mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-27 09:24:08 +00:00
Improve robustness of quadratic equation solver
Based on ideas from the paper "The Ins and Outs of Solving Quadratic Equations with Floating-Point Arithmetic" (Frédéric Goualard, 2023) Could still be improved further, but I think this is acceptable for now.
This commit is contained in:
parent
1338d7ddbe
commit
01fdd9a126
|
@ -153,6 +153,8 @@ library
|
|||
^>= 3.3.7.0
|
||||
, filepath
|
||||
>= 1.4 && < 1.6
|
||||
, fp-ieee
|
||||
^>= 0.1.0.4
|
||||
, groups-generic
|
||||
^>= 0.3.1.0
|
||||
, parallel
|
||||
|
|
|
@ -2,6 +2,7 @@ packages: .
|
|||
|
||||
constraints:
|
||||
acts -finitary,
|
||||
fp-ieee +fma3,
|
||||
rounded-hw -pure-hs -c99 -avx512 +ghc-prim -x87-long-double
|
||||
|
||||
tests: True
|
||||
|
|
|
@ -123,9 +123,9 @@ chainRule ( D df ) ( D dg ) =
|
|||
uncurryD2 :: D 2 a ~ D 2 ( ℝ 1 )
|
||||
=> D 2 ( ℝ 1 ) ( C 2 a b ) -> a -> D 2 ( ℝ 2 ) b
|
||||
uncurryD2 ( D21 ( D b_t0 ) ( T ( D dbdt_t0 ) ) ( T ( D d2bdt2_t0 ) ) ) s0 =
|
||||
let !( D21 b_t0s0 dbds_t0s0 d2bds2_t0s0 ) = b_t0 s0
|
||||
!( D21 dbdt_t0s0 d2bdtds_t0s0 _ ) = dbdt_t0 s0
|
||||
!( D21 d2bdt2_t0s0 _ _ ) = d2bdt2_t0 s0
|
||||
let D21 b_t0s0 dbds_t0s0 d2bds2_t0s0 = b_t0 s0
|
||||
D21 dbdt_t0s0 d2bdtds_t0s0 _ = dbdt_t0 s0
|
||||
D21 d2bdt2_t0s0 _ _ = d2bdt2_t0 s0
|
||||
in D22
|
||||
b_t0s0
|
||||
( T dbdt_t0s0 ) dbds_t0s0
|
||||
|
@ -134,10 +134,10 @@ uncurryD2 ( D21 ( D b_t0 ) ( T ( D dbdt_t0 ) ) ( T ( D d2bdt2_t0 ) ) ) s0 =
|
|||
uncurryD3 :: D 3 a ~ D 3 ( ℝ 1 )
|
||||
=> D 3 ( ℝ 1 ) ( C 3 a b ) -> a -> D 3 ( ℝ 2 ) b
|
||||
uncurryD3 ( D31 ( D b_t0 ) ( T ( D dbdt_t0 ) ) ( T ( D d2bdt2_t0 ) ) ( T ( D d3bdt3_t0 ) ) ) s0 =
|
||||
let !( D31 b_t0s0 dbds_t0s0 d2bds2_t0s0 d3bds3_t0s0 ) = b_t0 s0
|
||||
!( D31 dbdt_t0s0 d2bdtds_t0s0 d3bdtds2_t0s0 _ ) = dbdt_t0 s0
|
||||
!( D31 d2bdt2_t0s0 d3bdt2ds_t0s0 _ _ ) = d2bdt2_t0 s0
|
||||
!( D31 d3bdt3_t0s0 _ _ _ ) = d3bdt3_t0 s0
|
||||
let D31 b_t0s0 dbds_t0s0 d2bds2_t0s0 d3bds3_t0s0 = b_t0 s0
|
||||
D31 dbdt_t0s0 d2bdtds_t0s0 d3bdtds2_t0s0 _ = dbdt_t0 s0
|
||||
D31 d2bdt2_t0s0 d3bdt2ds_t0s0 _ _ = d2bdt2_t0 s0
|
||||
D31 d3bdt3_t0s0 _ _ _ = d3bdt3_t0 s0
|
||||
in D32
|
||||
b_t0s0
|
||||
( T dbdt_t0s0 ) dbds_t0s0
|
||||
|
|
|
@ -139,7 +139,7 @@ data D1𝔸3 v =
|
|||
data D2𝔸3 v =
|
||||
D23 { _D23_v :: v
|
||||
, _D23_dx, _D23_dy, _D23_dz :: ( T v )
|
||||
, _D23_dxdx, _D23_dxdy, _D23_dydy, _D23_dxdz, _D23_dydz, _D23_dzdz :: !( T v )
|
||||
, _D23_dxdx, _D23_dxdy, _D23_dydy, _D23_dxdz, _D23_dydz, _D23_dzdz :: ( T v )
|
||||
}
|
||||
deriving stock ( Show, Eq, Functor, Foldable, Traversable, Generic, Generic1 )
|
||||
deriving anyclass NFData
|
||||
|
@ -150,9 +150,9 @@ data D2𝔸3 v =
|
|||
data D3𝔸3 v =
|
||||
D33 { _D33_v :: v
|
||||
, _D33_dx, _D33_dy, _D33_dz :: ( T v )
|
||||
, _D33_dxdx, _D33_dxdy, _D33_dydy, _D33_dxdz, _D33_dydz, _D33_dzdz :: !( T v )
|
||||
, _D33_dxdx, _D33_dxdy, _D33_dydy, _D33_dxdz, _D33_dydz, _D33_dzdz :: ( T v )
|
||||
, _D33_dxdxdx, _D33_dxdxdy, _D33_dxdydy, _D33_dydydy
|
||||
, _D33_dxdxdz, _D33_dxdydz, _D33_dxdzdz, _D33_dydydz, _D33_dydzdz, _D33_dzdzdz :: !( T v )
|
||||
, _D33_dxdxdz, _D33_dxdydz, _D33_dxdzdz, _D33_dydydz, _D33_dydzdz, _D33_dzdzdz :: ( T v )
|
||||
}
|
||||
deriving stock ( Show, Eq, Functor, Foldable, Traversable, Generic, Generic1 )
|
||||
deriving anyclass NFData
|
||||
|
@ -370,11 +370,13 @@ instance MonomialBasis D1𝔸2 where
|
|||
_D12_dx = T $ f $ Mon ( Vec [ 1, 0 ] )
|
||||
_D12_dy = T $ f $ Mon ( Vec [ 0, 1 ] )
|
||||
in D12 { .. }
|
||||
{-# INLINE monTabulate #-}
|
||||
|
||||
monIndex d = \ case
|
||||
Mon ( Vec [ 1, 0 ] ) -> unT $ _D12_dx d
|
||||
Mon ( Vec [ 0, 1 ] ) -> unT $ _D12_dy d
|
||||
_ -> _D12_v d
|
||||
{-# INLINE monIndex #-}
|
||||
|
||||
type instance Deg D2𝔸2 = 2
|
||||
type instance Vars D2𝔸2 = 2
|
||||
|
@ -453,12 +455,14 @@ instance MonomialBasis D1𝔸3 where
|
|||
!_D13_dy = T $ f ( Mon ( Vec [ 0, 1, 0 ] ) )
|
||||
!_D13_dz = T $ f ( Mon ( Vec [ 0, 0, 1 ] ) )
|
||||
in D13 { .. }
|
||||
{-# INLINE monTabulate #-}
|
||||
|
||||
monIndex d = \ case
|
||||
Mon ( Vec [ 1, 0, 0 ] ) -> unT $ _D13_dx d
|
||||
Mon ( Vec [ 0, 1, 0 ] ) -> unT $ _D13_dy d
|
||||
Mon ( Vec [ 0, 0, 1 ] ) -> unT $ _D13_dz d
|
||||
_ -> _D13_v d
|
||||
{-# INLINE monIndex #-}
|
||||
|
||||
type instance Deg D2𝔸3 = 2
|
||||
type instance Vars D2𝔸3 = 3
|
||||
|
|
|
@ -38,6 +38,10 @@ import Data.Act
|
|||
import Control.DeepSeq
|
||||
( NFData, NFData1 )
|
||||
|
||||
-- fp-ieee
|
||||
import Numeric.Floating.IEEE.NaN
|
||||
( RealFloatNaN )
|
||||
|
||||
-- groups
|
||||
import Data.Group
|
||||
( Group )
|
||||
|
@ -287,10 +291,12 @@ selfIntersectionParameters ( Bezier {..} ) = solveQuadratic c0 c1 c2
|
|||
c2 = f1 + f2 - f3
|
||||
|
||||
-- | Extremal values of the Bézier parameter for a cubic Bézier curve.
|
||||
extrema :: RealFloat r => Bezier r -> [ r ]
|
||||
extrema :: RealFloatNaN r => Bezier r -> [ r ]
|
||||
extrema ( Bezier {..} ) = solveQuadratic c b a
|
||||
where
|
||||
a = p3 - 3 * p2 + 3 * p1 - p0
|
||||
b = 2 * ( p0 - 2 * p1 + p2 )
|
||||
c = p1 - p0
|
||||
{-# INLINEABLE extrema #-}
|
||||
{-# SPECIALISE extrema :: Bezier Double -> [ Double ] #-}
|
||||
|
||||
|
|
|
@ -148,23 +148,20 @@ instance RepresentableQ Double ( ℝ 0 ) where
|
|||
instance RepresentableQ Double ( ℝ 1 ) where
|
||||
tabulateQ f = [|| ℝ1 $$( f ( Fin 1 ) ) ||]
|
||||
indexQ p = \ case
|
||||
Fin 1 -> [|| unℝ1 $$p ||]
|
||||
Fin i -> error $ "invalid index for ℝ 1: " ++ show i
|
||||
_ -> [|| unℝ1 $$p ||]
|
||||
|
||||
instance RepresentableQ Double ( ℝ 2 ) where
|
||||
tabulateQ f = [|| ℝ2 $$( f ( Fin 1 ) ) $$( f ( Fin 2 ) ) ||]
|
||||
indexQ p = \ case
|
||||
Fin 1 -> [|| _ℝ2_x $$p ||]
|
||||
Fin 2 -> [|| _ℝ2_y $$p ||]
|
||||
Fin i -> error $ "invalid index for ℝ 2: " ++ show i
|
||||
_ -> [|| _ℝ2_y $$p ||]
|
||||
|
||||
instance RepresentableQ Double ( ℝ 3 ) where
|
||||
tabulateQ f = [|| ℝ3 $$( f ( Fin 1 ) ) $$( f ( Fin 2 ) ) $$( f ( Fin 3 ) ) ||]
|
||||
indexQ p = \ case
|
||||
Fin 1 -> [|| _ℝ3_x $$p ||]
|
||||
Fin 2 -> [|| _ℝ3_y $$p ||]
|
||||
Fin 3 -> [|| _ℝ3_z $$p ||]
|
||||
Fin i -> error $ "invalid index for ℝ 3: " ++ show i
|
||||
_ -> [|| _ℝ3_z $$p ||]
|
||||
|
||||
instance RepresentableQ Double ( ℝ 4 ) where
|
||||
tabulateQ f = [|| ℝ4 $$( f ( Fin 1 ) ) $$( f ( Fin 2 ) ) $$( f ( Fin 3 ) ) $$( f ( Fin 4 ) ) ||]
|
||||
|
@ -172,8 +169,7 @@ instance RepresentableQ Double ( ℝ 4 ) where
|
|||
Fin 1 -> [|| _ℝ4_x $$p ||]
|
||||
Fin 2 -> [|| _ℝ4_y $$p ||]
|
||||
Fin 3 -> [|| _ℝ4_z $$p ||]
|
||||
Fin 4 -> [|| _ℝ4_w $$p ||]
|
||||
Fin i -> error $ "invalid index for ℝ 4: " ++ show i
|
||||
_ -> [|| _ℝ4_w $$p ||]
|
||||
|
||||
instance Representable Double ( ℝ 0 ) where
|
||||
tabulate _ = ℝ0
|
||||
|
@ -185,8 +181,7 @@ instance Representable Double ( ℝ 1 ) where
|
|||
tabulate f = ℝ1 ( f ( Fin 1 ) )
|
||||
{-# INLINE tabulate #-}
|
||||
index p = \ case
|
||||
Fin 1 -> unℝ1 p
|
||||
Fin i -> error $ "invalid index for ℝ 1: " ++ show i
|
||||
_ -> unℝ1 p
|
||||
{-# INLINE index #-}
|
||||
|
||||
instance Representable Double ( ℝ 2 ) where
|
||||
|
@ -194,8 +189,7 @@ instance Representable Double ( ℝ 2 ) where
|
|||
{-# INLINE tabulate #-}
|
||||
index p = \ case
|
||||
Fin 1 -> _ℝ2_x p
|
||||
Fin 2 -> _ℝ2_y p
|
||||
Fin i -> error $ "invalid index for ℝ 2: " ++ show i
|
||||
_ -> _ℝ2_y p
|
||||
{-# INLINE index #-}
|
||||
|
||||
instance Representable Double ( ℝ 3 ) where
|
||||
|
@ -204,8 +198,7 @@ instance Representable Double ( ℝ 3 ) where
|
|||
index p = \ case
|
||||
Fin 1 -> _ℝ3_x p
|
||||
Fin 2 -> _ℝ3_y p
|
||||
Fin 3 -> _ℝ3_z p
|
||||
Fin i -> error $ "invalid index for ℝ 3: " ++ show i
|
||||
_ -> _ℝ3_z p
|
||||
{-# INLINE index #-}
|
||||
|
||||
instance Representable Double ( ℝ 4 ) where
|
||||
|
@ -215,6 +208,5 @@ instance Representable Double ( ℝ 4 ) where
|
|||
Fin 1 -> _ℝ4_x p
|
||||
Fin 2 -> _ℝ4_y p
|
||||
Fin 3 -> _ℝ4_z p
|
||||
Fin 4 -> _ℝ4_w p
|
||||
Fin i -> error $ "invalid index for ℝ 4: " ++ show i
|
||||
_ -> _ℝ4_w p
|
||||
{-# INLINE index #-}
|
||||
|
|
|
@ -246,16 +246,26 @@ defaultRootIsolationAlgorithms minWidth narrowAbs box history
|
|||
-- Otherwise, do a normal round.
|
||||
-- Currently: we try an interval Gauss–Seidel step followed by box(1)-consistency.
|
||||
_ -> GaussSeidel defaultGaussSeidelOptions
|
||||
NE.:| [ Box1 box1Options ]
|
||||
NE.:| [ Box1 _box1Options ]
|
||||
|
||||
where
|
||||
box1Options :: Box1Options n d
|
||||
box1Options =
|
||||
_box1Options :: Box1Options n d
|
||||
_box1Options =
|
||||
Box1Options
|
||||
{ box1EpsEq = narrowAbs
|
||||
, box1CoordsToNarrow = toList $ universe @n -- [ Fin 1, Fin 2 ]
|
||||
, box1EqsToUse = toList $ universe @d
|
||||
}
|
||||
|
||||
_box2Options :: Box2Options n d
|
||||
_box2Options =
|
||||
Box2Options
|
||||
{ box2EpsEq = narrowAbs
|
||||
, box2LambdaMin = 0.001
|
||||
, box2CoordsToNarrow = toList $ universe @n
|
||||
, box2EqsToUse = toList $ universe @d
|
||||
}
|
||||
|
||||
-- Did we reduce the box width by at least "narrowAbs" in at least one of the dimensions?
|
||||
sufficientlySmallerThan :: Box n -> Box n -> Bool
|
||||
b1 `sufficientlySmallerThan` b2 =
|
||||
|
@ -288,13 +298,15 @@ defaultBisectionOptions _minWidth _narrowAbs box =
|
|||
in unT ( origin @Double ) `inside` iRange'
|
||||
|
||||
-- box(1)-consistency
|
||||
--not $ null $ makeBox1Consistent eqs _minWidth _narrowAbs box'
|
||||
--let box1Options = Box1Options _narrowAbs ( toList $ universe @n ) ( toList $ universe @d )
|
||||
--in not $ null $ makeBox1Consistent _minWidth box1Options eqs box'
|
||||
|
||||
-- box(2)-consistency
|
||||
--let box'' = makeBox2Consistent eqs _minWidth _narrowAbs 0.2 box'
|
||||
--let box2Options = Box2Options _narrowAbs 0.001 ( toList $ universe @n ) ( toList $ universe @d )
|
||||
-- box'' = makeBox2Consistent _minWidth box2Options eqs box'
|
||||
-- iRange'' :: Box d
|
||||
-- iRange'' = value @Double @1 @( Box n ) $ eqs box''
|
||||
--in origin @Double `inside` iRange''
|
||||
-- iRange'' = eqs box'' `monIndex` zeroMonomial
|
||||
--in unT ( origin @Double ) `inside` iRange''
|
||||
, fallbackBisectionDim =
|
||||
\ _roundHist _prevRoundsHist eqs ->
|
||||
let df = eqs box
|
||||
|
@ -308,6 +320,8 @@ defaultBisectionOptions _minWidth _narrowAbs box =
|
|||
|
||||
-- First, check if the largest dimension is over 10 times larger
|
||||
-- than the smallest dimension; if so bisect along that coordinate.
|
||||
--
|
||||
-- TODO: filter out dimensions smaller than minimum width.
|
||||
in case sortOnArg ( width . coordInterval ) datPerCoord of
|
||||
[] -> error "dimension 0"
|
||||
[Arg _ d] -> (coordIndex d, "")
|
||||
|
|
|
@ -33,6 +33,10 @@ import Data.Maybe
|
|||
import Control.DeepSeq
|
||||
( NFData, force )
|
||||
|
||||
-- fp-ieee
|
||||
import Numeric.Floating.IEEE.NaN
|
||||
( RealFloatNaN(copySign) )
|
||||
|
||||
-- primitive
|
||||
import Control.Monad.Primitive
|
||||
( PrimMonad(PrimState) )
|
||||
|
@ -46,6 +50,10 @@ import Data.Primitive.PrimArray
|
|||
import Data.Primitive.Types
|
||||
( Prim )
|
||||
|
||||
-- rounded-hw
|
||||
import Numeric.Rounded.Hardware.Internal
|
||||
( fusedMultiplyAdd )
|
||||
|
||||
-- brush-strokes
|
||||
import Math.Epsilon
|
||||
( epsilon, nearZero )
|
||||
|
@ -55,32 +63,85 @@ import Math.Epsilon
|
|||
-- | Real solutions to a quadratic equation.
|
||||
--
|
||||
-- Coefficients are given in order of increasing degree.
|
||||
--
|
||||
-- Implementation taken from https://pbr-book.org/4ed/Utilities/Mathematical_Infrastructure#Quadratic.
|
||||
solveQuadratic
|
||||
:: forall a. RealFloat a
|
||||
:: forall a. RealFloatNaN a
|
||||
=> a -- ^ constant coefficient
|
||||
-> a -- ^ linear coefficient
|
||||
-> a -- ^ quadratic coefficient
|
||||
-> [ a ]
|
||||
solveQuadratic c b a
|
||||
| nearZero b && nearZero a
|
||||
= if nearZero c
|
||||
then [ 0, 0.5, 1 ] -- convention
|
||||
else []
|
||||
| nearZero ( c * c * a / ( b * b ) )
|
||||
= [ -c / b ]
|
||||
| disc < 0
|
||||
= [] -- non-real solutions
|
||||
| isNaN a || isNaN b || isNaN c
|
||||
|| isInfinite a || isInfinite b || isInfinite c
|
||||
= []
|
||||
| otherwise
|
||||
= let
|
||||
r :: a
|
||||
r =
|
||||
if b >= 0
|
||||
then 2 * c / ( -b - sqrt disc )
|
||||
else 0.5 * ( -b + sqrt disc ) / a
|
||||
in [ r, c / ( a * r ) ]
|
||||
= case (a == 0, c == 0) of
|
||||
-- First, handle all cases in which a or c is zero.
|
||||
|
||||
-- bx = 0
|
||||
(True , True )
|
||||
| b == 0
|
||||
-> [ 0, 0.5, 1 ] -- convention
|
||||
| otherwise
|
||||
-> [ 0 ]
|
||||
-- bx + c = 0
|
||||
(True , False)
|
||||
| b == 0
|
||||
-> [ ]
|
||||
| otherwise
|
||||
-> [ -c / b ]
|
||||
-- ax² + bx = 0
|
||||
(False, True )
|
||||
| b == 0
|
||||
-> [ 0 ]
|
||||
| signum a == signum b
|
||||
-> [ -b / a, 0 ]
|
||||
| otherwise
|
||||
-> [ 0, -b / a ]
|
||||
-- General case: ax² + bx + c = 0
|
||||
(False, False)
|
||||
| discr < 0
|
||||
-> []
|
||||
| otherwise
|
||||
-> let rootDiscr = sqrt discr
|
||||
q = -0.5 * ( b + copySign rootDiscr b )
|
||||
x1 = q / a
|
||||
x2 = c / q
|
||||
in if x1 > x2
|
||||
then [ x2, x1 ]
|
||||
else [ x1, x2 ]
|
||||
where discr = discriminant a b c
|
||||
{-# INLINEABLE solveQuadratic #-}
|
||||
{-# SPECIALISE solveQuadratic :: Float -> Float -> Float -> [ Float ] #-}
|
||||
{-# SPECIALISE solveQuadratic :: Double -> Double -> Double -> [ Double ] #-}
|
||||
-- TODO: implement the version from the paper
|
||||
-- "The Ins and Outs of Solving Quadratic Equations with Floating-Point Arithmetic"
|
||||
-- which is even more robust.
|
||||
|
||||
-- | Kahan's method for computing the discriminant \( b^2 - 4ac \),
|
||||
-- using a fused multiply-add operation to avoid cancellation in the naive
|
||||
-- formula (if \( b^2 \) and \( 4ac \) are close).
|
||||
--
|
||||
-- From "The Ins and Outs of Solving Quadratic Equations with Floating-Point Arithmetic",
|
||||
-- (Frédéric Goualard, 2023).
|
||||
discriminant :: RealFloat a => a -> a -> a -> a
|
||||
discriminant a b c
|
||||
-- b² and 4ac are different enough that b² - 4ac gives a good answer
|
||||
| 3 * abs d_naive >= b² - m4ac
|
||||
= d_naive
|
||||
| otherwise
|
||||
= let dp = fma b b -b²
|
||||
dq = fma ( 4 * a ) c m4ac
|
||||
in d_naive + ( dp - dq )
|
||||
where
|
||||
disc :: a
|
||||
disc = b * b - 4 * a * c
|
||||
b² = b * b
|
||||
m4ac = -4 * a * c
|
||||
d_naive = b² + m4ac
|
||||
fma = fusedMultiplyAdd
|
||||
{-# INLINEABLE discriminant #-}
|
||||
{-# SPECIALISE discriminant :: Float -> Float -> Float -> Float #-}
|
||||
{-# SPECIALISE discriminant :: Double -> Double -> Double -> Double #-}
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Root finding using Laguerre's method
|
||||
|
|
|
@ -3,6 +3,7 @@ packages: ., brush-strokes
|
|||
constraints:
|
||||
acts -finitary,
|
||||
-- brush-strokes +use-fma,
|
||||
fp-ieee +fma3,
|
||||
rounded-hw -pure-hs -c99 -avx512 +ghc-prim -x87-long-double,
|
||||
text -simdutf
|
||||
-- text +simdutf causes the "digit" package to fail to build with undefined symbol linker errors
|
||||
|
|
Loading…
Reference in a new issue