmt) {
const char* c = fmt;
for (;; ++c) {
if (*c == '\0') {
out.write(fmt, c - fmt);
return c;
} else if (*c == '%') {
out.write(fmt, c - fmt);
if (*(c + 1) != '%') return c;
// for "%%", tack trailing % onto next literal section.
fmt = ++c;
}
}
}
// Parse a format string and set the stream state accordingly.
//
// The format mini-language recognized here is meant to be the one from C99,
// with the form "%[flags][width][.precision][length]type" with POSIX
// positional arguments extension.
//
// POSIX positional arguments extension:
// Conversions can be applied to the nth argument after the format in
// the argument list, rather than to the next unused argument. In this case,
// the conversion specifier character % (see below) is replaced by the sequence
// "%n$", where n is a decimal integer in the range [1,{NL_ARGMAX}],
// giving the position of the argument in the argument list. This feature
// provides for the definition of format strings that select arguments
// in an order appropriate to specific languages.
//
// The format can contain either numbered argument conversion specifications
// (that is, "%n$" and "*m$"), or unnumbered argument conversion specifications
// (that is, % and * ), but not both. The only exception to this is that %%
// can be mixed with the "%n$" form. The results of mixing numbered and
// unnumbered argument specifications in a format string are undefined.
// When numbered argument specifications are used, specifying the Nth argument
// requires that all the leading arguments, from the first to the (N-1)th,
// are specified in the format string.
//
// In format strings containing the "%n$" form of conversion specification,
// numbered arguments in the argument list can be referenced from the format
// string as many times as required.
//
// Formatting options which can't be natively represented using the ostream
// state are returned in spacePadPositive (for space padded positive numbers)
// and ntrunc (for truncating conversions). argIndex is incremented if
// necessary to pull out variable width and precision. The function returns a
// pointer to the character after the end of the current format spec.
inline const char* streamStateFromFormat(std::ostream& out, bool& positionalMode, bool& spacePadPositive, int& ntrunc,
const char* fmtStart, const detail::FormatArg* args, int& argIndex,
int numArgs) {
TINYFORMAT_ASSERT(*fmtStart == '%');
// Reset stream state to defaults.
out.width(0);
out.precision(6);
out.fill(' ');
// Reset most flags; ignore irrelevant unitbuf & skipws.
out.unsetf(std::ios::adjustfield | std::ios::basefield | std::ios::floatfield | std::ios::showbase |
std::ios::boolalpha | std::ios::showpoint | std::ios::showpos | std::ios::uppercase);
bool precisionSet = false;
bool widthSet = false;
int widthExtra = 0;
const char* c = fmtStart + 1;
// 1) Parse an argument index (if followed by '$') or a width possibly
// preceded with '0' flag.
if (*c >= '0' && *c <= '9') {
const char tmpc = *c;
int value = parseIntAndAdvance(c);
if (*c == '$') {
// value is an argument index
if (value > 0 && value <= numArgs)
argIndex = value - 1;
else
TINYFORMAT_ERROR("tinyformat: Positional argument out of range");
++c;
positionalMode = true;
} else if (positionalMode) {
TINYFORMAT_ERROR("tinyformat: Non-positional argument used after a positional one");
} else {
if (tmpc == '0') {
// Use internal padding so that numeric values are
// formatted correctly, eg -00010 rather than 000-10
out.fill('0');
out.setf(std::ios::internal, std::ios::adjustfield);
}
if (value != 0) {
// Nonzero value means that we parsed width.
widthSet = true;
out.width(value);
}
}
} else if (positionalMode) {
TINYFORMAT_ERROR("tinyformat: Non-positional argument used after a positional one");
}
// 2) Parse flags and width if we did not do it in previous step.
if (!widthSet) {
// Parse flags
for (;; ++c) {
switch (*c) {
case '#':
out.setf(std::ios::showpoint | std::ios::showbase);
continue;
case '0':
// overridden by left alignment ('-' flag)
if (!(out.flags() & std::ios::left)) {
// Use internal padding so that numeric values are
// formatted correctly, eg -00010 rather than 000-10
out.fill('0');
out.setf(std::ios::internal, std::ios::adjustfield);
}
continue;
case '-':
out.fill(' ');
out.setf(std::ios::left, std::ios::adjustfield);
continue;
case ' ':
// overridden by show positive sign, '+' flag.
if (!(out.flags() & std::ios::showpos)) spacePadPositive = true;
continue;
case '+':
out.setf(std::ios::showpos);
spacePadPositive = false;
widthExtra = 1;
continue;
default:
break;
}
break;
}
// Parse width
int width = 0;
widthSet = parseWidthOrPrecision(width, c, positionalMode, args, argIndex, numArgs);
if (widthSet) {
if (width < 0) {
// negative widths correspond to '-' flag set
out.fill(' ');
out.setf(std::ios::left, std::ios::adjustfield);
width = -width;
}
out.width(width);
}
}
// 3) Parse precision
if (*c == '.') {
++c;
int precision = 0;
parseWidthOrPrecision(precision, c, positionalMode, args, argIndex, numArgs);
// Presence of `.` indicates precision set, unless the inferred value
// was negative in which case the default is used.
precisionSet = precision >= 0;
if (precisionSet) out.precision(precision);
}
// 4) Ignore any C99 length modifier
while (*c == 'l' || *c == 'h' || *c == 'L' || *c == 'j' || *c == 'z' || *c == 't') {
++c;
}
// 5) We're up to the conversion specifier character.
// Set stream flags based on conversion specifier (thanks to the
// boost::format class for forging the way here).
bool intConversion = false;
switch (*c) {
case 'u':
case 'd':
case 'i':
out.setf(std::ios::dec, std::ios::basefield);
intConversion = true;
break;
case 'o':
out.setf(std::ios::oct, std::ios::basefield);
intConversion = true;
break;
case 'X':
out.setf(std::ios::uppercase);
// Falls through
case 'x':
case 'p':
out.setf(std::ios::hex, std::ios::basefield);
intConversion = true;
break;
case 'E':
out.setf(std::ios::uppercase);
// Falls through
case 'e':
out.setf(std::ios::scientific, std::ios::floatfield);
out.setf(std::ios::dec, std::ios::basefield);
break;
case 'F':
out.setf(std::ios::uppercase);
// Falls through
case 'f':
out.setf(std::ios::fixed, std::ios::floatfield);
break;
case 'A':
out.setf(std::ios::uppercase);
// Falls through
case 'a':
#ifdef _MSC_VER
// Workaround
// https://developercommunity.visualstudio.com/content/problem/520472/hexfloat-stream-output-does-not-ignore-precision-a.html
// by always setting maximum precision on MSVC to avoid precision
// loss for doubles.
out.precision(13);
#endif
out.setf(std::ios::fixed | std::ios::scientific, std::ios::floatfield);
break;
case 'G':
out.setf(std::ios::uppercase);
// Falls through
case 'g':
out.setf(std::ios::dec, std::ios::basefield);
// As in boost::format, let stream decide float format.
out.flags(out.flags() & ~std::ios::floatfield);
break;
case 'c':
// Handled as special case inside formatValue()
break;
case 's':
if (precisionSet) ntrunc = static_cast<int>(out.precision());
// Make %s print Booleans as "true" and "false"
out.setf(std::ios::boolalpha);
break;
case 'n':
// Not supported - will cause problems!
TINYFORMAT_ERROR("tinyformat: %n conversion spec not supported");
break;
case '\0':
TINYFORMAT_ERROR(
"tinyformat: Conversion spec incorrectly "
"terminated by end of string");
return c;
default:
break;
}
if (intConversion && precisionSet && !widthSet) {
// "precision" for integers gives the minimum number of digits (to be
// padded with zeros on the left). This isn't really supported by the
// iostreams, but we can approximately simulate it with the width if
// the width isn't otherwise used.
out.width(out.precision() + widthExtra);
out.setf(std::ios::internal, std::ios::adjustfield);
out.fill('0');
}
return c + 1;
}
//------------------------------------------------------------------------------
inline void formatImpl(std::ostream& out, const char* fmt, const detail::FormatArg* args, int numArgs) {
// Saved stream state
std::streamsize origWidth = out.width();
std::streamsize origPrecision = out.precision();
std::ios::fmtflags origFlags = out.flags();
char origFill = out.fill();
// "Positional mode" means all format specs should be of the form "%n$..."
// with `n` an integer. We detect this in `streamStateFromFormat`.
bool positionalMode = false;
int argIndex = 0;
while (true) {
fmt = printFormatStringLiteral(out, fmt);
if (*fmt == '\0') {
if (!positionalMode && argIndex < numArgs) {
TINYFORMAT_ERROR("tinyformat: Not enough conversion specifiers in format string");
}
break;
}
bool spacePadPositive = false;
int ntrunc = -1;
const char* fmtEnd =
streamStateFromFormat(out, positionalMode, spacePadPositive, ntrunc, fmt, args, argIndex, numArgs);
// NB: argIndex may be incremented by reading variable width/precision
// in `streamStateFromFormat`, so do the bounds check here.
if (argIndex >= numArgs) {
TINYFORMAT_ERROR("tinyformat: Too many conversion specifiers in format string");
return;
}
const FormatArg& arg = args[argIndex];
// Format the arg into the stream.
if (!spacePadPositive) {
arg.format(out, fmt, fmtEnd, ntrunc);
} else {
// The following is a special case with no direct correspondence
// between stream formatting and the printf() behaviour. Simulate
// it crudely by formatting into a temporary string stream and
// munging the resulting string.
std::ostringstream tmpStream;
tmpStream.copyfmt(out);
tmpStream.setf(std::ios::showpos);
arg.format(tmpStream, fmt, fmtEnd, ntrunc);
std::string result = tmpStream.str(); // allocates... yuck.
for (size_t i = 0, iend = result.size(); i < iend; ++i) {
if (result[i] == '+') result[i] = ' ';
}
out << result;
}
if (!positionalMode) ++argIndex;
fmt = fmtEnd;
}
// Restore stream state
out.width(origWidth);
out.precision(origPrecision);
out.flags(origFlags);
out.fill(origFill);
}
} // namespace detail
/// List of template arguments format(), held in a type-opaque way.
///
/// A const reference to FormatList (typedef'd as FormatListRef) may be
/// conveniently used to pass arguments to non-template functions: All type
/// information has been stripped from the arguments, leaving just enough of a
/// common interface to perform formatting as required.
class FormatList {
public:
FormatList(detail::FormatArg* args, int N) : m_args(args), m_N(N) {}
friend void vformat(std::ostream& out, const char* fmt, const FormatList& list);
private:
const detail::FormatArg* m_args;
int m_N;
};
/// Reference to type-opaque format list for passing to vformat()
typedef const FormatList& FormatListRef;
namespace detail {
// Format list subclass with fixed storage to avoid dynamic allocation
template <int N>
class FormatListN : public FormatList {
public:
#ifdef TINYFORMAT_USE_VARIADIC_TEMPLATES
template <typename... Args>
FormatListN(const Args&... args) : FormatList(&m_formatterStore[0], N), m_formatterStore{FormatArg(args)...} {
static_assert(sizeof...(args) == N, "Number of args must be N");
}
#else // C++98 version
void init(int) {}
#define TINYFORMAT_MAKE_FORMATLIST_CONSTRUCTOR(n) \
\
template <TINYFORMAT_ARGTYPES(n)> \
FormatListN(TINYFORMAT_VARARGS(n)) : FormatList(&m_formatterStore[0], n) { \
TINYFORMAT_ASSERT(n == N); \
init(0, TINYFORMAT_PASSARGS(n)); \
} \
\
template <TINYFORMAT_ARGTYPES(n)> \
void init(int i, TINYFORMAT_VARARGS(n)) { \
m_formatterStore[i] = FormatArg(v1); \
init(i + 1 TINYFORMAT_PASSARGS_TAIL(n)); \
}
TINYFORMAT_FOREACH_ARGNUM(TINYFORMAT_MAKE_FORMATLIST_CONSTRUCTOR)
#undef TINYFORMAT_MAKE_FORMATLIST_CONSTRUCTOR
#endif
private:
FormatArg m_formatterStore[N];
};
// Special 0-arg version - MSVC says zero-sized C array in struct is nonstandard
template <>
class FormatListN<0> : public FormatList {
public:
FormatListN() : FormatList(0, 0) {}
};
} // namespace detail
//------------------------------------------------------------------------------
// Primary API functions
#ifdef TINYFORMAT_USE_VARIADIC_TEMPLATES
/// Make type-agnostic format list from list of template arguments.
///
/// The exact return type of this function is an implementation detail and
/// shouldn't be relied upon. Instead it should be stored as a FormatListRef:
///
/// FormatListRef formatList = makeFormatList( /*...*/ );
template <typename... Args>
detail::FormatListN<sizeof...(Args)> makeFormatList(const Args&... args) {
return detail::FormatListN<sizeof...(args)>(args...);
}
#else // C++98 version
inline detail::FormatListN<0> makeFormatList() {
return detail::FormatListN<0>();
}
#define TINYFORMAT_MAKE_MAKEFORMATLIST(n) \
template <TINYFORMAT_ARGTYPES(n)> \
detail::FormatListN<n> makeFormatList(TINYFORMAT_VARARGS(n)) { \
return detail::FormatListN<n>(TINYFORMAT_PASSARGS(n)); \
}
TINYFORMAT_FOREACH_ARGNUM(TINYFORMAT_MAKE_MAKEFORMATLIST)
#undef TINYFORMAT_MAKE_MAKEFORMATLIST
#endif
/// Format list of arguments to the stream according to the given format string.
///
/// The name vformat() is chosen for the semantic similarity to vprintf(): the
/// list of format arguments is held in a single function argument.
inline void vformat(std::ostream& out, const char* fmt, FormatListRef list) {
detail::formatImpl(out, fmt, list.m_args, list.m_N);
}
#ifdef TINYFORMAT_USE_VARIADIC_TEMPLATES
/// Format list of arguments to the stream according to given format string.
template <typename... Args>
void format(std::ostream& out, const char* fmt, const Args&... args) {
vformat(out, fmt, makeFormatList(args...));
}
/// Format list of arguments according to the given format string and return
/// the result as a string.
template <typename... Args>
std::string format(const char* fmt, const Args&... args) {
std::ostringstream oss;
format(oss, fmt, args...);
return oss.str();
}
/// Format list of arguments to std::cout, according to the given format string
template <typename... Args>
void printf(const char* fmt, const Args&... args) {
format(std::cout, fmt, args...);
}
template <typename... Args>
void printfln(std::ostream& out, const char* fmt, const Args&... args) {
format(out, fmt, args...);
out << '\n';
}
/// Additional functions by Kampersanda
template <typename... Args>
void printfln(const char* fmt, const Args&... args) {
format(std::cout, fmt, args...);
std::cout << '\n';
}
template <typename... Args>
inline void errorf(const char* fmt, const Args&... args) {
static const char* RED_COLOR = "\033[0;31m";
std::cerr << RED_COLOR << "ERROR: ";
format(std::cerr, fmt, args...);
std::cerr << "\033[0;0m";
}
template <typename... Args>
inline void warnf(const char* fmt, const Args&... args) {
static const char* YELLOW_COLOR = "\033[0;33m";
std::cerr << YELLOW_COLOR << "WARNING: ";
format(std::cerr, fmt, args...);
std::cerr << "\033[0;0m";
}
template <typename... Args>
inline void reportf(const char* fmt, const Args&... args) {
static const char* GREEN_COLOR = "\033[0;32m";
std::cout << GREEN_COLOR;
format(std::cout, fmt, args...);
std::cout << "\033[0;0m";
}
template <typename... Args>
inline void errorfln(const char* fmt, const Args&... args) {
static const char* RED_COLOR = "\033[0;31m";
std::cerr << RED_COLOR << "ERROR: ";
format(std::cerr, fmt, args...);
std::cerr << "\033[0;0m" << std::endl;
}
template <typename... Args>
inline void warnfln(const char* fmt, const Args&... args) {
static const char* YELLOW_COLOR = "\033[0;33m";
std::cerr << YELLOW_COLOR << "WARNING: ";
format(std::cerr, fmt, args...);
std::cerr << "\033[0;0m" << std::endl;
}
template <typename... Args>
inline void reportfln(const char* fmt, const Args&... args) {
static const char* GREEN_COLOR = "\033[0;32m";
std::cout << GREEN_COLOR;
format(std::cout, fmt, args...);
std::cout << "\033[0;0m" << std::endl;
}
#else // C++98 version
inline void format(std::ostream& out, const char* fmt) {
vformat(out, fmt, makeFormatList());
}
inline std::string format(const char* fmt) {
std::ostringstream oss;
format(oss, fmt);
return oss.str();
}
inline void printf(const char* fmt) {
format(std::cout, fmt);
}
inline void printfln(const char* fmt) {
format(std::cout, fmt);
std::cout << '\n';
}
#define TINYFORMAT_MAKE_FORMAT_FUNCS(n) \
\
template <TINYFORMAT_ARGTYPES(n)> \
void format(std::ostream& out, const char* fmt, TINYFORMAT_VARARGS(n)) { \
vformat(out, fmt, makeFormatList(TINYFORMAT_PASSARGS(n))); \
} \
\
template <TINYFORMAT_ARGTYPES(n)> \
std::string format(const char* fmt, TINYFORMAT_VARARGS(n)) { \
std::ostringstream oss; \
format(oss, fmt, TINYFORMAT_PASSARGS(n)); \
return oss.str(); \
} \
\
template <TINYFORMAT_ARGTYPES(n)> \
void printf(const char* fmt, TINYFORMAT_VARARGS(n)) { \
format(std::cout, fmt, TINYFORMAT_PASSARGS(n)); \
} \
\
template <TINYFORMAT_ARGTYPES(n)> \
void printfln(const char* fmt, TINYFORMAT_VARARGS(n)) { \
format(std::cout, fmt, TINYFORMAT_PASSARGS(n)); \
std::cout << '\n'; \
}
TINYFORMAT_FOREACH_ARGNUM(TINYFORMAT_MAKE_FORMAT_FUNCS)
#undef TINYFORMAT_MAKE_FORMAT_FUNCS
#endif
} // namespace tinyformat
#endif // TINYFORMAT_H_INCLUDED