metabrush/src/lib/Math/Bezier/Cubic.hs

123 lines
3.6 KiB
Haskell
Raw Normal View History

2020-08-05 20:23:16 +00:00
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE UndecidableInstances #-}
2020-08-04 06:15:06 +00:00
module Math.Bezier.Cubic
( Bezier(..)
, bezier, bezier'
2020-08-10 14:38:27 +00:00
, subdivide
, ddist, closestPoint
2020-08-04 06:15:06 +00:00
)
where
-- base
import Data.List.NonEmpty
( NonEmpty(..) )
2020-08-13 22:47:10 +00:00
import Data.Semigroup
( ArgMin, Min(..), Arg(..) )
2020-08-04 06:15:06 +00:00
import GHC.Generics
( Generic )
-- acts
import Data.Act
2020-08-05 20:23:16 +00:00
( Torsor
2020-08-04 06:15:06 +00:00
( (-->) )
)
-- MetaBrush
import qualified Math.Bezier.Quadratic as Quadratic
( Bezier(Bezier), bezier )
2020-08-04 06:15:06 +00:00
import Math.Module
( Module (..)
, lerp
, Inner(..), squaredNorm
2020-08-04 06:15:06 +00:00
)
import Math.Roots
( realRoots )
2020-08-04 06:15:06 +00:00
--------------------------------------------------------------------------------
-- | Points defining a cubic Bézier curve (Bernstein form).
2020-08-04 06:15:06 +00:00
--
-- @ p0 @ and @ p3 @ are endpoints, whereas @ p1 @ and @ p2 @ are control points.
data Bezier p
= Bezier
{ p0, p1, p2, p3 :: !p }
2020-08-04 06:15:06 +00:00
deriving stock ( Show, Generic, Functor, Foldable, Traversable )
-- | Cubic Bézier curve.
bezier :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> p
bezier ( Bezier { .. } ) t =
lerp @v t
2020-08-05 20:23:16 +00:00
( Quadratic.bezier @v ( Quadratic.Bezier p0 p1 p2 ) t )
( Quadratic.bezier @v ( Quadratic.Bezier p1 p2 p3 ) t )
2020-08-04 06:15:06 +00:00
-- | Derivative of cubic Bézier curve.
bezier' :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> v
bezier' ( Bezier { .. } ) t
= ( 3 *^ )
$ lerp @v t
( lerp @v t ( p0 --> p1 ) ( p1 --> p2 ) )
( lerp @v t ( p1 --> p2 ) ( p2 --> p3 ) )
2020-08-10 14:38:27 +00:00
-- | Subdivide a cubic Bézier curve into two parts.
subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p )
subdivide ( Bezier { .. } ) t = ( Bezier p0 q1 q2 pt, Bezier pt r1 r2 p3 )
where
pt, s, q1, q2, r1, r2 :: p
q1 = lerp @v t p0 p1
s = lerp @v t p1 p2
r2 = lerp @v t p2 p3
q2 = lerp @v t q1 s
r1 = lerp @v t s r2
pt = lerp @v t q2 r1
-- | Polynomial coefficients of the derivative of the distance to a cubic Bézier curve.
ddist :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> [ r ]
ddist ( Bezier { .. } ) c = [ a0, a1, a2, a3, a4, a5 ]
where
v, v', v'', v''' :: v
v = c --> p0
v' = p0 --> p1
v'' = p1 --> p0 ^+^ p1 --> p2
v''' = p0 --> p3 ^+^ 3 *^ ( p2 --> p1 )
a0, a1, a2, a3, a4, a5 :: r
a0 = v ^.^ v'
a1 = 3 * squaredNorm v' + 2 * v ^.^ v''
a2 = 9 * v' ^.^ v'' + v ^.^ v'''
a3 = 6 * squaredNorm v'' + 4 * v' ^.^ v'''
a4 = 5 * v'' ^.^ v'''
a5 = squaredNorm v'''
-- | Finds the closest point to a given point on a cubic Bézier curve.
closestPoint :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> ArgMin r ( r, p )
closestPoint pts@( Bezier { .. } ) c = pickClosest ( 0 :| 1 : roots )
where
roots :: [ r ]
roots = filter ( \ r -> r > 0 && r < 1 ) ( realRoots $ ddist @v pts c )
2020-08-13 22:47:10 +00:00
pickClosest :: NonEmpty r -> ArgMin r ( r, p )
pickClosest ( s :| ss ) = go s q nm0 ss
where
q :: p
q = bezier @v pts s
nm0 :: r
nm0 = squaredNorm ( c --> q :: v )
2020-08-13 22:47:10 +00:00
go t p nm [] = Min ( Arg nm ( t, p ) )
go t p nm ( t' : ts )
| nm' < nm = go t' p' nm' ts
| otherwise = go t p nm ts
where
p' :: p
p' = bezier @v pts t'
nm' :: r
nm' = squaredNorm ( c --> p' :: v )