mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-23 15:34:06 +00:00
Use 'n choose k' to choose Gauss-Seidel dimensions
This commit is contained in:
parent
0e6b9a822b
commit
0e59d85143
|
@ -185,8 +185,7 @@ benchCases =
|
|||
, narrowAbs <- [ 5e-2 ]
|
||||
, let opts =
|
||||
RootIsolationOptions
|
||||
{ minWidth
|
||||
, cuspFindingAlgorithms = defaultRootIsolationAlgorithms minWidth narrowAbs
|
||||
{ rootIsolationAlgorithms = defaultRootIsolationAlgorithms minWidth narrowAbs
|
||||
}
|
||||
]
|
||||
|
||||
|
|
|
@ -229,6 +229,8 @@ data OutlineInfo =
|
|||
{ outlineFn :: OutlineFn
|
||||
, outlineDefiniteCusps, outlinePotentialCusps :: [ Cusp ] }
|
||||
|
||||
type N = 2
|
||||
|
||||
computeStrokeOutline ::
|
||||
forall ( clo :: SplineType ) usedParams brushParams crvData ptData s
|
||||
. ( KnownSplineType clo
|
||||
|
|
|
@ -10,7 +10,8 @@ module Math.Linear
|
|||
|
||||
-- * Points and vectors (second version)
|
||||
, ℝ(..), T(.., V2, V3, V4)
|
||||
, Fin(..), MFin(..), universe, coordinates
|
||||
, Fin(..), MFin(..)
|
||||
, universe, coordinates, choose
|
||||
, RepDim, RepresentableQ(..)
|
||||
, Representable(..), set, injection, projection
|
||||
, Vec(..), (!), find, zipIndices
|
||||
|
@ -34,7 +35,9 @@ import GHC.Generics
|
|||
import GHC.Stack
|
||||
( HasCallStack )
|
||||
import GHC.TypeNats
|
||||
( Nat, KnownNat, natVal' )
|
||||
( Nat, KnownNat, type (<=)
|
||||
, natVal'
|
||||
)
|
||||
|
||||
-- acts
|
||||
import Data.Act
|
||||
|
@ -136,6 +139,27 @@ coordinates :: forall r u. ( Representable r u ) => u -> Vec ( RepDim u ) r
|
|||
coordinates u = fmap ( index u ) $ universe @( RepDim u )
|
||||
{-# INLINEABLE coordinates #-}
|
||||
|
||||
-- | Binomial coefficient: choose all subsets of size @k@ of the given set
|
||||
-- of size @n@.
|
||||
choose
|
||||
:: forall n k
|
||||
. ( KnownNat n, KnownNat k
|
||||
, 1 <= n, 1 <= k, k <= n
|
||||
)
|
||||
=> [ Vec k ( Fin n ) ]
|
||||
choose = coerce $ go ( fromIntegral $ natVal' @n proxy# )
|
||||
( fromIntegral $ natVal' @k proxy# )
|
||||
where
|
||||
go :: Word -> Word -> [ [ Word ] ]
|
||||
go n k
|
||||
| k == 1
|
||||
= [ [ i ] | i <- [ 1 .. n ] ]
|
||||
| n == k
|
||||
= [ [ 1 .. n ] ]
|
||||
go n k = go ( n - 1 ) k
|
||||
++ ( map ( ++ [ n ] ) $ go ( n - 1 ) ( k - 1 ) )
|
||||
{-# INLINEABLE choose #-}
|
||||
|
||||
infixl 9 !
|
||||
(!) :: forall l a. HasCallStack => Vec l a -> Fin l -> a
|
||||
( Vec l ) ! Fin i = l !! ( fromIntegral i - 1 )
|
||||
|
|
|
@ -24,10 +24,6 @@ module Math.Root.Isolation
|
|||
-- ** Trees recording search space of root isolation algorithms
|
||||
, RootIsolationTree(..), showRootIsolationTree
|
||||
, RootIsolationStep(..)
|
||||
|
||||
-- * Hack for changing between 2 and 3 d formulations
|
||||
-- for my personal testing
|
||||
, N
|
||||
)
|
||||
where
|
||||
|
||||
|
@ -52,13 +48,19 @@ import Data.List.NonEmpty
|
|||
( NonEmpty )
|
||||
import qualified Data.List.NonEmpty as NE
|
||||
( NonEmpty(..), cons, filter, fromList, last, singleton, sort )
|
||||
import Data.Proxy
|
||||
( Proxy(..) )
|
||||
import Data.Semigroup
|
||||
( Arg(..), Dual(..) )
|
||||
import Data.Type.Ord
|
||||
( OrderingI(..) )
|
||||
import Numeric
|
||||
( showFFloat )
|
||||
import GHC.TypeNats
|
||||
( Nat, KnownNat
|
||||
, type (<=) )
|
||||
, type (<=)
|
||||
, cmpNat
|
||||
)
|
||||
|
||||
-- containers
|
||||
import Data.Tree
|
||||
|
@ -88,7 +90,7 @@ import Math.Linear
|
|||
import Math.Module
|
||||
( Module(..) )
|
||||
import Math.Monomial
|
||||
( MonomialBasis(..)
|
||||
( MonomialBasis(..), Deg, Vars
|
||||
, linearMonomial, zeroMonomial
|
||||
)
|
||||
import qualified Math.Ring as Ring
|
||||
|
@ -137,10 +139,18 @@ showArea area = "(area " ++ showFFloat (Just 6) area "" ++ ")"
|
|||
|
||||
type Box n = 𝕀ℝ n
|
||||
type BoxHistory n = [ NE.NonEmpty ( RootIsolationStep, Box n ) ]
|
||||
type N = 2
|
||||
type BoxCt n d = ( n ~ N, d ~ 3 )
|
||||
{-
|
||||
( Show ( 𝕀ℝ n ), Show ( ℝ n )
|
||||
|
||||
-- | Dimension constraints for root isolation in a system of equations:
|
||||
--
|
||||
-- - @n@: number of variables
|
||||
-- - @d@: number of equations
|
||||
--
|
||||
-- NB: we require n <= d (no support for under-constrained systems).
|
||||
type BoxCt n d =
|
||||
( KnownNat n, KnownNat d
|
||||
, 1 <= n, 1 <= d, n <= d
|
||||
|
||||
, Show ( 𝕀ℝ n ), Show ( ℝ n )
|
||||
, Eq ( ℝ n )
|
||||
, Representable Double ( ℝ n )
|
||||
, MonomialBasis ( D 1 ( ℝ n ) )
|
||||
|
@ -153,7 +163,6 @@ type BoxCt n d = ( n ~ N, d ~ 3 )
|
|||
, Module Double ( T ( ℝ d ) )
|
||||
, Representable Double ( ℝ d )
|
||||
)
|
||||
-}
|
||||
|
||||
-- | Options for the root isolation methods in 'isolateRootsIn'.
|
||||
type RootIsolationOptions :: Nat -> Nat -> Type
|
||||
|
@ -235,6 +244,7 @@ defaultRootIsolationOptions =
|
|||
where
|
||||
minWidth = 1e-5
|
||||
ε_eq = 5e-3
|
||||
{-# INLINEABLE defaultRootIsolationOptions #-}
|
||||
|
||||
defaultRootIsolationAlgorithms
|
||||
:: forall n d
|
||||
|
@ -284,11 +294,17 @@ defaultRootIsolationAlgorithms minWidth ε_eq box history
|
|||
GaussSeidelOptions
|
||||
{ gsPreconditioner = InverseMidJacobian
|
||||
, gsPickEqs =
|
||||
\ ( 𝕀 ( ℝ3 a_lo b_lo c_lo ) ( ℝ3 a_hi b_hi c_hi ) ) ->
|
||||
case length history `mod` 3 of
|
||||
0 -> 𝕀 ( ℝ2 a_lo b_lo ) ( ℝ2 a_hi b_hi )
|
||||
1 -> 𝕀 ( ℝ2 b_lo c_lo ) ( ℝ2 b_hi c_hi )
|
||||
_ -> 𝕀 ( ℝ2 a_lo c_lo ) ( ℝ2 a_hi c_hi )
|
||||
case cmpNat @n @d Proxy Proxy of
|
||||
EQI -> id
|
||||
LTI ->
|
||||
-- If there are more equations (d) than variables (n),
|
||||
-- pick a size n subset of the variables,
|
||||
-- (go through all combinations cyclically).
|
||||
let choices :: [ Vec n ( Fin d ) ]
|
||||
choices = choose @d @n
|
||||
choice :: Vec n ( Fin d )
|
||||
choice = choices !! ( length history `mod` length choices )
|
||||
in \ u -> tabulate \ i -> index u ( choice ! i )
|
||||
}
|
||||
|
||||
-- Did we reduce the box width by at least ε_eq
|
||||
|
|
Loading…
Reference in a new issue