521 lines
19 KiB
Markdown
521 lines
19 KiB
Markdown
# Xcdat: Fast compressed trie dictionary library
|
||
|
||
**Xcdat** is a C++17 header-only library of a fast compressed string dictionary based on an improved double-array trie structure described in the paper: [Compressed double-array tries for string dictionaries supporting fast lookup](https://doi.org/10.1007/s10115-016-0999-8), *Knowledge and Information Systems*, 2017, available at [here](https://kampersanda.github.io/pdf/KAIS2017.pdf).
|
||
|
||
## Table of contents
|
||
|
||
- [Features](#features)
|
||
- [Build instructions](#build-instructions)
|
||
- [Command line tools](#command-line-tools)
|
||
- [Sample usage](#sample-usage)
|
||
- [API](#api)
|
||
- [Performance](#performance)
|
||
- [Licensing](#licensing)
|
||
- [Todo](#todo)
|
||
- [References](#references)
|
||
|
||
## Features
|
||
|
||
- **Compressed string dictionary.** Xcdat implements a (static) *compressed string dictioanry* that stores a set of strings (or keywords) in a compressed space while supporting several search operations [1,2]. For example, Xcdat can store an entire set of English Wikipedia titles at half the size of the raw data.
|
||
- **Fast and compact data structure.** Xcdat employs the *double-array trie* [3] known as the fastest trie implementation. However, the double-array trie resorts to many pointers and consumes a large amount of memory. To address this, Xcdat applies the *XCDA* method [2] that represents the double-array trie in a compressed format while maintaining the fast searches.
|
||
- **Cache efficiency.** Xcdat employs a *minimal-prefix trie* [4] that replaces redundant trie nodes into strings to reduce random access and to improve locality of references.
|
||
- **Dictionary encoding.** Xcdat maps `N` distinct keywords into unique IDs from `[0,N-1]`, and supports the two symmetric operations: `lookup` returns the ID corresponding to a given keyword; `decode` returns the keyword associated with a given ID. The mapping is so-called *dictionary encoding* (or *domain encoding*) and is fundamental in many DB applications as described by Martínez-Prieto et al [1] or Müller et al. [5].
|
||
- **Prefix search operations.** Xcdat supports prefix search operations realized by trie search algorithms: `prefix_search` returns all the keywords contained as prefixes of a given string; `predictive search` returns all the keywords starting with a given string. These will be useful in many NLP applications such as auto completions [6], stemmed searches [7], or input method editors [8].
|
||
- **64-bit support.** As mentioned before, since the double array is a pointer-based data structure, most double-array libraries use 32-bit pointers to reduce memory consumption, resulting in limiting the scale of the input dataset. On the other hand, the XCDA method allows Xcdat to represent 64-bit pointers without sacrificing memory efficiency.
|
||
- **Binary key support.** In normal mode, Xcdat will use the `\0` character as an end marker for each keyword. However, if the dataset include `\0` characters, it will use bit flags instead of end markers, allowing the dataset to consist of binary keywords.
|
||
- **Memory mapping.** Xcdat supports *memory mapping*, allowing data to be deserialized quickly without loading it into memory. Of course, deserialization by the loading is also supported.
|
||
- **Header only.** The library consists only of header files, and you can easily install it.
|
||
|
||
## Build instructions
|
||
|
||
You can download, compile, and install Xcdat with the following commands.
|
||
|
||
```
|
||
$ git clone https://github.com/kampersanda/xcdat.git
|
||
$ cd xcdat
|
||
$ mkdir build
|
||
$ cd build
|
||
$ cmake ..
|
||
$ make -j
|
||
$ make install
|
||
```
|
||
|
||
Or, since this library consists only of header files, you can easily install it by passing through the path to the directory `include`.
|
||
|
||
### Requirements
|
||
|
||
You need to install a modern C++17 ready compiler such as `g++ >= 7.0` or `clang >= 4.0`. For the build system, you need to install `CMake >= 3.0` to compile the library.
|
||
|
||
The library considers a 64-bit operating system. The code has been tested only on Mac OS X and Linux. That is, this library considers only UNIX-compatible OS.
|
||
|
||
## Command line tools
|
||
|
||
Xcdat provides command line tools to build the dictionary and perform searches, which are inspired by [marisa-trie](https://github.com/s-yata/marisa-trie). All the tools will print the command line options by specifying the parameter `-h`.
|
||
|
||
### `xcdat_build`
|
||
|
||
It builds the trie dictionary from a given dataset consisting of keywords separated by newlines. The following command builds the trie dictionary from dataset `enwiki-titles.txt` and writes the dictionary into file `idx.bin`.
|
||
|
||
```
|
||
$ xcdat_build enwiki-titles.txt idx.bin
|
||
Number of keys: 15955763
|
||
Number of trie nodes: 36441058
|
||
Number of DA units: 36520704
|
||
Memory usage in bytes: 1.70618e+08
|
||
Memory usage in MiB: 162.714
|
||
```
|
||
|
||
### `xcdat_lookup`
|
||
|
||
It tests the `lookup` operation for a given dictionary. Given a query string via `stdin`, it prints the associated ID if found, or `-1` otherwise.
|
||
|
||
```
|
||
$ xcdat_lookup idx.bin
|
||
Algorithm
|
||
1255938 Algorithm
|
||
Double_Array
|
||
-1 Double_Array
|
||
```
|
||
|
||
### `xcdat_decode`
|
||
|
||
It tests the `decode` operation for a given dictionary. Given a query ID via `stdin`, it prints the corresponding keyword if the ID is in the range `[0,N-1]`, where `N` is the number of stored keywords.
|
||
|
||
```
|
||
$ xcdat_decode idx.bin
|
||
1255938
|
||
1255938 Algorithm
|
||
```
|
||
|
||
### `xcdat_prefix_search`
|
||
|
||
It tests the `prefix_search` operation for a given dictionary. Given a query string via `stdin`, it prints all the keywords contained as prefixes of a given string.
|
||
|
||
```
|
||
$ xcdat_prefix_search idx.bin
|
||
Algorithmic
|
||
6 found
|
||
57 A
|
||
798460 Al
|
||
1138004 Alg
|
||
1253024 Algo
|
||
1255938 Algorithm
|
||
1255931 Algorithmic
|
||
```
|
||
|
||
### `xcdat_predictive_search`
|
||
|
||
It tests the `predictive_search` operation for a given dictionary. Given a query string via `stdin`, it prints the first `n` keywords starting with a given string, where `n` is one of the parameters.
|
||
|
||
```
|
||
$ xcdat_predictive_search idx.bin -n 3
|
||
Algorithm
|
||
263 found
|
||
1255938 Algorithm
|
||
1255944 Algorithm's_optimality
|
||
1255972 Algorithm_(C++)
|
||
```
|
||
|
||
### `xcdat_enumerate`
|
||
|
||
It prints all the keywords stored in a given dictionary.
|
||
|
||
```
|
||
$ xcdat_enumerate idx.bin | head -3
|
||
0 !
|
||
107 !!
|
||
138 !!!
|
||
```
|
||
|
||
### `xcdat_benchmark`
|
||
|
||
It measures the performances of possible tries for a given dataset. To perform search operations, it randomly samples `n` queires from the dataset, where `n` is one of the parameters.
|
||
|
||
```
|
||
$ xcdat_benchmark enwiki-titles.txt
|
||
** xcdat::trie_7_type **
|
||
Number of keys: 15955763
|
||
Memory usage in bytes: 1.70618e+08
|
||
Memory usage in MiB: 162.714
|
||
Construction time in seconds: 12.907
|
||
Lookup time in microsec/query: 0.4674
|
||
Decode time in microsec/query: 0.8722
|
||
** xcdat::trie_8_type **
|
||
Number of keys: 15955763
|
||
Memory usage in bytes: 1.64104e+08
|
||
Memory usage in MiB: 156.502
|
||
Construction time in seconds: 13.442
|
||
Lookup time in microsec/query: 0.7593
|
||
Decode time in microsec/query: 1.2341
|
||
```
|
||
|
||
## Sample usage
|
||
|
||
`sample/sample.cpp` provides a sample usage. It employs the external library [mm_file](https://github.com/jermp/mm_file) to implement a memory-mapped file, which will be installed by `make install` together.
|
||
|
||
```c++
|
||
#include <iostream>
|
||
#include <string>
|
||
|
||
#include <mm_file/mm_file.hpp>
|
||
#include <xcdat.hpp>
|
||
|
||
int main() {
|
||
// Dataset
|
||
std::vector<std::string> keys = {
|
||
"AirPods", "AirTag", "Mac", "MacBook", "MacBook_Air", "MacBook_Pro",
|
||
"Mac_Mini", "Mac_Pro", "iMac", "iPad", "iPhone", "iPhone_SE",
|
||
};
|
||
|
||
// The input keys must be sorted and unique (although they have already satisfied in this case).
|
||
std::sort(keys.begin(), keys.end());
|
||
keys.erase(std::unique(keys.begin(), keys.end()), keys.end());
|
||
|
||
// The trie dictionary type
|
||
using trie_type = xcdat::trie_8_type;
|
||
|
||
// The dictionary filename
|
||
const char* tmp_filename = "dic.bin";
|
||
|
||
// Build and save the trie dictionary.
|
||
{
|
||
const trie_type trie(keys);
|
||
xcdat::save(trie, tmp_filename);
|
||
}
|
||
|
||
// Memory-map the trie dictionary.
|
||
const mm::file_source<char> fin(tmp_filename, mm::advice::sequential);
|
||
const auto trie = xcdat::mmap<trie_type>(fin.data());
|
||
|
||
// Or, load the trie dictionary on memory.
|
||
// const auto trie = xcdat::load<trie_type>(tmp_filename);
|
||
|
||
// Basic statistics
|
||
std::cout << "Number of keys: " << trie.num_keys() << std::endl;
|
||
std::cout << "Number of trie nodes: " << trie.num_nodes() << std::endl;
|
||
std::cout << "Number of DA units: " << trie.num_units() << std::endl;
|
||
std::cout << "Memory usage in bytes: " << xcdat::memory_in_bytes(trie) << std::endl;
|
||
|
||
// Lookup the ID for a query key.
|
||
{
|
||
const auto id = trie.lookup("Mac_Pro");
|
||
std::cout << "Lookup(Mac_Pro) = " << id.value_or(UINT64_MAX) << std::endl;
|
||
}
|
||
{
|
||
const auto id = trie.lookup("Google_Pixel");
|
||
std::cout << "Lookup(Google_Pixel) = " << id.value_or(UINT64_MAX) << std::endl;
|
||
}
|
||
|
||
// Decode the key for a query ID.
|
||
{
|
||
const auto dec = trie.decode(4);
|
||
std::cout << "Decode(4) = " << dec << std::endl;
|
||
}
|
||
|
||
// Common prefix search
|
||
{
|
||
std::cout << "CommonPrefixSearch(MacBook_Air) = {" << std::endl;
|
||
auto itr = trie.make_prefix_iterator("MacBook_Air");
|
||
while (itr.next()) {
|
||
std::cout << " (" << itr.decoded_view() << ", " << itr.id() << ")," << std::endl;
|
||
}
|
||
std::cout << "}" << std::endl;
|
||
}
|
||
|
||
// Predictive search
|
||
{
|
||
std::cout << "PredictiveSearch(Mac) = {" << std::endl;
|
||
auto itr = trie.make_predictive_iterator("Mac");
|
||
while (itr.next()) {
|
||
std::cout << " (" << itr.decoded_view() << ", " << itr.id() << ")," << std::endl;
|
||
}
|
||
std::cout << "}" << std::endl;
|
||
}
|
||
|
||
// Enumerate all the keys (in lex order).
|
||
{
|
||
std::cout << "Enumerate() = {" << std::endl;
|
||
auto itr = trie.make_enumerative_iterator();
|
||
while (itr.next()) {
|
||
std::cout << " (" << itr.decoded_view() << ", " << itr.id() << ")," << std::endl;
|
||
}
|
||
std::cout << "}" << std::endl;
|
||
}
|
||
|
||
std::remove(tmp_filename);
|
||
|
||
return 0;
|
||
}
|
||
```
|
||
|
||
The output will be
|
||
|
||
```
|
||
Number of keys: 12
|
||
Number of trie nodes: 28
|
||
Number of DA units: 256
|
||
Memory usage in bytes: 1766
|
||
Lookup(Mac_Pro) = 7
|
||
Lookup(Google_Pixel) = 18446744073709551615
|
||
Decode(4) = MacBook_Air
|
||
CommonPrefixSearch(MacBook_Air) = {
|
||
(Mac, 1),
|
||
(MacBook, 2),
|
||
(MacBook_Air, 4),
|
||
}
|
||
PredictiveSearch(Mac) = {
|
||
(Mac, 1),
|
||
(MacBook, 2),
|
||
(MacBook_Air, 4),
|
||
(MacBook_Pro, 11),
|
||
(Mac_Mini, 5),
|
||
(Mac_Pro, 7),
|
||
}
|
||
Enumerate() = {
|
||
(AirPods, 0),
|
||
(AirTag, 3),
|
||
(Mac, 1),
|
||
(MacBook, 2),
|
||
(MacBook_Air, 4),
|
||
(MacBook_Pro, 11),
|
||
(Mac_Mini, 5),
|
||
(Mac_Pro, 7),
|
||
(iMac, 10),
|
||
(iPad, 6),
|
||
(iPhone, 8),
|
||
(iPhone_SE, 9),
|
||
}
|
||
```
|
||
|
||
## API
|
||
|
||
Xcdat can be used by including `xcdat.hpp`.
|
||
|
||
### Trie dictionary types
|
||
|
||
The two dictionary types are difined.
|
||
|
||
- `xcdat::trie_8_type` is the trie dictionary using standard DACs [9] using 8-bit integers for elements.
|
||
- `xcdat::trie_7_type` is the trie dictionary using pointer-based DACs [2] using 7-bit integers for elements.
|
||
|
||
### Trie dictionary class
|
||
|
||
The trie dictionary has the following members.
|
||
|
||
```c++
|
||
//! A compressed string dictionary based on an improved double-array trie.
|
||
//! 'BcVector' is the data type of Base and Check vectors.
|
||
template <class BcVector>
|
||
class trie {
|
||
public:
|
||
//! Default constructor
|
||
trie() = default;
|
||
|
||
//! Default destructor
|
||
virtual ~trie() = default;
|
||
|
||
//! Copy constructor (deleted)
|
||
trie(const trie&) = delete;
|
||
|
||
//! Copy constructor (deleted)
|
||
trie& operator=(const trie&) = delete;
|
||
|
||
//! Move constructor
|
||
trie(trie&&) noexcept = default;
|
||
|
||
//! Move constructor
|
||
trie& operator=(trie&&) noexcept = default;
|
||
|
||
//! Build the trie from the input keywords, which are lexicographically sorted and unique.
|
||
//!
|
||
//! If bin_mode = false, the NULL character is used for the termination of a keyword.
|
||
//! If bin_mode = true, bit flags are used istead, and the keywords can contain NULL characters.
|
||
//! If the input keywords contain NULL characters, bin_mode will be forced to be set to true.
|
||
//!
|
||
//! The type 'Strings' and 'Strings::value_type' should be a random iterable container such as std::vector.
|
||
//! Precisely, they should support the following operations:
|
||
//! - size() returns the container size.
|
||
//! - operator[](i) accesses the i-th element.
|
||
//! - begin() returns the iterator to the beginning.
|
||
//! - end() returns the iterator to the end.
|
||
//! The type 'Strings::value_type::value_type' should be one-byte integer type such as 'char'.
|
||
template <class Strings>
|
||
trie(const Strings& keys, bool bin_mode = false);
|
||
|
||
//! Check if the binary mode.
|
||
bool bin_mode() const;
|
||
|
||
//! Get the number of stored keywords.
|
||
std::uint64_t num_keys() const;
|
||
|
||
//! Get the alphabet size.
|
||
std::uint64_t alphabet_size() const;
|
||
|
||
//! Get the maximum length of keywords.
|
||
std::uint64_t max_length() const;
|
||
|
||
//! Get the number of trie nodes.
|
||
std::uint64_t num_nodes() const;
|
||
|
||
//! Get the number of DA units.
|
||
std::uint64_t num_units() const;
|
||
|
||
//! Get the number of unused DA units.
|
||
std::uint64_t num_free_units() const;
|
||
|
||
//! Get the length of TAIL vector.
|
||
std::uint64_t tail_length() const;
|
||
|
||
//! Lookup the ID of the keyword.
|
||
std::optional<std::uint64_t> lookup(std::string_view key) const;
|
||
|
||
//! Decode the keyword associated with the ID.
|
||
std::string decode(std::uint64_t id) const;
|
||
|
||
//! Decode the keyword associated with the ID and store it in 'decoded'.
|
||
//! It can avoid reallocation of memory to store the result.
|
||
void decode(std::uint64_t id, std::string& decoded) const;
|
||
|
||
//! An iterator class for common prefix search.
|
||
//! It enumerates all the keywords contained as prefixes of a given string.
|
||
//! It should be instantiated via the function 'make_prefix_iterator'.
|
||
class prefix_iterator {
|
||
public:
|
||
prefix_iterator() = default;
|
||
|
||
//! Increment the iterator.
|
||
//! Return false if the iteration is terminated.
|
||
bool next();
|
||
|
||
//! Get the result ID.
|
||
std::uint64_t id() const;
|
||
|
||
//! Get the result keyword.
|
||
std::string decoded() const;
|
||
|
||
//! Get the reference to the result keyword.
|
||
//! Note that the referenced data will be changed in the next iteration.
|
||
std::string_view decoded_view() const;
|
||
};
|
||
|
||
//! Make the common prefix searcher for the given keyword.
|
||
prefix_iterator make_prefix_iterator(std::string_view key) const;
|
||
|
||
//! Preform common prefix search for the keyword.
|
||
void prefix_search(std::string_view key, const std::function<void(std::uint64_t, std::string_view)>& fn) const;
|
||
|
||
//! An iterator class for predictive search.
|
||
//! It enumerates all the keywords starting with a given string.
|
||
//! It should be instantiated via the function 'make_predictive_iterator'.
|
||
class predictive_iterator {
|
||
public:
|
||
predictive_iterator() = default;
|
||
|
||
//! Increment the iterator.
|
||
//! Return false if the iteration is terminated.
|
||
bool next();
|
||
|
||
//! Get the result ID.
|
||
std::uint64_t id() const;
|
||
|
||
//! Get the result keyword.
|
||
std::string decoded() const;
|
||
|
||
//! Get the reference to the result keyword.
|
||
//! Note that the referenced data will be changed in the next iteration.
|
||
std::string_view decoded_view() const;
|
||
};
|
||
|
||
//! Make the predictive searcher for the keyword.
|
||
predictive_iterator make_predictive_iterator(std::string_view key) const;
|
||
|
||
//! Preform predictive search for the keyword.
|
||
void predictive_search(std::string_view key, const std::function<void(std::uint64_t, std::string_view)>& fn) const;
|
||
|
||
//! An iterator class for enumeration.
|
||
//! It enumerates all the keywords stored in the trie.
|
||
//! It should be instantiated via the function 'make_enumerative_iterator'.
|
||
using enumerative_iterator = predictive_iterator;
|
||
|
||
//! An iterator class for enumeration.
|
||
enumerative_iterator make_enumerative_iterator() const;
|
||
|
||
//! Enumerate all the keywords and their IDs stored in the trie.
|
||
void enumerate(const std::function<void(std::uint64_t, std::string_view)>& fn) const;
|
||
|
||
//! Visit the members (commonly used for I/O).
|
||
template <class Visitor>
|
||
void visit(Visitor& visitor);
|
||
};
|
||
```
|
||
|
||
### I/O handlers
|
||
|
||
`xcdat.hpp` provides some functions for handling I/O operations.
|
||
|
||
```c++
|
||
//! Set the continuous memory block to a new trie instance.
|
||
template <class Trie>
|
||
Trie mmap(const char* address);
|
||
|
||
//! Load the trie dictionary from the file.
|
||
template <class Trie>
|
||
Trie load(std::string_view filepath);
|
||
|
||
//! Save the trie dictionary to the file and returns the file size in bytes.
|
||
template <class Trie>
|
||
std::uint64_t save(const Trie& idx, std::string_view filepath);
|
||
|
||
//! Get the dictionary size in bytes.
|
||
template <class Trie>
|
||
std::uint64_t memory_in_bytes(const Trie& idx);
|
||
|
||
//! Get the flag indicating the trie type, embedded by the function 'save'.
|
||
//! The flag corresponds to trie::l1_bits and will be used to detect the trie type from the file.
|
||
std::uint32_t get_flag(std::string_view filepath);
|
||
|
||
//! Load the keywords from the file.
|
||
std::vector<std::string> load_strings(std::string_view filepath, char delim = '\n');
|
||
```
|
||
|
||
## Performance
|
||
|
||
To be added...
|
||
|
||
## Licensing
|
||
|
||
This library is free software provided under the MIT License.
|
||
|
||
If you use the library in academic settings, please cite the following paper.
|
||
|
||
```
|
||
@article{kanda2017compressed,
|
||
title={Compressed double-array tries for string dictionaries supporting fast lookup},
|
||
author={Kanda, Shunsuke and Morita, Kazuhiro and Fuketa, Masao},
|
||
journal={Knowledge and Information Systems (KAIS)},
|
||
volume={51},
|
||
number={3},
|
||
pages={1023--1042},
|
||
year={2017},
|
||
publisher={Springer}
|
||
}
|
||
```
|
||
|
||
## Todo
|
||
|
||
- Support other language bindings.
|
||
- Add SIMD-ization.
|
||
|
||
## References
|
||
|
||
1. M. A. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and G. Navarro. Practical compressed string dictionaries. Information Systems, 56:73–108, 2016
|
||
2. S. Kanda, K. Morita, and M. Fuketa. Compressed double-array tries for string dictionaries supporting fast lookup. Knowledge and Information Systems, 51(3): 1023–1042, 2017.
|
||
3. J. Aoe. An efficient digital search algorithm by using a double-array structure. IEEE Transactions on Software Engineering, 15(9):1066–1077, 1989.
|
||
4. S. Yata, M. Oono, K. Morita, M. Fuketa, T. Sumitomo, and J. Aoe. A compact static double-array keeping character codes. Information Processing & Management, 43(1):237–247, 2007.
|
||
5. Müller, Ingo, Cornelius Ratsch, and Franz Faerber. Adaptive string dictionary compression in in-memory column-store database systems. In EDBT, pp. 283–294, 2014.
|
||
6. Gog, Simon, Giulio Ermanno Pibiri, and Rossano Venturini. Efficient and effective query auto-completion. In SIGIR, pp. 2271–2280, 2020.
|
||
7. Ricardo Baeza-Yates, and Berthier Ribeiro-Neto. Modern Information Retrieval. 2nd ed. Addison Wesley, Boston, MA, USA, 2011.
|
||
8. Kudo, Taku, et al. Efficient dictionary and language model compression for input method editors. In WTIM, pp. 19–25, 2011.
|
||
9. N. R. Brisaboa, S. Ladra, and G. Navarro. DACs: Bringing direct access to variable-length codes. Information Processing & Management, 49(1):392–404, 2013.
|
||
|