mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-27 09:24:08 +00:00
Improve intervallic rotation computations
This commit bakes in a certain kind of representation for brush strokes: c(t,s) = p(t) + R(theta(t)) b(t,s) This representation allows us to cancel out some rotation terms when computing the envelope equation, improving the efficiency of the cusp-finding methods.
This commit is contained in:
parent
2b167f594a
commit
1338d7ddbe
|
@ -133,8 +133,8 @@ benchTestCase ( TestCase { testName, testBrushStroke, testCuspOptions, testStart
|
|||
after <- getMonotonicTime
|
||||
let dt = after - before
|
||||
putStrLn $ unlines
|
||||
[ " - #sols: " ++ show (length sols)
|
||||
, " - #dunno: " ++ show (length dunno)
|
||||
[ " - #sols: " ++ show sols --( length sols )
|
||||
, " - #dunno: " ++ show ( length dunno )
|
||||
, " - Time elapsed: " ++ show dt ++ "s"
|
||||
, "" ]
|
||||
return dt
|
||||
|
@ -181,7 +181,7 @@ testCases = benchCases
|
|||
|
||||
benchCases :: [ TestCase ]
|
||||
benchCases =
|
||||
[ ellipseTestCase opts "full" ( 0, 1 ) pi $ defaultStartBoxes [ 0 .. 3 ] ]
|
||||
[ ellipseTestCase opts "full" ( 0, 1 ) pi $ defaultStartBoxes [ 2 ] ] -- [ 0 .. 3 ] ]
|
||||
where
|
||||
opts = defaultRootIsolationOptions
|
||||
|
||||
|
@ -190,7 +190,7 @@ benchCases =
|
|||
data BrushStroke =
|
||||
forall nbParams. ParamsCt nbParams =>
|
||||
BrushStroke
|
||||
{ brush :: !( Brush nbParams )
|
||||
{ brush :: !( Brush ( ℝ nbParams ) )
|
||||
, stroke :: !( Point nbParams, Curve Open () ( Point nbParams ) )
|
||||
}
|
||||
|
||||
|
@ -568,18 +568,10 @@ data Point nbParams =
|
|||
deriving stock Generic
|
||||
deriving stock instance Show ( ℝ nbParams ) => Show ( Point nbParams )
|
||||
|
||||
type Brush nbParams
|
||||
= forall {t} k (i :: t)
|
||||
. DiffInterp k i ( ℝ nbParams )
|
||||
=> Proxy# i
|
||||
-> ( forall a. a -> I i a )
|
||||
-> C k ( I i ( ℝ nbParams ) )
|
||||
( Spline Closed () ( I i ( ℝ 2 ) ) )
|
||||
|
||||
getStrokeFunctions
|
||||
:: forall nbParams
|
||||
. ParamsCt nbParams
|
||||
=> Brush nbParams
|
||||
=> Brush ( ℝ nbParams )
|
||||
-- ^ brush shape
|
||||
-> Point nbParams
|
||||
-- ^ start point
|
||||
|
@ -587,7 +579,7 @@ getStrokeFunctions
|
|||
-- ^ curve points
|
||||
-> ( ℝ 1 -> Seq ( ℝ 1 -> StrokeDatum 2 () )
|
||||
, 𝕀ℝ 1 -> Seq ( 𝕀ℝ 1 -> StrokeDatum 3 𝕀 ) )
|
||||
getStrokeFunctions brush sp0 crv =
|
||||
getStrokeFunctions ( Brush brushShape brushShapeI mbRot ) sp0 crv =
|
||||
let
|
||||
usedParams :: C 2 ( ℝ 1 ) ( ℝ nbParams )
|
||||
path :: C 2 ( ℝ 1 ) ( ℝ 2 )
|
||||
|
@ -600,11 +592,14 @@ getStrokeFunctions brush sp0 crv =
|
|||
pathAndUsedParams @3 @𝕀 coerce singleton ( getParams . pointParams )
|
||||
sp0 crv
|
||||
in ( brushStrokeData @2 @( ℝ nbParams ) coerce coerce
|
||||
path usedParams $
|
||||
brush @2 @() proxy# id
|
||||
path usedParams
|
||||
brushShape
|
||||
mbRot
|
||||
, brushStrokeData @3 @( ℝ nbParams ) coerce coerce
|
||||
pathI usedParamsI $
|
||||
brush @3 @𝕀 proxy# singleton )
|
||||
pathI usedParamsI
|
||||
brushShapeI
|
||||
( fmap nonDecreasing mbRot )
|
||||
)
|
||||
{-# INLINEABLE getStrokeFunctions #-}
|
||||
|
||||
defaultStartBoxes :: [ Int ] -> [ ( Int, [ Box 2 ] ) ]
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
{-# LANGUAGE AllowAmbiguousTypes #-}
|
||||
{-# LANGUAGE PartialTypeSignatures #-}
|
||||
{-# LANGUAGE PolyKinds #-}
|
||||
{-# LANGUAGE RebindableSyntax #-}
|
||||
{-# LANGUAGE ScopedTypeVariables #-}
|
||||
|
|
|
@ -6,7 +6,8 @@
|
|||
{-# LANGUAGE ScopedTypeVariables #-}
|
||||
|
||||
module Calligraphy.Brushes
|
||||
( circleBrush
|
||||
( BrushFn, Brush(..)
|
||||
, circleBrush
|
||||
, ellipseBrush
|
||||
, tearDropBrush
|
||||
) where
|
||||
|
@ -15,10 +16,12 @@ module Calligraphy.Brushes
|
|||
import Prelude
|
||||
hiding
|
||||
( Num(..), Floating(..), (^), (/), fromInteger, fromRational )
|
||||
import Data.Kind
|
||||
( Type )
|
||||
import GHC.Exts
|
||||
( Proxy# )
|
||||
( Proxy#, proxy# )
|
||||
import GHC.TypeNats
|
||||
( type (<=) )
|
||||
( Nat, type (<=) )
|
||||
|
||||
-- containers
|
||||
import qualified Data.Sequence as Seq
|
||||
|
@ -29,11 +32,71 @@ import Math.Algebra.Dual
|
|||
import Math.Bezier.Spline
|
||||
import Math.Differentiable
|
||||
( I )
|
||||
import Math.Interval
|
||||
( 𝕀, singleton )
|
||||
import Math.Linear
|
||||
import Math.Module
|
||||
( Module((^+^), (*^)) )
|
||||
import Math.Ring
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
-- | The shape of a brush (before applying any rotation).
|
||||
type BrushFn :: forall {kd}. kd -> Nat -> Type -> Type
|
||||
type BrushFn i k brushParams
|
||||
= C k ( I i brushParams )
|
||||
( Spline Closed () ( I i ( ℝ 2 ) ) )
|
||||
|
||||
-- | A brush, described as a base shape + an optional rotation.
|
||||
data Brush brushParams
|
||||
= Brush
|
||||
{ brushShape :: BrushFn () 2 brushParams
|
||||
, brushShapeI :: BrushFn 𝕀 3 brushParams
|
||||
, mbRotation :: Maybe ( brushParams -> Double )
|
||||
}
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Brushes
|
||||
|
||||
-- Some convenience type synonyms for brush types... a bit horrible
|
||||
type ParamsCt rec = ( ParamsICt 2 () rec, ParamsICt 3 𝕀 rec )
|
||||
type ParamsICt k i rec =
|
||||
( Module
|
||||
( D k ( I i rec ) ( I i Double ) )
|
||||
( D k ( I i rec ) ( I i ( ℝ 2 ) ) )
|
||||
, Module ( I i Double ) ( T ( I i Double ) )
|
||||
, HasChainRule ( I i Double ) k ( I i rec )
|
||||
, Representable ( I i Double ) ( I i rec )
|
||||
, Applicative ( D k ( I i rec ) )
|
||||
)
|
||||
|
||||
{-# INLINEABLE circleBrush #-}
|
||||
circleBrush :: ( 1 <= RepDim params, ParamsCt params ) => Brush params
|
||||
circleBrush =
|
||||
Brush
|
||||
{ brushShape = circleBrushFn @() @2 proxy# id
|
||||
, brushShapeI = circleBrushFn @𝕀 @3 proxy# singleton
|
||||
, mbRotation = Nothing
|
||||
}
|
||||
|
||||
{-# INLINEABLE ellipseBrush #-}
|
||||
ellipseBrush :: ( 3 <= RepDim params, ParamsCt params ) => Brush params
|
||||
ellipseBrush =
|
||||
Brush
|
||||
{ brushShape = ellipseBrushFn @() @2 proxy# id
|
||||
, brushShapeI = ellipseBrushFn @𝕀 @3 proxy# singleton
|
||||
, mbRotation = Just ( `index` ( Fin 3 ) )
|
||||
}
|
||||
|
||||
{-# INLINEABLE tearDropBrush #-}
|
||||
tearDropBrush :: ( 3 <= RepDim params, ParamsCt params ) => Brush params
|
||||
tearDropBrush =
|
||||
Brush
|
||||
{ brushShape = tearDropBrushFn @() @2 proxy# id
|
||||
, brushShapeI = tearDropBrushFn @𝕀 @3 proxy# singleton
|
||||
, mbRotation = Just ( `index` ( Fin 3 ) )
|
||||
}
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Circle & ellipse
|
||||
|
||||
|
@ -60,93 +123,55 @@ circleSpline p = sequenceA $
|
|||
Bezier3To ( p κ -1 ) ( p 1 -κ ) BackToStart ()
|
||||
{-# INLINE circleSpline #-}
|
||||
|
||||
circleBrush :: forall {t} (i :: t) k irec
|
||||
. ( 1 <= RepDim irec
|
||||
, Module
|
||||
( D k irec ( I i Double ) )
|
||||
( D k irec ( I i ( ℝ 2 ) ) )
|
||||
, Module ( I i Double ) ( T ( I i Double ) )
|
||||
, HasChainRule ( I i Double ) k irec
|
||||
, Representable ( I i Double ) irec
|
||||
, Applicative ( D k irec )
|
||||
circleBrushFn :: forall {t} (i :: t) k rec
|
||||
. ( 1 <= RepDim ( I i rec )
|
||||
, ParamsICt k i rec
|
||||
)
|
||||
=> Proxy# i
|
||||
-> ( forall a. a -> I i a )
|
||||
-> C k irec ( Spline 'Closed () ( I i ( ℝ 2 ) ) )
|
||||
circleBrush _ mkI =
|
||||
-> C k ( I i rec ) ( Spline 'Closed () ( I i ( ℝ 2 ) ) )
|
||||
circleBrushFn _ mkI =
|
||||
D \ params ->
|
||||
let r :: D k irec ( I i Double )
|
||||
let r :: D k ( I i rec ) ( I i Double )
|
||||
r = runD ( var @_ @k $ Fin 1 ) params
|
||||
mkPt :: Double -> Double -> D k irec ( I i ( ℝ 2 ) )
|
||||
mkPt :: Double -> Double -> D k ( I i rec ) ( I i ( ℝ 2 ) )
|
||||
mkPt x y
|
||||
= ( r `scaledBy` x ) *^ e_x
|
||||
^+^ ( r `scaledBy` y ) *^ e_y
|
||||
in circleSpline mkPt
|
||||
where
|
||||
e_x, e_y :: D k irec ( I i ( ℝ 2 ) )
|
||||
e_x, e_y :: D k ( I i rec ) ( I i ( ℝ 2 ) )
|
||||
e_x = pure $ mkI $ ℝ2 1 0
|
||||
e_y = pure $ mkI $ ℝ2 0 1
|
||||
|
||||
scaledBy d x = fmap ( mkI x * ) d
|
||||
{-# INLINEABLE circleBrush #-}
|
||||
{-# INLINEABLE circleBrushFn #-}
|
||||
|
||||
ellipseBrush :: forall {t} (i :: t) k irec
|
||||
. ( 3 <= RepDim irec
|
||||
, Module
|
||||
( D k irec ( I i Double ) )
|
||||
( D k irec ( I i ( ℝ 2 ) ) )
|
||||
, Module ( I i Double ) ( T ( I i Double ) )
|
||||
, HasChainRule ( I i Double ) k irec
|
||||
, Representable ( I i Double ) irec
|
||||
, Applicative ( D k irec )
|
||||
, Transcendental ( D k irec ( I i Double ) )
|
||||
-- TODO: make a synonym for the above...
|
||||
-- it seems DiffInterp isn't exactly right
|
||||
ellipseBrushFn :: forall {t} (i :: t) k rec
|
||||
. ( 3 <= RepDim ( I i rec )
|
||||
, ParamsICt k i rec
|
||||
)
|
||||
=> Proxy# i
|
||||
-> ( forall a. a -> I i a )
|
||||
-> C k irec ( Spline 'Closed () ( I i ( ℝ 2 ) ) )
|
||||
ellipseBrush _ mkI =
|
||||
-> C k ( I i rec ) ( Spline 'Closed () ( I i ( ℝ 2 ) ) )
|
||||
ellipseBrushFn _ mkI =
|
||||
D \ params ->
|
||||
let a, b, phi :: D k irec ( I i Double )
|
||||
let a, b :: D k ( I i rec ) ( I i Double )
|
||||
a = runD ( var @_ @k $ Fin 1 ) params
|
||||
b = runD ( var @_ @k $ Fin 2 ) params
|
||||
phi = runD ( var @_ @k $ Fin 3 ) params
|
||||
mkPt :: Double -> Double -> D k irec ( I i ( ℝ 2 ) )
|
||||
mkPt :: Double -> Double -> D k ( I i rec ) ( I i ( ℝ 2 ) )
|
||||
mkPt x y
|
||||
= let !x' = a `scaledBy` x
|
||||
!y' = b `scaledBy` y
|
||||
-- {-
|
||||
in
|
||||
( x' * cos phi - y' * sin phi ) *^ e_x
|
||||
^+^ ( y' * cos phi + x' * sin phi ) *^ e_y
|
||||
-- -}
|
||||
{-
|
||||
r = sqrt ( x' ^ 2 + y' ^ 2 )
|
||||
arctgt = atan ( y' / x' )
|
||||
-- a and b are always strictly positive, so we can compute
|
||||
-- the quadrant using only x and y, which are constants.
|
||||
!theta
|
||||
| x > 0
|
||||
= arctgt
|
||||
| x < 0
|
||||
= if y >= 0 then arctgt + pi else arctgt - pi
|
||||
| otherwise
|
||||
= if y >= 0 then 0.5 * pi else -0.5 * pi
|
||||
!phi' = phi + theta
|
||||
in
|
||||
( r * cos phi' ) *^ e_x
|
||||
^+^ ( r * sin phi' ) *^ e_y
|
||||
-}
|
||||
|
||||
in x' *^ e_x ^+^ y' *^ e_y
|
||||
in circleSpline mkPt
|
||||
where
|
||||
e_x, e_y :: D k irec ( I i ( ℝ 2 ) )
|
||||
e_x, e_y :: D k ( I i rec ) ( I i ( ℝ 2 ) )
|
||||
e_x = pure $ mkI $ ℝ2 1 0
|
||||
e_y = pure $ mkI $ ℝ2 0 1
|
||||
|
||||
scaledBy d x = fmap ( mkI x * ) d
|
||||
{-# INLINEABLE ellipseBrush #-}
|
||||
{-# INLINEABLE ellipseBrushFn #-}
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Tear drop
|
||||
|
@ -168,27 +193,19 @@ tearHeight = 3 * sqrt 3 / 8
|
|||
sqrt3_over_2 :: Double
|
||||
sqrt3_over_2 = 0.5 * sqrt 3
|
||||
|
||||
tearDropBrush :: forall {t} (i :: t) k irec
|
||||
. ( Module
|
||||
( D k irec ( I i Double ) )
|
||||
( D k irec ( I i ( ℝ 2 ) ) )
|
||||
, Module ( I i Double ) ( T ( I i Double ) )
|
||||
, HasChainRule ( I i Double ) k irec
|
||||
, Representable ( I i Double ) irec
|
||||
, Applicative ( D k irec )
|
||||
, Transcendental ( D k irec ( I i Double ) )
|
||||
tearDropBrushFn :: forall {t} (i :: t) k rec
|
||||
. ( 3 <= RepDim ( I i rec )
|
||||
, ParamsICt k i rec
|
||||
)
|
||||
=> Proxy# i
|
||||
-> ( forall a. a -> I i a )
|
||||
-> C k irec ( Spline 'Closed () ( I i ( ℝ 2 ) ) )
|
||||
tearDropBrush _ mkI =
|
||||
-> C k ( I i rec ) ( Spline 'Closed () ( I i ( ℝ 2 ) ) )
|
||||
tearDropBrushFn _ mkI =
|
||||
D \ params ->
|
||||
let w, h, phi :: D k irec ( I i Double )
|
||||
let w, h :: D k ( I i rec ) ( I i Double )
|
||||
w = runD ( var @_ @k ( Fin 1 ) ) params
|
||||
h = runD ( var @_ @k ( Fin 2 ) ) params
|
||||
phi = runD ( var @_ @k ( Fin 3 ) ) params
|
||||
|
||||
mkPt :: Double -> Double -> D k irec ( I i ( ℝ 2 ) )
|
||||
mkPt :: Double -> Double -> D k ( I i rec ) ( I i ( ℝ 2 ) )
|
||||
mkPt x y
|
||||
-- 1. translate the teardrop so that the center of mass is at the origin
|
||||
-- 2. scale the teardrop so that it has the requested width/height
|
||||
|
@ -196,8 +213,8 @@ tearDropBrush _ mkI =
|
|||
= let !x' = w `scaledBy` (x / tearWidth)
|
||||
!y' = ( h `scaledBy` ( ( y - tearCenter ) / tearHeight) )
|
||||
in
|
||||
( x' * cos phi - y' * sin phi ) *^ e_x
|
||||
^+^ ( y' * cos phi + x' * sin phi ) *^ e_y
|
||||
x' *^ e_x
|
||||
^+^ y' *^ e_y
|
||||
|
||||
in sequenceA $
|
||||
Spline { splineStart = mkPt 0 0
|
||||
|
@ -207,9 +224,9 @@ tearDropBrush _ mkI =
|
|||
( mkPt -0.5 sqrt3_over_2 )
|
||||
BackToStart () }
|
||||
where
|
||||
e_x, e_y :: D k irec ( I i ( ℝ 2 ) )
|
||||
e_x, e_y :: D k ( I i rec ) ( I i ( ℝ 2 ) )
|
||||
e_x = pure $ mkI $ ℝ2 1 0
|
||||
e_y = pure $ mkI $ ℝ2 0 1
|
||||
|
||||
scaledBy d x = fmap ( mkI x * ) d
|
||||
{-# INLINEABLE tearDropBrush #-}
|
||||
{-# INLINEABLE tearDropBrushFn #-}
|
||||
|
|
|
@ -12,7 +12,7 @@ module Math.Bezier.Stroke
|
|||
|
||||
-- * Brush stroking
|
||||
|
||||
, brushStroke, envelopeEquation
|
||||
, envelopeEquation
|
||||
, line, bezier2, bezier3
|
||||
, brushStrokeData, pathAndUsedParams
|
||||
|
||||
|
@ -39,6 +39,8 @@ import Data.Fixed
|
|||
( divMod' )
|
||||
import Data.Foldable
|
||||
( for_ )
|
||||
import Data.Functor
|
||||
( (<&>) )
|
||||
import Data.Functor.Identity
|
||||
( Identity(..) )
|
||||
import Data.List
|
||||
|
@ -49,11 +51,12 @@ import qualified Data.List.NonEmpty as NE
|
|||
( cons, singleton, unzip )
|
||||
import Data.Maybe
|
||||
( fromMaybe, isJust, listToMaybe, mapMaybe )
|
||||
import Data.Proxy
|
||||
( Proxy(..) )
|
||||
import Data.Semigroup
|
||||
( sconcat )
|
||||
import GHC.Exts
|
||||
( newMutVar#, runRW#, inline
|
||||
, Proxy#, proxy#
|
||||
)
|
||||
import GHC.STRef
|
||||
( STRef(..), readSTRef, writeSTRef )
|
||||
|
@ -105,6 +108,8 @@ import Control.Monad.Trans.Writer.CPS
|
|||
( WriterT, execWriterT, runWriter, tell )
|
||||
|
||||
-- MetaBrush
|
||||
import Calligraphy.Brushes
|
||||
( Brush(..) )
|
||||
import Math.Algebra.Dual
|
||||
import qualified Math.Bezier.Cubic as Cubic
|
||||
import Math.Bezier.Cubic.Fit
|
||||
|
@ -131,6 +136,8 @@ import Math.Module
|
|||
( Module(..), Inner((^.^)), Cross((×)), Interpolatable
|
||||
, lerp, convexCombination, strictlyParallel
|
||||
)
|
||||
import Math.Ring
|
||||
( Transcendental )
|
||||
import Math.Orientation
|
||||
( Orientation(..), splineOrientation
|
||||
, between
|
||||
|
@ -250,20 +257,14 @@ computeStrokeOutline ::
|
|||
-> FitParameters
|
||||
-> ( ptData -> usedParams )
|
||||
-> ( usedParams -> brushParams ) -- ^ assumed to be linear and non-decreasing
|
||||
-> ( forall {t} k (i :: t)
|
||||
. DiffInterp k i brushParams
|
||||
=> Proxy# i
|
||||
-> ( forall a. a -> I i a )
|
||||
-> C k ( I i brushParams )
|
||||
( Spline Closed () ( I i ( ℝ 2 ) ) )
|
||||
)
|
||||
-> Brush brushParams
|
||||
-> Spline clo crvData ptData
|
||||
-> ST s
|
||||
( Either ( SplinePts Closed ) ( SplinePts Closed, SplinePts Closed )
|
||||
, Seq FitPoint
|
||||
, [ Cusp ]
|
||||
)
|
||||
computeStrokeOutline rootAlgo mbCuspOptions fitParams ptParams toBrushParams brushFn spline@( Spline { splineStart = spt0 } ) = case ssplineType @clo of
|
||||
computeStrokeOutline rootAlgo mbCuspOptions fitParams ptParams toBrushParams brush spline@( Spline { splineStart = spt0 } ) = case ssplineType @clo of
|
||||
-- Open brush path with at least one segment.
|
||||
-- Need to add caps at both ends of the path.
|
||||
SOpen
|
||||
|
@ -365,7 +366,7 @@ computeStrokeOutline rootAlgo mbCuspOptions fitParams ptParams toBrushParams bru
|
|||
where
|
||||
|
||||
outlineInfo :: ptData -> Curve Open crvData ptData -> OutlineInfo
|
||||
outlineInfo = inline ( outlineFunction rootAlgo mbCuspOptions ptParams toBrushParams brushFn )
|
||||
outlineInfo = inline ( outlineFunction rootAlgo mbCuspOptions ptParams toBrushParams brush )
|
||||
|
||||
outlineFns :: Seq OutlineInfo
|
||||
outlineFns = go spt0 ( openCurves $ splineCurves ( adjustSplineType @Open spline ) )
|
||||
|
@ -379,7 +380,17 @@ computeStrokeOutline rootAlgo mbCuspOptions fitParams ptParams toBrushParams bru
|
|||
outlineInfo p0 crv :<| go ( openCurveEnd crv ) crvs
|
||||
|
||||
brushShape :: ptData -> SplinePts Closed
|
||||
brushShape pt = fun @Double ( brushFn @2 @() proxy# id ) $ toBrushParams $ ptParams pt
|
||||
brushShape pt =
|
||||
let Brush { brushShape = shapeFn, mbRotation = mbRot } = brush
|
||||
brushParams = toBrushParams $ ptParams pt
|
||||
shape = fun @Double shapeFn brushParams
|
||||
in case mbRot of
|
||||
Nothing -> shape
|
||||
Just getθ ->
|
||||
let θ = getθ brushParams
|
||||
cosθ = cos θ
|
||||
sinθ = sin θ
|
||||
in fmap ( unT . rotate cosθ sinθ . T ) shape
|
||||
|
||||
updateSpline :: ( T ( ℝ 2 ), T ( ℝ 2 ), T ( ℝ 2 ) ) -> ST s OutlineData
|
||||
updateSpline ( lastTgt, lastTgtFwd, lastTgtBwd )
|
||||
|
@ -528,17 +539,12 @@ outlineFunction
|
|||
-> Maybe ( RootIsolationOptions N 3 )
|
||||
-> ( ptData -> usedParams )
|
||||
-> ( usedParams -> brushParams ) -- ^ assumed to be linear and non-decreasing
|
||||
-> ( forall {t} k (i :: t)
|
||||
. DiffInterp k i brushParams
|
||||
=> Proxy# i
|
||||
-> ( forall a. a -> I i a )
|
||||
-> C k ( I i brushParams )
|
||||
( Spline Closed () ( I i ( ℝ 2 ) ) )
|
||||
)
|
||||
-> Brush brushParams
|
||||
-> ptData
|
||||
-> Curve Open crvData ptData
|
||||
-> OutlineInfo
|
||||
outlineFunction rootAlgo mbCuspOptions ptParams toBrushParams brushFromParams = \ sp0 crv ->
|
||||
outlineFunction rootAlgo mbCuspOptions ptParams toBrushParams
|
||||
( Brush { brushShape, brushShapeI, mbRotation } ) = \ sp0 crv ->
|
||||
let
|
||||
|
||||
usedParams :: C 2 ( ℝ 1 ) usedParams
|
||||
|
@ -552,22 +558,19 @@ outlineFunction rootAlgo mbCuspOptions ptParams toBrushParams brushFromParams =
|
|||
brushStrokeData @2 @brushParams
|
||||
coerce coerce
|
||||
path
|
||||
( chainRule @Double @2
|
||||
usedParams
|
||||
( linear toBrushParams )
|
||||
)
|
||||
( brushFromParams @2 @() proxy# id )
|
||||
( fmap toBrushParams usedParams )
|
||||
brushShape
|
||||
mbRotation
|
||||
|
||||
curvesI :: 𝕀ℝ 1 -- t
|
||||
-> Seq ( 𝕀ℝ 1 {- s -} -> StrokeDatum 3 𝕀 )
|
||||
curvesI = brushStrokeData @3 @brushParams
|
||||
curvesI =
|
||||
brushStrokeData @3 @brushParams
|
||||
coerce coerce
|
||||
pathI
|
||||
( chainRule @( 𝕀 Double ) @3
|
||||
usedParamsI
|
||||
( linear ( nonDecreasing toBrushParams ) )
|
||||
)
|
||||
( brushFromParams @3 @𝕀 proxy# singleton )
|
||||
( fmap ( nonDecreasing toBrushParams ) usedParamsI )
|
||||
brushShapeI
|
||||
( fmap nonDecreasing mbRotation )
|
||||
|
||||
usedParamsI :: C 3 ( 𝕀ℝ 1 ) ( 𝕀 usedParams )
|
||||
pathI :: C 3 ( 𝕀ℝ 1 ) ( 𝕀ℝ 2 )
|
||||
|
@ -585,7 +588,7 @@ outlineFunction rootAlgo mbCuspOptions ptParams toBrushParams brushFromParams =
|
|||
D21 path_t path'_t _ = runD path t
|
||||
D21 params_t _ _ = runD usedParams t
|
||||
brush_t = value @Double @2 @brushParams
|
||||
$ runD ( brushFromParams @2 @() proxy# id )
|
||||
$ runD brushShape
|
||||
$ toBrushParams params_t
|
||||
|
||||
( potentialCusps, definiteCusps ) =
|
||||
|
@ -981,9 +984,12 @@ brushStrokeData :: forall k brushParams i arr
|
|||
, D k ( I i ( ℝ 1 ) ) ~ D k ( ℝ 1 )
|
||||
, D k ( I i ( ℝ 1 ) ) ~ D k ( ℝ 1 )
|
||||
, D k ( I i ( ℝ 2 ) ) ~ D k ( ℝ 2 )
|
||||
, Transcendental ( I i Double )
|
||||
, Module ( I i Double ) ( T ( I i ( ℝ 1 ) ) )
|
||||
, Cross ( I i Double ) ( T ( I i ( ℝ 2 ) ) )
|
||||
, Torsor ( T ( I i ( ℝ 2 ) ) ) ( I i ( ℝ 2 ) )
|
||||
, Show brushParams
|
||||
, Representable ( I i Double ) ( I i ( ℝ 2 ) ), RepDim ( I i ( ℝ 2 ) ) ~ 2
|
||||
)
|
||||
=> ( I i Double -> I i ( ℝ 1 ) )
|
||||
-> ( I i ( ℝ 1 ) -> I i Double )
|
||||
|
@ -993,8 +999,10 @@ brushStrokeData :: forall k brushParams i arr
|
|||
-- ^ brush parameters
|
||||
-> ( I i brushParams `arr` Spline Closed () ( I i ( ℝ 2 ) ) )
|
||||
-- ^ brush from parameters
|
||||
-> ( Maybe ( I i brushParams -> I i Double ) )
|
||||
-- ^ rotation parameter
|
||||
-> ( I i ( ℝ 1 ) -> Seq ( I i ( ℝ 1 ) -> StrokeDatum k i ) )
|
||||
brushStrokeData co1 co2 path params brush =
|
||||
brushStrokeData co1 co2 path params brush mbBrushRotation =
|
||||
\ t ->
|
||||
let
|
||||
dpath_t :: D k ( I i ( ℝ 1 ) ) ( I i ( ℝ 2 ) )
|
||||
|
@ -1009,35 +1017,17 @@ brushStrokeData co1 co2 path params brush =
|
|||
!dbrushes_t = force $ fmap ( uncurryD @k . chain @( I i Double ) @k dparams_t ) splines
|
||||
-- This is the crucial use of the chain rule.
|
||||
|
||||
in fmap ( mkStrokeDatum dpath_t ) dbrushes_t
|
||||
in fmap ( mkStrokeDatum dpath_t dparams_t ) dbrushes_t
|
||||
where
|
||||
|
||||
mkStrokeDatum :: D k ( I i ( ℝ 1 ) ) ( I i ( ℝ 2 ) )
|
||||
-> D k ( I i ( ℝ 1 ) ) ( I i brushParams )
|
||||
-> ( I i ( ℝ 1 ) -> D k ( I i ( ℝ 2 ) ) ( I i ( ℝ 2 ) ) )
|
||||
-> ( I i ( ℝ 1 ) -> StrokeDatum k i )
|
||||
mkStrokeDatum dpath_t dbrush_t s =
|
||||
mkStrokeDatum dpath_t dparams_t dbrush_t s =
|
||||
let dbrush_t_s = dbrush_t s
|
||||
dstroke = brushStroke @k dpath_t dbrush_t_s
|
||||
( ee, 𝛿E𝛿sdcdt ) = envelopeEquation @k @i co1 dstroke
|
||||
in -- trace
|
||||
-- ( unlines
|
||||
-- [ "envelopeEquation:"
|
||||
-- , " t = " ++ show t
|
||||
-- , " s = " ++ show s
|
||||
-- , " c = " ++ show _c
|
||||
-- , " ∂c/∂t = " ++ show _𝛿c𝛿t
|
||||
-- , " ∂c/∂s = " ++ show _𝛿c𝛿s
|
||||
-- , " E = " ++ show ee
|
||||
-- , " ∂E/∂t = " ++ show _𝛿E𝛿t
|
||||
-- , " ∂E/∂s = " ++ show ee_s
|
||||
-- , " dc/dt = " ++ show dcdt ] ) $
|
||||
StrokeDatum
|
||||
{ dpath = dpath_t
|
||||
, dbrush = dbrush_t_s
|
||||
, dstroke
|
||||
, ee
|
||||
, 𝛿E𝛿sdcdt
|
||||
}
|
||||
mbRotation = mbBrushRotation <&> \ getTheta -> fmap getTheta dparams_t
|
||||
in envelopeEquation @k @i Proxy co1 dpath_t dbrush_t_s mbRotation
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Solving the envelolpe equation: root-finding.
|
||||
|
@ -1105,7 +1095,7 @@ solveEnvelopeEquations rootAlgo _t path_t path'_t ( fwdOffset, bwdOffset ) strok
|
|||
let (i, s) = fromDomain is in
|
||||
case evalStrokeDatum fs is of -- TODO: a bit redundant to have to compute this again...
|
||||
StrokeDatum
|
||||
{ dstroke
|
||||
{ stroke
|
||||
, ee = D12 ( ℝ1 _ee ) _ ( T ( ℝ1 𝛿E𝛿s ) )
|
||||
, 𝛿E𝛿sdcdt = D0 𝛿E𝛿sdcdt
|
||||
} ->
|
||||
|
@ -1119,7 +1109,7 @@ solveEnvelopeEquations rootAlgo _t path_t path'_t ( fwdOffset, bwdOffset ) strok
|
|||
-> recip 𝛿E𝛿s' *^ 𝛿E𝛿sdcdt'
|
||||
| otherwise
|
||||
= recip 𝛿E𝛿s *^ 𝛿E𝛿sdcdt
|
||||
in ( value @Double @2 @( ℝ 2 ) dstroke, dcdt )
|
||||
in ( stroke, dcdt )
|
||||
|
||||
evalStrokeDatum :: Seq ( ℝ 1 -> StrokeDatum 2 () ) -> ( Double -> StrokeDatum 2 () )
|
||||
evalStrokeDatum fs is =
|
||||
|
@ -1154,8 +1144,7 @@ cuspCoords :: ( ℝ 1 -> Seq ( ℝ 1 -> StrokeDatum 2 () ) )
|
|||
-> Cusp
|
||||
cuspCoords eqs ( i, box )
|
||||
| StrokeDatum
|
||||
{ dpath
|
||||
, dstroke = D22 { _D22_v = stroke } }
|
||||
{ dpath, stroke }
|
||||
<- ( eqs ( ℝ1 t_mid ) `Seq.index` i ) ( ℝ1 s_mid )
|
||||
= Cusp
|
||||
{ cuspParameters = ℝ2 t_mid s_mid
|
||||
|
@ -1168,8 +1157,6 @@ cuspCoords eqs ( i, box )
|
|||
t_mid = 0.5 * ( t_lo + t_hi )
|
||||
s_mid = 0.5 * ( s_lo + s_hi )
|
||||
|
||||
type N = 2
|
||||
|
||||
-- | Find cusps in the envelope for values of the parameters in
|
||||
-- \( 0 \leqslant t, s \leqslant 1 \), using interval arithmetic.
|
||||
--
|
||||
|
@ -1233,10 +1220,12 @@ findCuspsIn opts boxStrokeData initBoxes =
|
|||
let t = 𝕀 ( ℝ1 t_lo ) ( ℝ1 t_hi )
|
||||
s = 𝕀 ( ℝ1 s_lo ) ( ℝ1 s_hi )
|
||||
StrokeDatum
|
||||
{ dstroke =
|
||||
D32
|
||||
{ _D32_dx = T ( 𝕀 ( ℝ2 cx_t_lo cy_t_lo ) ( ℝ2 cx_t_hi cy_t_hi ) )
|
||||
, _D32_dy = T ( 𝕀 ( ℝ2 cx_s_lo cy_s_lo ) ( ℝ2 cx_s_hi cy_s_hi ) )}
|
||||
{ du =
|
||||
D22
|
||||
{ _D22_v = 𝕀 ( ℝ2 ux_lo uy_lo ) ( ℝ2 ux_hi uy_hi )}
|
||||
, dv =
|
||||
D22
|
||||
{ _D22_v = 𝕀 ( ℝ2 vx_lo vy_lo ) ( ℝ2 vx_hi vy_hi ) }
|
||||
, ee =
|
||||
D22
|
||||
{ _D22_dx = T ( 𝕀 ( ℝ1 ee_t_lo ) ( ℝ1 ee_t_hi ) )
|
||||
|
@ -1244,9 +1233,9 @@ findCuspsIn opts boxStrokeData initBoxes =
|
|||
} = ( boxStrokeData t `Seq.index` i ) s
|
||||
-- λ = ∂E/∂t / ∂E/∂s
|
||||
λ1 = 𝕀 ee_t_lo ee_t_hi `extendedDivide` 𝕀 ee_s_lo ee_s_hi
|
||||
-- λ = ∂c/∂t / ∂c/∂s
|
||||
λ2 = 𝕀 cx_t_lo cx_t_hi `extendedDivide` 𝕀 cx_s_lo cx_s_hi
|
||||
λ3 = 𝕀 cy_t_lo cy_t_hi `extendedDivide` 𝕀 cy_s_lo cy_s_hi
|
||||
-- λ = u / v
|
||||
λ2 = 𝕀 ux_lo ux_hi `extendedDivide` 𝕀 vx_lo vx_hi
|
||||
λ3 = 𝕀 uy_lo uy_hi `extendedDivide` 𝕀 vy_lo vy_hi
|
||||
λ = [ 𝕀 ( recip -0 ) ( recip 0 ) ]
|
||||
`intersectMany` λ1
|
||||
`intersectMany` λ2
|
||||
|
@ -1264,9 +1253,12 @@ findCuspsIn opts boxStrokeData initBoxes =
|
|||
λ = 𝕀 λ_lo λ_hi
|
||||
|
||||
StrokeDatum
|
||||
{ dstroke =
|
||||
D32 { _D32_dx = T c_t, _D32_dy = T c_s
|
||||
, _D32_dxdx = T c_tt, _D32_dxdy = T c_ts, _D32_dydy = T c_ss }
|
||||
{ du =
|
||||
D22 { _D22_v = u
|
||||
, _D22_dx = T u_t , _D22_dy = T u_s }
|
||||
, dv =
|
||||
D22 { _D22_v = v
|
||||
, _D22_dx = T v_t , _D22_dy = T v_s }
|
||||
, ee =
|
||||
D22 { _D22_dx = T ee_t, _D22_dy = T ee_s
|
||||
, _D22_dxdx = T ee_tt, _D22_dxdy = T ee_ts, _D22_dydy = T ee_ss }
|
||||
|
@ -1278,11 +1270,11 @@ findCuspsIn opts boxStrokeData initBoxes =
|
|||
𝕀 ( ℝ1 f1_s_lo ) ( ℝ1 f1_s_hi ) = unT $ λ *^ T ee_ss ^-^ T ee_ts
|
||||
𝕀 ( ℝ1 f1_λ_lo ) ( ℝ1 f1_λ_hi ) = ee_s
|
||||
|
||||
-- λ ∂c/∂s - ∂c/∂t = 0
|
||||
𝕀 ( ℝ2 f2_lo f3_lo ) ( ℝ2 f2_hi f3_hi ) = unT $ λ *^ T c_s ^-^ T c_t
|
||||
𝕀 ( ℝ2 f2_t_lo f3_t_lo ) ( ℝ2 f2_t_hi f3_t_hi ) = unT $ λ *^ T c_ts ^-^ T c_tt
|
||||
𝕀 ( ℝ2 f2_s_lo f3_s_lo ) ( ℝ2 f2_s_hi f3_s_hi ) = unT $ λ *^ T c_ss ^-^ T c_ts
|
||||
𝕀 ( ℝ2 f2_λ_lo f3_λ_lo ) ( ℝ2 f2_λ_hi f3_λ_hi ) = c_s
|
||||
-- λ v - u = 0
|
||||
𝕀 ( ℝ2 f2_lo f3_lo ) ( ℝ2 f2_hi f3_hi ) = unT $ λ *^ T v ^-^ T u
|
||||
𝕀 ( ℝ2 f2_t_lo f3_t_lo ) ( ℝ2 f2_t_hi f3_t_hi ) = unT $ λ *^ T v_t ^-^ T u_t
|
||||
𝕀 ( ℝ2 f2_s_lo f3_s_lo ) ( ℝ2 f2_s_hi f3_s_hi ) = unT $ λ *^ T v_s ^-^ T u_s
|
||||
𝕀 ( ℝ2 f2_λ_lo f3_λ_lo ) ( ℝ2 f2_λ_hi f3_λ_hi ) = v
|
||||
|
||||
in D13 ( 𝕀 ( ℝ3 f1_lo f2_lo f3_lo ) ( ℝ3 f1_hi f2_hi f3_hi ) )
|
||||
( T $ 𝕀 ( ℝ3 f1_t_lo f2_t_lo f3_t_lo ) ( ℝ3 f1_t_hi f2_t_hi f3_t_hi ) )
|
||||
|
|
|
@ -10,11 +10,13 @@ module Math.Bezier.Stroke.EnvelopeEquation
|
|||
) where
|
||||
|
||||
-- base
|
||||
import Prelude hiding ( Num(..), (^) )
|
||||
import Prelude hiding ( Num(..), (^), pi, sin, cos )
|
||||
import Data.Kind
|
||||
( Type, Constraint )
|
||||
import Data.List.NonEmpty
|
||||
( NonEmpty(..) )
|
||||
import Data.Proxy
|
||||
( Proxy(..) )
|
||||
import GHC.TypeNats
|
||||
( Nat, type (-) )
|
||||
|
||||
|
@ -37,20 +39,26 @@ import Math.Ring
|
|||
--------------------------------------------------------------------------------
|
||||
|
||||
-- | The value and derivative of a brush stroke at a given coordinate
|
||||
-- \( (t_0, s_0) \), together with the value of the envelope equation at that
|
||||
-- \( (t, s) \), together with the value of the envelope equation at that
|
||||
-- point.
|
||||
type StrokeDatum :: Nat -> k -> Type
|
||||
data StrokeDatum k i
|
||||
= StrokeDatum
|
||||
{ -- | Path \( p(t_0) \).
|
||||
{ -- | Path \( p(t) \).
|
||||
dpath :: D k ( I i ( ℝ 1 ) ) ( I i ( ℝ 2 ) )
|
||||
-- | Brush shape \( b(t_0, s_0) \).
|
||||
-- | Brush shape \( b(t, s) \).
|
||||
, dbrush :: D k ( I i ( ℝ 2 ) ) ( I i ( ℝ 2 ) )
|
||||
-- | (Optional) rotation angle \( \theta(t) \).
|
||||
, mbRotation :: Maybe ( D k ( I i ( ℝ 1 ) ) ( I i Double ) )
|
||||
|
||||
-- Everything below can be computed in terms of the first two fields.
|
||||
-- Everything below is computed in terms of the first three fields.
|
||||
|
||||
-- | Stroke \( c(t_0,s_0) = p(t_0) + b(t_0,s_0) \).
|
||||
, dstroke :: D k ( I i ( ℝ 2 ) ) ( I i ( ℝ 2 ) )
|
||||
-- | Stroke shape \( c(t,s) = p(t) + R(\theta(t)) b(t,s) \).
|
||||
, stroke :: I i ( ℝ 2 )
|
||||
|
||||
-- | \( u(t,s) = R(-\theta(t)) \frac{\partial c}{\partial t} \),
|
||||
-- \( v(t,s) = R(-\theta(t)) \frac{\partial c}{\partial s} \)
|
||||
, du, dv :: D ( k - 1 ) ( I i ( ℝ 2 ) ) ( I i ( ℝ 2 ) )
|
||||
|
||||
-- | Envelope function
|
||||
--
|
||||
|
@ -108,19 +116,6 @@ class HasEnvelopeEquation k where
|
|||
uncurryD :: D k a ~ D k ( ℝ 1 )
|
||||
=> D k ( ℝ 1 ) ( C k a b ) -> a -> D k ( ℝ 2 ) b
|
||||
|
||||
-- | A brush stroke, as described by the equation
|
||||
--
|
||||
-- \[ c(t,s) = p(t) + b(t,s) \]
|
||||
--
|
||||
-- where:
|
||||
--
|
||||
-- - \( p(t) \) is the path that the brush follows, and
|
||||
-- - \( b(t,s) \) is the brush shape, as it varies along the path.
|
||||
brushStroke :: Module r ( T v )
|
||||
=> D k ( ℝ 1 ) v -- ^ stroke path \( p(t) \)
|
||||
-> D k ( ℝ 2 ) v -- ^ brush \( b(t,s) \)
|
||||
-> D k ( ℝ 2 ) v
|
||||
|
||||
-- | The envelope function
|
||||
--
|
||||
-- \[ E = \frac{\partial c}{\partial t} \times \frac{\partial c}{\partial s}, \]
|
||||
|
@ -136,12 +131,19 @@ class HasEnvelopeEquation k where
|
|||
. ( D ( k - 2 ) ( I i ( ℝ 2 ) ) ~ D ( k - 2 ) ( ℝ 2 )
|
||||
, D ( k - 1 ) ( I i ( ℝ 2 ) ) ~ D ( k - 1 ) ( ℝ 2 )
|
||||
, D k ( I i ( ℝ 2 ) ) ~ D k ( ℝ 2 )
|
||||
, D k ( I i ( ℝ 1 ) ) ~ D k ( ℝ 1 )
|
||||
, Module ( I i Double ) ( T ( I i ( ℝ 1 ) ) )
|
||||
, Cross ( I i Double ) ( T ( I i ( ℝ 2 ) ) )
|
||||
, Transcendental ( I i Double )
|
||||
, Representable ( I i Double ) ( I i ( ℝ 2 ) )
|
||||
, RepDim ( I i ( ℝ 2 ) ) ~ 2
|
||||
)
|
||||
=> ( I i Double -> I i ( ℝ 1 ) )
|
||||
=> Proxy i
|
||||
-> ( I i Double -> I i ( ℝ 1 ) )
|
||||
-> D k ( I i ( ℝ 1 ) ) ( I i ( ℝ 2 ) )
|
||||
-> D k ( I i ( ℝ 2 ) ) ( I i ( ℝ 2 ) )
|
||||
-> ( D ( k - 1 ) ( I i ( ℝ 2 ) ) ( I i ( ℝ 1 ) )
|
||||
, D ( k - 2 ) ( I i ( ℝ 2 ) ) ( T ( I i ( ℝ 2 ) ) ) )
|
||||
-> Maybe ( D k ( I i ( ℝ 1 ) ) ( I i Double ) )
|
||||
-> StrokeDatum k i
|
||||
|
||||
instance HasBézier 2 () where
|
||||
line co ( Segment a b :: Segment b ) =
|
||||
|
@ -166,34 +168,85 @@ instance HasEnvelopeEquation 2 where
|
|||
|
||||
uncurryD = uncurryD2
|
||||
|
||||
brushStroke ( D21 p p_t p_tt ) ( D22 b b_t b_s b_tt b_ts b_ss ) =
|
||||
D22 ( unT $ T p ^+^ T b )
|
||||
-- c = p + b
|
||||
envelopeEquation ( _ :: Proxy i ) co
|
||||
dp@( D21 ( T -> p ) p_t p_tt )
|
||||
db@( D22 ( T -> b ) b_t b_s
|
||||
b_tt b_ts b_ss )
|
||||
mbRotation =
|
||||
StrokeDatum
|
||||
{ dpath = dp
|
||||
, dbrush = db
|
||||
, mbRotation
|
||||
, stroke = c
|
||||
, du, dv, ee, 𝛿E𝛿sdcdt
|
||||
}
|
||||
where
|
||||
(ee, 𝛿E𝛿sdcdt) =
|
||||
let
|
||||
D12 (T -> u) u_t u_s = du
|
||||
D12 (T -> v) v_t v_s = dv
|
||||
ee_val, ee_t, ee_s :: I i Double
|
||||
ee_val= u × v
|
||||
ee_t = u_t × v
|
||||
+ u × v_t
|
||||
ee_s = u_s × v
|
||||
+ u × v_s
|
||||
|
||||
( p_t ^+^ b_t ) b_s
|
||||
-- ∂c/∂t = dp/dt + ∂b/∂t
|
||||
-- ∂c/∂s = ∂b/∂s
|
||||
|
||||
( p_tt ^+^ b_tt ) b_ts b_ss
|
||||
-- ∂²c/∂t² = d²p/dt² + ∂²b/∂t²
|
||||
-- ∂²c/∂t∂s = ∂²b/∂t∂s
|
||||
-- ∂²c/∂s² = ∂²b/∂s²
|
||||
|
||||
envelopeEquation co ( D22 _ c_t c_s c_tt c_ts c_ss ) =
|
||||
let ee = c_t × c_s
|
||||
ee_t = c_tt × c_s + c_t × c_ts
|
||||
ee_s = c_ts × c_s + c_t × c_ss
|
||||
𝛿E𝛿sdcdt = ee_s *^ c_t ^-^ ee_t *^ c_s
|
||||
-- TODO: we get c_t * c_t and c_s * c_s terms...
|
||||
-- These could be squares (better with interval arithmetic)?
|
||||
in ( D12 ( co ee ) ( T $ co ee_t ) ( T $ co ee_s )
|
||||
, D0 𝛿E𝛿sdcdt )
|
||||
-- Computation of total derivative dc/dt:
|
||||
𝛿E𝛿sdcdt_val = ee_s *^ u ^-^ ee_t *^ v
|
||||
in ( D12
|
||||
( co ee_val )
|
||||
( T $ co ee_t ) ( T $ co ee_s )
|
||||
, D0 𝛿E𝛿sdcdt_val
|
||||
)
|
||||
(c, du, dv) = case mbRotation of
|
||||
Nothing ->
|
||||
-- c(t,s) = p(t) + b(t,s)
|
||||
( unT $ p ^+^ b
|
||||
, D12 ( unT $ p_t ^+^ b_t )
|
||||
( p_tt ^+^ b_tt ) b_ts
|
||||
, D12 ( unT $ b_s )
|
||||
b_ts b_ss
|
||||
)
|
||||
Just ( D21 θ ( T θ_t ) ( T θ_tt ) ) ->
|
||||
-- c(t,s) = p(t) + R(θ(t)) b(t,s)
|
||||
-- E = ∂c/∂t × ∂c/ds
|
||||
-- = ( R(-θ(t)) ∂c/∂t ) × ( R(-θ(t)) ∂c/ds )
|
||||
-- = ( R(-θ(t)) p'(t) + θ'(t) S b(t,s) + ∂b/∂t ) × ∂b/ds
|
||||
--
|
||||
-- dc/dt = ∂c/∂t + ∂c/∂s ∂s/∂t
|
||||
-- ∂s/∂t = - ∂E/∂t / ∂E/∂s
|
||||
--
|
||||
-- ∂E/∂s dc/dt = ∂E/∂s ∂c/∂t - ∂E/∂t ∂c/∂s.
|
||||
let rot, rot' :: T ( I i ( ℝ 2 ) ) -> T ( I i ( ℝ 2 ) )
|
||||
cosθ = cos θ
|
||||
sinθ = sin θ
|
||||
-- rot = R(-θ), rot' = R'(-θ)
|
||||
-- NB: rot' is not the derivative of f(θ) = R(-θ)
|
||||
rot = rotate cosθ -sinθ
|
||||
rot' = rotate sinθ cosθ
|
||||
swap :: T ( I i ( ℝ 2 ) ) -> T ( I i ( ℝ 2 ) )
|
||||
swap ( T xy ) =
|
||||
let x = xy `index` Fin 1
|
||||
y = xy `index` Fin 2
|
||||
in T $ tabulate \ case
|
||||
Fin 1 -> -y
|
||||
_ -> x
|
||||
|
||||
u, v, u_t, u_s, v_t, v_s :: T ( I i ( ℝ 2 ) )
|
||||
u = rot p_t ^+^ θ_t *^ swap b ^+^ b_t
|
||||
v = b_s
|
||||
u_t = ( -θ_t *^ rot' p_t
|
||||
^+^ rot p_tt
|
||||
)
|
||||
^+^
|
||||
( θ_tt *^ swap b
|
||||
^+^ θ_t *^ swap b_t
|
||||
)
|
||||
^+^ b_tt
|
||||
u_s = θ_t *^ swap b_s ^+^ b_ts
|
||||
v_t = b_ts
|
||||
v_s = b_ss
|
||||
|
||||
in ( unT $ p ^+^ rotate cosθ sinθ b
|
||||
, D12 ( unT u ) u_t u_s
|
||||
, D12 ( unT v ) v_t v_s
|
||||
)
|
||||
|
||||
instance HasBézier 3 () where
|
||||
|
||||
|
@ -222,42 +275,123 @@ instance HasEnvelopeEquation 3 where
|
|||
|
||||
uncurryD = uncurryD3
|
||||
|
||||
brushStroke
|
||||
( D31 p p_t p_tt p_ttt )
|
||||
( D32 b b_t b_s b_tt b_ts b_ss b_ttt b_tts b_tss b_sss ) =
|
||||
D32
|
||||
( unT $ T p ^+^ T b )
|
||||
( p_t ^+^ b_t ) b_s
|
||||
( p_tt ^+^ b_tt ) b_ts b_ss
|
||||
( p_ttt ^+^ b_ttt ) b_tts b_tss b_sss
|
||||
envelopeEquation ( _ :: Proxy i ) co
|
||||
dp@( D31 ( T -> p ) p_t p_tt p_ttt )
|
||||
db@( D32 ( T -> b ) b_t b_s
|
||||
b_tt b_ts b_ss
|
||||
b_ttt b_tts b_tss b_sss )
|
||||
mbRotation =
|
||||
StrokeDatum
|
||||
{ dpath = dp
|
||||
, dbrush = db
|
||||
, mbRotation
|
||||
, stroke = c
|
||||
, du, dv, ee, 𝛿E𝛿sdcdt
|
||||
}
|
||||
where
|
||||
(ee, 𝛿E𝛿sdcdt) =
|
||||
let
|
||||
D22 (T -> u) u_t u_s u_tt u_ts u_ss = du
|
||||
D22 (T -> v) v_t v_s v_tt v_ts v_ss = dv
|
||||
ee_val, ee_t, ee_s, ee_tt, ee_ts, ee_ss :: I i Double
|
||||
ee_val= u × v
|
||||
ee_t = u_t × v
|
||||
+ u × v_t
|
||||
ee_s = u_s × v
|
||||
+ u × v_s
|
||||
ee_tt = u_tt × v
|
||||
+ 2 * ( u_t × v_t )
|
||||
+ u × v_tt
|
||||
ee_ts = u_ts × v
|
||||
+ u_t × v_s
|
||||
+ u_s × v_t
|
||||
+ u × v_ts
|
||||
ee_ss = u_ss × v
|
||||
+ 2 * ( u_s × v_s )
|
||||
+ u × v_ss
|
||||
|
||||
envelopeEquation co
|
||||
( D32 _ c_t c_s
|
||||
c_tt c_ts c_ss
|
||||
c_ttt c_tts c_tss c_sss )
|
||||
= let ee = c_t × c_s
|
||||
ee_t = c_tt × c_s + c_t × c_ts
|
||||
ee_s = c_ts × c_s + c_t × c_ss
|
||||
ee_tt = c_ttt × c_s
|
||||
+ c_tt × c_ts * 2
|
||||
+ c_t × c_tts
|
||||
ee_ts = c_tts × c_s
|
||||
+ c_tt × c_ss
|
||||
-- + c_ts × c_ts -- cancels out
|
||||
+ c_t × c_tss
|
||||
ee_ss = c_tss × c_s
|
||||
+ c_ts × c_ss * 2
|
||||
+ c_t × c_sss
|
||||
𝛿E𝛿sdcdt = ee_s *^ c_t ^-^ ee_t *^ c_s
|
||||
𝛿E𝛿sdcdt_t = ee_ts *^ c_t ^+^ ee_s *^ c_tt
|
||||
^-^ ( ee_tt *^ c_s ^+^ ee_t *^ c_ts )
|
||||
𝛿E𝛿sdcdt_s = ee_ss *^ c_t ^+^ ee_s *^ c_ts
|
||||
^-^ ( ee_ts *^ c_s ^+^ ee_t *^ c_ss )
|
||||
𝛿E𝛿sdcdt_val = ee_s *^ u ^-^ ee_t *^ v
|
||||
𝛿E𝛿sdcdt_t = ee_ts *^ u ^+^ ee_s *^ u_t
|
||||
^-^ ( ee_tt *^ v ^+^ ee_t *^ v_t )
|
||||
𝛿E𝛿sdcdt_s = ee_ss *^ u ^+^ ee_s *^ u_s
|
||||
^-^ ( ee_ts *^ v ^+^ ee_t *^ v_s )
|
||||
in ( D22
|
||||
( co ee )
|
||||
( co ee_val )
|
||||
( T $ co ee_t ) ( T $ co ee_s )
|
||||
( T $ co ee_tt) ( T $ co ee_ts ) ( T $ co ee_ss )
|
||||
, D12 𝛿E𝛿sdcdt ( T 𝛿E𝛿sdcdt_t ) ( T 𝛿E𝛿sdcdt_s ) )
|
||||
, D12 𝛿E𝛿sdcdt_val ( T 𝛿E𝛿sdcdt_t ) ( T 𝛿E𝛿sdcdt_s )
|
||||
)
|
||||
(c, du, dv) = case mbRotation of
|
||||
Nothing ->
|
||||
-- c(t,s) = p(t) + b(t,s)
|
||||
( unT $ p ^+^ b
|
||||
, D22 ( unT $ p_t ^+^ b_t )
|
||||
( p_tt ^+^ b_tt ) b_ts
|
||||
( p_ttt ^+^ b_ttt ) b_tts b_tss
|
||||
, D22 ( unT $ b_s )
|
||||
b_ts b_ss
|
||||
b_tts b_tss b_sss
|
||||
)
|
||||
Just ( D31 θ ( T θ_t ) ( T θ_tt ) ( T θ_ttt ) ) ->
|
||||
-- c(t,s) = p(t) + R(θ(t)) b(t,s)
|
||||
-- E = ∂c/∂t × ∂c/ds
|
||||
-- = ( R(-θ(t)) ∂c/∂t ) × ( R(-θ(t)) ∂c/ds )
|
||||
-- = ( R(-θ(t)) p'(t) + θ'(t) S b(t,s) + ∂b/∂t ) × ∂b/ds
|
||||
--
|
||||
let rot, rot', rot'' :: T ( I i ( ℝ 2 ) ) -> T ( I i ( ℝ 2 ) )
|
||||
cosθ = cos θ
|
||||
sinθ = sin θ
|
||||
-- rot = R(-θ), rot' = R'(-θ), rot'' = R''(-θ)
|
||||
-- NB: rot' is not the derivative of f(θ) = R(-θ)
|
||||
rot = rotate cosθ -sinθ
|
||||
rot' = rotate sinθ cosθ
|
||||
rot'' z = -1 *^ rot z
|
||||
swap :: T ( I i ( ℝ 2 ) ) -> T ( I i ( ℝ 2 ) )
|
||||
swap ( T xy ) =
|
||||
let x = xy `index` Fin 1
|
||||
y = xy `index` Fin 2
|
||||
in T $ tabulate \ case
|
||||
Fin 1 -> -y
|
||||
_ -> x
|
||||
|
||||
u, v, u_t, u_s, u_tt, u_ts, u_ss, v_t, v_s, v_tt, v_ts, v_ss :: T ( I i ( ℝ 2 ) )
|
||||
|
||||
u = rot p_t ^+^ θ_t *^ swap b ^+^ b_t
|
||||
v = b_s
|
||||
u_t = ( -θ_t *^ rot' p_t
|
||||
^+^ rot p_tt
|
||||
)
|
||||
^+^
|
||||
( θ_tt *^ swap b
|
||||
^+^ θ_t *^ swap b_t
|
||||
)
|
||||
^+^ b_tt
|
||||
u_s = θ_t *^ swap b_s ^+^ b_ts
|
||||
u_tt = ( ( θ_t ^ 2 ) *^ rot'' p_t
|
||||
^-^ θ_tt *^ rot' p_t
|
||||
^+^ ( 2 * θ_t ) *^ rot' p_tt
|
||||
^+^ rot p_ttt
|
||||
)
|
||||
^+^ ( θ_ttt *^ swap b
|
||||
^+^ ( 2 * θ_tt ) *^ swap b_t
|
||||
^+^ θ_t *^ swap b_tt
|
||||
)
|
||||
^+^ b_ttt
|
||||
u_ts = θ_tt *^ swap b_s
|
||||
^+^ θ_t *^ swap b_ts
|
||||
^+^ b_tts
|
||||
u_ss = θ_t *^ swap b_ss
|
||||
^+^ b_tss
|
||||
v_t = b_ts
|
||||
v_s = b_ss
|
||||
v_tt = b_tts
|
||||
v_ts = b_tss
|
||||
v_ss = b_sss
|
||||
|
||||
in ( unT $ p ^+^ rotate cosθ sinθ b
|
||||
, D22 ( unT u ) u_t u_s u_tt u_ts u_ss
|
||||
, D22 ( unT v ) v_t v_s v_tt v_ts v_ss
|
||||
)
|
||||
|
||||
instance HasBézier 3 𝕀 where
|
||||
|
||||
|
@ -292,7 +426,7 @@ are convex combinations
|
|||
|
||||
b_0(t) [p_0,q_0] + b_1(t) [p_1,q_1] + ... + b_n(t) [p_n,q_n]
|
||||
|
||||
-- Here b_1, ..., b_n are Bernstein polynomials.
|
||||
-- Here b_0, ..., b_n are Bernstein polynomials.
|
||||
|
||||
This means that the minimum value attained by the Bézier curve as we vary
|
||||
both the time parameter and the values of the points within their respective
|
||||
|
@ -334,31 +468,3 @@ evaluateQuadratic bez t =
|
|||
maxs = fmap (Quadratic.bezier @( T Double ) sup_bez)
|
||||
$ inf t :| ( sup t : filter ( `inside` t ) ( Quadratic.extrema sup_bez ) )
|
||||
in 𝕀 ( minimum mins ) ( maximum maxs )
|
||||
|
||||
{-
|
||||
|
||||
evaluateCubic :: Cubic.Bezier ( 𝕀 Double ) -> 𝕀 Double -> 𝕀 Double
|
||||
evaluateCubic bez t =
|
||||
-- assert (inf t >= 0 && sup t <= 1) "evaluateCubic: t ⊊ [0,1]" $ -- Requires t ⊆ [0,1]
|
||||
let inf_bez = Cubic.restrict @( T Double ) ( fmap inf bez ) ( inf t, sup t )
|
||||
sup_bez = Cubic.restrict @( T Double ) ( fmap sup bez ) ( inf t, sup t )
|
||||
mins = fmap (Cubic.bezier @( T Double ) inf_bez)
|
||||
$ 0 :| ( 1 : Cubic.extrema inf_bez )
|
||||
maxs = fmap (Cubic.bezier @( T Double ) sup_bez)
|
||||
$ 0 :| ( 1 : Cubic.extrema sup_bez )
|
||||
in 𝕀 ( minimum mins ) ( maximum maxs )
|
||||
|
||||
-- | Evaluate a quadratic Bézier curve, when both the coefficients and the
|
||||
-- parameter are intervals.
|
||||
evaluateQuadratic :: Quadratic.Bezier ( 𝕀 Double ) -> 𝕀 Double -> 𝕀 Double
|
||||
evaluateQuadratic bez t =
|
||||
-- assert (inf t >= 0 && sup t <= 1) "evaluateCubic: t ⊊ [0,1]" $ -- Requires t ⊆ [0,1]
|
||||
let inf_bez = Quadratic.restrict @( T Double ) ( fmap inf bez ) ( inf t, sup t )
|
||||
sup_bez = Quadratic.restrict @( T Double ) ( fmap sup bez ) ( inf t, sup t )
|
||||
mins = fmap (Quadratic.bezier @( T Double ) inf_bez)
|
||||
$ 0 :| ( 1 : Quadratic.extrema inf_bez )
|
||||
maxs = fmap (Quadratic.bezier @( T Double ) sup_bez)
|
||||
$ 0 :| ( 1 : Quadratic.extrema sup_bez )
|
||||
in 𝕀 ( minimum mins ) ( maximum maxs )
|
||||
|
||||
-}
|
|
@ -15,6 +15,8 @@ module Math.Linear
|
|||
, Representable(..), set, injection, projection
|
||||
, Vec(..), (!), find, zipIndices
|
||||
|
||||
, rotate
|
||||
|
||||
) where
|
||||
|
||||
-- base
|
||||
|
@ -52,6 +54,9 @@ import Data.Group.Generics
|
|||
|
||||
-- brush-strokes
|
||||
import Math.Linear.Internal
|
||||
import Math.Ring
|
||||
( Ring )
|
||||
import qualified Math.Ring as Ring
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
|
@ -151,3 +156,20 @@ zipIndices ( Vec v ) = zipIndices_ 1 v
|
|||
zipIndices_ :: Word -> [ a ] -> [ ( Fin n, a ) ]
|
||||
zipIndices_ _ [] = []
|
||||
zipIndices_ i (a : as) = ( Fin i, a ) : zipIndices_ ( i + 1 ) as
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
-- | Rotate a vector by the given angle (counter-clockwise),
|
||||
-- given the cosine and sine of the angle (in that order)
|
||||
rotate :: ( Representable r m, RepDim m ~ 2, Ring r )
|
||||
=> r -- \( \cos \theta \)
|
||||
-> r -- \( \sin \theta \)
|
||||
-> T m
|
||||
-> T m
|
||||
rotate cosθ sinθ ( T xy ) =
|
||||
let x = xy `index` Fin 1
|
||||
y = xy `index` Fin 2
|
||||
in T $ tabulate \ case
|
||||
Fin 1 -> x Ring.* cosθ Ring.- y Ring.* sinθ
|
||||
_ -> y Ring.* cosθ Ring.+ x Ring.* sinθ
|
||||
{-# INLINEABLE rotate #-}
|
||||
|
|
|
@ -45,15 +45,15 @@ data instance ℝ 0 = ℝ0
|
|||
newtype instance ℝ 1 = ℝ1 { unℝ1 :: Double }
|
||||
deriving stock ( Generic )
|
||||
deriving newtype ( Eq, Ord, NFData )
|
||||
data instance ℝ 2 = ℝ2 { _ℝ2_x, _ℝ2_y :: {-# UNPACK #-} !Double }
|
||||
data instance ℝ 2 = ℝ2 { _ℝ2_x, _ℝ2_y :: Double }
|
||||
deriving stock Generic
|
||||
deriving anyclass NFData
|
||||
deriving stock ( Eq, Ord )
|
||||
data instance ℝ 3 = ℝ3 { _ℝ3_x, _ℝ3_y, _ℝ3_z :: {-# UNPACK #-} !Double }
|
||||
data instance ℝ 3 = ℝ3 { _ℝ3_x, _ℝ3_y, _ℝ3_z :: Double }
|
||||
deriving stock Generic
|
||||
deriving anyclass NFData
|
||||
deriving stock ( Eq, Ord )
|
||||
data instance ℝ 4 = ℝ4 { _ℝ4_x, _ℝ4_y, _ℝ4_z, _ℝ4_w :: {-# UNPACK #-} !Double }
|
||||
data instance ℝ 4 = ℝ4 { _ℝ4_x, _ℝ4_y, _ℝ4_z, _ℝ4_w :: Double }
|
||||
deriving stock Generic
|
||||
deriving anyclass NFData
|
||||
deriving stock ( Eq, Ord )
|
||||
|
|
|
@ -24,6 +24,10 @@ module Math.Root.Isolation
|
|||
-- ** Trees recording search space of root isolation algorithms
|
||||
, RootIsolationTree(..), showRootIsolationTree
|
||||
, RootIsolationStep(..)
|
||||
|
||||
-- * Hack for changing between 2 and 3 d formulations
|
||||
-- for my personal testing
|
||||
, N
|
||||
)
|
||||
where
|
||||
|
||||
|
@ -130,7 +134,8 @@ showArea area = "(area " ++ showFFloat (Just 6) area "" ++ ")"
|
|||
|
||||
type Box n = 𝕀ℝ n
|
||||
type BoxHistory n = [ NE.NonEmpty ( RootIsolationStep, Box n ) ]
|
||||
type BoxCt n d = ( n ~ 2, d ~ 3 )
|
||||
type N = 2
|
||||
type BoxCt n d = ( n ~ N, d ~ 3 )
|
||||
{-
|
||||
( Show ( 𝕀ℝ n ), Show ( ℝ n )
|
||||
, Eq ( ℝ n )
|
||||
|
@ -167,9 +172,9 @@ data RootIsolationAlgorithm n d
|
|||
-- | Gauss–Seidel step with the given preconditioning method.
|
||||
| GaussSeidel !( GaussSeidelOptions n d )
|
||||
-- | @box(1)@-consistency.
|
||||
| Box1 !Box1Options
|
||||
| Box1 !( Box1Options n d )
|
||||
-- | @box(2)@-consistency.
|
||||
| Box2 !Box2Options
|
||||
| Box2 !( Box2Options n d )
|
||||
|
||||
-- | Options for the bisection method.
|
||||
type BisectionOptions :: Nat -> Nat -> Type
|
||||
|
@ -191,15 +196,20 @@ data GaussSeidelOptions n d =
|
|||
, gsDims :: ( 𝕀ℝ d -> 𝕀ℝ n ) }
|
||||
|
||||
-- | Options for the @box(1)@-consistency method.
|
||||
data Box1Options =
|
||||
data Box1Options n d =
|
||||
Box1Options
|
||||
{ box1EpsEq :: !Double }
|
||||
{ box1EpsEq :: !Double
|
||||
, box1CoordsToNarrow :: [ Fin n ]
|
||||
, box1EqsToUse :: [ Fin d ]
|
||||
}
|
||||
|
||||
-- | Options for the @box(2)@-consistency method.
|
||||
data Box2Options =
|
||||
data Box2Options n d =
|
||||
Box2Options
|
||||
{ box2EpsEq :: !Double
|
||||
, box2LambdaMin :: !Double
|
||||
, box2CoordsToNarrow :: [ Fin n ]
|
||||
, box2EqsToUse :: [ Fin d ]
|
||||
}
|
||||
|
||||
defaultRootIsolationOptions :: BoxCt n d => RootIsolationOptions n d
|
||||
|
@ -236,8 +246,16 @@ defaultRootIsolationAlgorithms minWidth narrowAbs box history
|
|||
-- Otherwise, do a normal round.
|
||||
-- Currently: we try an interval Gauss–Seidel step followed by box(1)-consistency.
|
||||
_ -> GaussSeidel defaultGaussSeidelOptions
|
||||
NE.:| [ Box1 ( Box1Options { box1EpsEq = narrowAbs } ) ]
|
||||
NE.:| [ Box1 box1Options ]
|
||||
where
|
||||
box1Options :: Box1Options n d
|
||||
box1Options =
|
||||
Box1Options
|
||||
{ box1EpsEq = narrowAbs
|
||||
, box1CoordsToNarrow = toList $ universe @n -- [ Fin 1, Fin 2 ]
|
||||
, box1EqsToUse = toList $ universe @d
|
||||
}
|
||||
|
||||
-- Did we reduce the box width by at least "narrowAbs" in at least one of the dimensions?
|
||||
sufficientlySmallerThan :: Box n -> Box n -> Bool
|
||||
b1 `sufficientlySmallerThan` b2 =
|
||||
|
@ -247,7 +265,7 @@ defaultRootIsolationAlgorithms minWidth narrowAbs box history
|
|||
<*> coordinates b2
|
||||
{-# INLINEABLE defaultRootIsolationAlgorithms #-}
|
||||
|
||||
defaultGaussSeidelOptions :: GaussSeidelOptions 2 3
|
||||
defaultGaussSeidelOptions :: GaussSeidelOptions N 3
|
||||
defaultGaussSeidelOptions =
|
||||
GaussSeidelOptions
|
||||
{ gsPreconditioner = InverseMidJacobian
|
||||
|
@ -431,10 +449,10 @@ doStrategy roundHistory previousRoundsHistory eqs minWidth algo box =
|
|||
GaussSeidel gsOptions -> do
|
||||
boxes <- intervalGaussSeidel gsOptions eqs box
|
||||
return ( GaussSeidelStep, boxes )
|
||||
Box1 ( Box1Options { box1EpsEq } ) ->
|
||||
return ( Box1Step, makeBox1Consistent eqs minWidth box1EpsEq box )
|
||||
Box2 ( Box2Options { box2LambdaMin, box2EpsEq } ) ->
|
||||
return ( Box2Step, [ makeBox2Consistent eqs minWidth box2EpsEq box2LambdaMin box ] )
|
||||
Box1 box1Options ->
|
||||
return ( Box1Step, makeBox1Consistent minWidth box1Options eqs box )
|
||||
Box2 box2Options ->
|
||||
return ( Box2Step, [ makeBox2Consistent minWidth box2Options eqs box ] )
|
||||
Bisection ( BisectionOptions { canHaveSols, fallbackBisectionDim } ) -> do
|
||||
let ( boxes, ( whatBis, mid ) ) = bisect ( canHaveSols eqs ) ( fallbackBisectionDim roundHistory previousRoundsHistory eqs ) box
|
||||
return ( BisectionStep whatBis mid, boxes )
|
||||
|
@ -625,23 +643,29 @@ data Preconditioner
|
|||
-- "Presentation of a highly tuned multithreaded interval solver for underdetermined and well-determined nonlinear systems"
|
||||
makeBox1Consistent
|
||||
:: BoxCt n d
|
||||
=> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
||||
-> Double -> Double
|
||||
=> Double -> Box1Options n d
|
||||
-> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
||||
-> Box n -> [ Box n ]
|
||||
makeBox1Consistent eqs minWidth epsEq x =
|
||||
makeBox1Consistent minWidth box1Options eqs x =
|
||||
( `State.evalState` False ) $
|
||||
pipeFunctionsWhileTrue ( allNarrowingOperators epsEq minWidth eqs ) x
|
||||
pipeFunctionsWhileTrue ( allNarrowingOperators minWidth box1Options eqs ) x
|
||||
|
||||
-- | An implementation of "bound-consistency" from the paper
|
||||
-- "Parallelization of a bound-consistency enforcing procedure and its application in solving nonlinear systems"
|
||||
makeBox2Consistent
|
||||
:: forall n d
|
||||
. BoxCt n d
|
||||
=> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
||||
-> Double -> Double -> Double
|
||||
=> Double
|
||||
-> Box2Options n d
|
||||
-> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
||||
-> Box n -> Box n
|
||||
makeBox2Consistent eqs minWidth epsEq lambdaMin x0 = ( `State.evalState` False ) $ doLoop 0.25 x0
|
||||
makeBox2Consistent minWidth (Box2Options epsEq lambdaMin coordsToNarrow eqsToUse) eqs x0
|
||||
= ( `State.evalState` False ) $ doLoop 0.25 x0
|
||||
where
|
||||
box1Options :: Box1Options n d
|
||||
box1Options = Box1Options epsEq coordsToNarrow eqsToUse
|
||||
doBox1 :: Box n -> [ Box n ]
|
||||
doBox1 = makeBox1Consistent minWidth box1Options eqs
|
||||
doLoop :: Double -> Box n -> State Bool ( Box n )
|
||||
doLoop lambda x = do
|
||||
x'' <- forEachDim @n x $ \ i ->
|
||||
|
@ -660,11 +684,11 @@ makeBox2Consistent eqs minWidth epsEq lambdaMin x0 = ( `State.evalState` False )
|
|||
c1 = ( 1 - lambda ) * x_inf + lambda * x_sup
|
||||
c2 = lambda * x_inf + ( 1 - lambda ) * x_sup
|
||||
x'_inf =
|
||||
case makeBox1Consistent eqs minWidth epsEq ( setter ( 𝕀 x_inf c1 ) box ) of
|
||||
case doBox1 ( setter ( 𝕀 x_inf c1 ) box ) of
|
||||
[] -> c1
|
||||
x's -> minimum $ map ( inf . getter ) x's
|
||||
x'_sup =
|
||||
case makeBox1Consistent eqs minWidth epsEq ( setter ( 𝕀 c2 x_sup ) box ) of
|
||||
case doBox1 ( setter ( 𝕀 c2 x_sup ) box ) of
|
||||
[] -> c2
|
||||
x's -> maximum $ map ( sup . getter ) x's
|
||||
x' = 𝕀 x'_inf x'_sup
|
||||
|
@ -832,10 +856,10 @@ allNarrowingOperators
|
|||
:: forall n d
|
||||
. BoxCt n d
|
||||
=> Double
|
||||
-> Double
|
||||
-> Box1Options n d
|
||||
-> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
||||
-> [ Box n -> State Bool [ Box n ] ]
|
||||
allNarrowingOperators eps_eq eps_bis eqs =
|
||||
allNarrowingOperators eps_bis ( Box1Options eps_eq coordsToNarrow eqsToUse ) eqs =
|
||||
[ \ cand ->
|
||||
let getter = ( `index` coordIndex )
|
||||
setter = set coordIndex
|
||||
|
@ -848,8 +872,8 @@ allNarrowingOperators eps_eq eps_bis eqs =
|
|||
| narrowFn <- [ leftNarrow, rightNarrow ]
|
||||
, ( coordIndex, fn ) <-
|
||||
[ ( i, ff' i d )
|
||||
| i <- toList $ universe @n
|
||||
, d <- toList $ universe @d
|
||||
| i <- coordsToNarrow
|
||||
, d <- eqsToUse
|
||||
]
|
||||
]
|
||||
where
|
||||
|
|
|
@ -73,13 +73,16 @@ import Control.Monad.Trans.Reader
|
|||
( runReaderT )
|
||||
|
||||
-- MetaBrush
|
||||
import Math.Root.Isolation
|
||||
( RootIsolationOptions(..), defaultRootIsolationOptions
|
||||
, N
|
||||
)
|
||||
import Math.Bezier.Cubic.Fit
|
||||
( FitParameters(..) )
|
||||
import Math.Bezier.Spline
|
||||
( Spline(..), Curves(..), Curve(..), NextPoint(..) )
|
||||
import Math.Bezier.Stroke
|
||||
( RootSolvingAlgorithm(..)
|
||||
, CuspFindingOptions(..), Preconditioner(..)
|
||||
, invalidateCache
|
||||
)
|
||||
import Math.Linear
|
||||
|
@ -172,9 +175,9 @@ runApplication application = do
|
|||
Spline
|
||||
{ splineStart = mkPoint ( ℝ2 0 0 ) 10 25 0
|
||||
, splineCurves = OpenCurves $ Seq.fromList
|
||||
[ LineTo { curveEnd = NextPoint ( mkPoint ( ℝ2 100 0 ) 15 40 (0.1 * pi) ), curveData = invalidateCache undefined }
|
||||
--, LineTo { curveEnd = NextPoint ( mkPoint ( ℝ2 -10 10 ) 8 5 ( pi / 4 ) ), curveData = invalidateCache undefined }
|
||||
--, LineTo { curveEnd = NextPoint ( mkPoint ( ℝ2 -10 -20 ) 10 7 ( pi / 2 ) ), curveData = invalidateCache undefined }
|
||||
[ LineTo { curveEnd = NextPoint ( mkPoint ( ℝ2 100 0 ) 15 40 0 ), curveData = invalidateCache undefined }
|
||||
, LineTo { curveEnd = NextPoint ( mkPoint ( ℝ2 -10 10 ) 8 5 ( pi / 4 ) ), curveData = invalidateCache undefined }
|
||||
, LineTo { curveEnd = NextPoint ( mkPoint ( ℝ2 -10 -20 ) 10 7 ( pi / 2 ) ), curveData = invalidateCache undefined }
|
||||
]
|
||||
}
|
||||
}
|
||||
|
@ -215,8 +218,8 @@ runApplication application = do
|
|||
--HalleyM2
|
||||
NewtonRaphson
|
||||
{ maxIters = 20, precision = 8 }
|
||||
cuspFindingOptionsTVar <- STM.newTVarIO @( Maybe CuspFindingOptions ) $
|
||||
Just defaultCuspFindingOptions
|
||||
cuspFindingOptionsTVar <- STM.newTVarIO @( Maybe ( RootIsolationOptions N 3 ) ) $
|
||||
Just defaultRootIsolationOptions
|
||||
|
||||
-- Put all these stateful variables in a record for conciseness.
|
||||
let
|
||||
|
|
|
@ -19,8 +19,6 @@ import Data.Functor.Compose
|
|||
( Compose(..) )
|
||||
import Data.Int
|
||||
( Int32 )
|
||||
import GHC.Exts
|
||||
( proxy# )
|
||||
import GHC.Generics
|
||||
( Generic, Generic1, Generically1(..) )
|
||||
|
||||
|
@ -56,6 +54,8 @@ import Control.Monad.Trans.State.Strict
|
|||
( StateT, evalStateT, get, put )
|
||||
|
||||
-- MetaBrush
|
||||
import Calligraphy.Brushes
|
||||
( Brush(..) )
|
||||
import Math.Algebra.Dual
|
||||
( D2𝔸1(..), fun )
|
||||
import qualified Math.Bezier.Cubic as Cubic
|
||||
|
@ -74,16 +74,20 @@ import Math.Bezier.Spline
|
|||
import Math.Bezier.Stroke
|
||||
( Cusp(..), CachedStroke(..), invalidateCache
|
||||
, computeStrokeOutline
|
||||
, RootSolvingAlgorithm, CuspFindingOptions
|
||||
, RootSolvingAlgorithm
|
||||
)
|
||||
import Math.Linear
|
||||
( ℝ(..), T(..) )
|
||||
( ℝ(..), T(..)
|
||||
, rotate
|
||||
)
|
||||
import Math.Module
|
||||
( Module((*^)), normalise )
|
||||
import Math.Root.Isolation
|
||||
( RootIsolationOptions, N )
|
||||
import MetaBrush.Asset.Colours
|
||||
( Colours, ColourRecord(..) )
|
||||
import MetaBrush.Brush
|
||||
( Brush(..), WithParams(..) )
|
||||
( NamedBrush(..), WithParams(..) )
|
||||
import MetaBrush.Context
|
||||
( Modifier(..)
|
||||
, HoldAction(..), PartialPath(..)
|
||||
|
@ -149,7 +153,7 @@ blankRender _ = pure ()
|
|||
|
||||
getDocumentRender
|
||||
:: Colours
|
||||
-> RootSolvingAlgorithm -> Maybe CuspFindingOptions -> FitParameters
|
||||
-> RootSolvingAlgorithm -> Maybe ( RootIsolationOptions N 3 ) -> FitParameters
|
||||
-> Mode -> Bool
|
||||
-> Set Modifier -> Maybe ( ℝ 2 ) -> Maybe HoldAction -> Maybe PartialPath
|
||||
-> Document
|
||||
|
@ -285,22 +289,22 @@ instance NFData StrokeRenderData where
|
|||
-- - Otherwise, this consists of the underlying spline path only.
|
||||
strokeRenderData
|
||||
:: RootSolvingAlgorithm
|
||||
-> Maybe CuspFindingOptions
|
||||
-> Maybe ( RootIsolationOptions N 3 )
|
||||
-> FitParameters
|
||||
-> Stroke
|
||||
-> Maybe ( ST RealWorld StrokeRenderData )
|
||||
strokeRenderData rootAlgo mbCuspOptions fitParams
|
||||
( Stroke
|
||||
{ strokeSpline = spline :: StrokeSpline clo ( Record pointFields )
|
||||
, strokeBrush = ( strokeBrush :: Maybe ( Brush brushFields ) )
|
||||
, strokeBrush = ( strokeBrush :: Maybe ( NamedBrush brushFields ) )
|
||||
, ..
|
||||
}
|
||||
) | strokeVisible
|
||||
= Just $ case strokeBrush of
|
||||
Just ( BrushData { brushFunction = fn } )
|
||||
Just ( NamedBrush { brushFunction = fn } )
|
||||
| WithParams
|
||||
{ defaultParams = brush_defaults
|
||||
, withParams = brushFn
|
||||
, withParams = brush@( Brush { brushShape, mbRotation = mbRot } )
|
||||
} <- fn
|
||||
-> -- This is the key place where we need to perform impedance matching
|
||||
-- between the collection of parameters supplied along a stroke and
|
||||
|
@ -315,15 +319,26 @@ strokeRenderData rootAlgo mbCuspOptions fitParams
|
|||
-- Compute the outline using the brush function.
|
||||
( outline, fitPts, cusps ) <-
|
||||
computeStrokeOutline @clo rootAlgo mbCuspOptions fitParams
|
||||
( toUsedParams . brushParams ) embedUsedParams brushFn
|
||||
spline
|
||||
( toUsedParams . brushParams ) embedUsedParams
|
||||
brush spline
|
||||
pure $
|
||||
StrokeWithOutlineRenderData
|
||||
{ strokeDataSpline = spline
|
||||
, strokeOutlineData = ( outline, fitPts, cusps )
|
||||
, strokeBrushFunction = fun @Double ( brushFn @2 @() proxy# id )
|
||||
. embedUsedParams
|
||||
. toUsedParams
|
||||
, strokeBrushFunction =
|
||||
\ params ->
|
||||
let brushParams = embedUsedParams $ toUsedParams params
|
||||
shape = fun @Double brushShape brushParams
|
||||
-- TODO: remove this logic which is duplicated
|
||||
-- from elsewhere. The type should make it
|
||||
-- impossible to forget to apply the rotation.
|
||||
in case mbRot of
|
||||
Nothing -> shape
|
||||
Just getθ ->
|
||||
let θ = getθ brushParams
|
||||
cosθ = cos θ
|
||||
sinθ = sin θ
|
||||
in fmap ( unT . rotate cosθ sinθ . T ) shape
|
||||
}
|
||||
_ -> pure $
|
||||
StrokeRenderData
|
||||
|
|
|
@ -15,6 +15,8 @@ module MetaBrush.Asset.Brushes
|
|||
import Prelude
|
||||
hiding
|
||||
( Num(..), Floating(..), (^), (/), fromInteger, fromRational )
|
||||
import Data.Coerce
|
||||
( coerce )
|
||||
import GHC.Exts
|
||||
( fromString )
|
||||
|
||||
|
@ -30,12 +32,13 @@ import qualified Data.HashMap.Strict as HashMap
|
|||
|
||||
-- brush-strokes
|
||||
import Calligraphy.Brushes
|
||||
( circleBrush, ellipseBrush, tearDropBrush )
|
||||
import Math.Linear
|
||||
import Math.Ring
|
||||
|
||||
-- MetaBrush
|
||||
import MetaBrush.Brush
|
||||
( Brush(..), SomeBrush(..), WithParams(..) )
|
||||
( NamedBrush(..), SomeBrush(..), WithParams(..) )
|
||||
import MetaBrush.Records
|
||||
( Record(MkR) )
|
||||
|
||||
|
@ -48,7 +51,7 @@ lookupBrush nm = HashMap.lookup nm brushes
|
|||
brushes :: HashMap Text SomeBrush
|
||||
brushes = HashMap.fromList
|
||||
[ ( nm, b )
|
||||
| b@( SomeBrush ( BrushData { brushName = nm } ) )
|
||||
| b@( SomeBrush ( NamedBrush { brushName = nm } ) )
|
||||
<- [ SomeBrush circle, SomeBrush ellipse, SomeBrush tearDrop ]
|
||||
]
|
||||
|
||||
|
@ -56,8 +59,8 @@ brushes = HashMap.fromList
|
|||
|
||||
type CircleBrushFields = '[ "r" ]
|
||||
-- | A circular brush with the given radius.
|
||||
circle :: Brush CircleBrushFields
|
||||
circle = BrushData "circle" ( WithParams deflts circleBrush )
|
||||
circle :: NamedBrush CircleBrushFields
|
||||
circle = NamedBrush "circle" ( WithParams deflts $ coerce circleBrush )
|
||||
where
|
||||
deflts :: Record CircleBrushFields
|
||||
deflts = MkR ( ℝ1 1 )
|
||||
|
@ -66,8 +69,8 @@ circle = BrushData "circle" ( WithParams deflts circleBrush )
|
|||
type EllipseBrushFields = '[ "a", "b", "phi" ]
|
||||
-- | An elliptical brush with the given semi-major and semi-minor axes and
|
||||
-- angle of rotation.
|
||||
ellipse :: Brush EllipseBrushFields
|
||||
ellipse = BrushData "ellipse" ( WithParams deflts ellipseBrush )
|
||||
ellipse :: NamedBrush EllipseBrushFields
|
||||
ellipse = NamedBrush "ellipse" ( WithParams deflts $ coerce ellipseBrush )
|
||||
where
|
||||
deflts :: Record EllipseBrushFields
|
||||
deflts = MkR ( ℝ3 1 1 0 )
|
||||
|
@ -75,8 +78,8 @@ ellipse = BrushData "ellipse" ( WithParams deflts ellipseBrush )
|
|||
|
||||
type TearDropBrushFields = '[ "w", "h", "phi" ]
|
||||
-- | A tear-drop shape with the given width, height and angle of rotation.
|
||||
tearDrop :: Brush TearDropBrushFields
|
||||
tearDrop = BrushData "tear-drop" ( WithParams deflts tearDropBrush )
|
||||
tearDrop :: NamedBrush TearDropBrushFields
|
||||
tearDrop = NamedBrush "tear-drop" ( WithParams deflts $ coerce tearDropBrush )
|
||||
where
|
||||
deflts :: Record TearDropBrushFields
|
||||
deflts = MkR ( ℝ3 1 2.25 0 )
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
module MetaBrush.Brush
|
||||
( WithParams(..)
|
||||
, Brush(..), SomeBrush(..), BrushFunction
|
||||
, NamedBrush(..), SomeBrush(..), BrushFunction
|
||||
, PointFields, provePointFields, duplicates
|
||||
)
|
||||
where
|
||||
|
@ -39,16 +39,18 @@ import Data.Text
|
|||
import qualified Data.Text as Text
|
||||
( unpack )
|
||||
|
||||
-- MetaBrush
|
||||
import Math.Algebra.Dual
|
||||
( C )
|
||||
-- brush-strokes
|
||||
import Calligraphy.Brushes
|
||||
( Brush(..) )
|
||||
import Math.Bezier.Spline
|
||||
( SplineType(Closed), Spline )
|
||||
import Math.Differentiable
|
||||
( DiffInterp, I )
|
||||
( DiffInterp )
|
||||
import Math.Interval
|
||||
( 𝕀 )
|
||||
import Math.Linear
|
||||
|
||||
-- MetaBrush
|
||||
import MetaBrush.Records
|
||||
( KnownSymbols, Length, Record )
|
||||
import MetaBrush.Serialisable
|
||||
|
@ -56,18 +58,12 @@ import MetaBrush.Serialisable
|
|||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
-- | A differentiable function from a given record type,
|
||||
-- with provided default values that can be overridden.
|
||||
type WithParams :: Type -> ( Type -> Type ) -> Type
|
||||
data WithParams params f =
|
||||
-- | A brush, with default parameter values.
|
||||
type WithParams :: Type -> Type
|
||||
data WithParams params =
|
||||
WithParams
|
||||
{ defaultParams :: params
|
||||
, withParams
|
||||
:: forall {t} k (i :: t)
|
||||
. ( DiffInterp k i params )
|
||||
=> Proxy# i
|
||||
-> ( forall a. a -> I i a )
|
||||
-> C k ( I i params ) ( f ( I i ( ℝ 2 ) ) )
|
||||
, withParams :: Brush params
|
||||
}
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
@ -75,11 +71,11 @@ data WithParams params f =
|
|||
-- | A brush function: a function from a record of parameters to a closed spline.
|
||||
type BrushFunction :: [ Symbol ] -> Type
|
||||
type BrushFunction brushFields =
|
||||
WithParams ( Record brushFields ) ( Spline Closed () )
|
||||
WithParams ( Record brushFields )
|
||||
|
||||
type Brush :: [ Symbol ] -> Type
|
||||
data Brush brushFields where
|
||||
BrushData
|
||||
type NamedBrush :: [ Symbol ] -> Type
|
||||
data NamedBrush brushFields where
|
||||
NamedBrush
|
||||
:: forall brushFields
|
||||
. ( KnownSymbols brushFields, Typeable brushFields
|
||||
, Representable Double ( ℝ ( Length brushFields ) )
|
||||
|
@ -89,28 +85,28 @@ data Brush brushFields where
|
|||
=> { brushName :: !Text
|
||||
, brushFunction :: BrushFunction brushFields
|
||||
}
|
||||
-> Brush brushFields
|
||||
-> NamedBrush brushFields
|
||||
|
||||
data SomeBrush where
|
||||
SomeBrush
|
||||
:: { someBrush :: !( Brush brushFields ) }
|
||||
:: { someBrush :: !( NamedBrush brushFields ) }
|
||||
-> SomeBrush
|
||||
|
||||
instance Show ( Brush brushFields ) where
|
||||
show ( BrushData { brushName } ) =
|
||||
"BrushData\n\
|
||||
instance Show ( NamedBrush brushFields ) where
|
||||
show ( NamedBrush { brushName } ) =
|
||||
"NamedBrush\n\
|
||||
\ { brushName = " <> Text.unpack brushName <> "\n\
|
||||
\ }"
|
||||
|
||||
instance NFData ( Brush brushFields ) where
|
||||
rnf ( BrushData { brushName } )
|
||||
instance NFData ( NamedBrush brushFields ) where
|
||||
rnf ( NamedBrush { brushName } )
|
||||
= rnf brushName
|
||||
instance Eq ( Brush brushFields ) where
|
||||
BrushData name1 _ == BrushData name2 _ = name1 == name2
|
||||
instance Ord ( Brush brushFields ) where
|
||||
compare ( BrushData name1 _ ) ( BrushData name2 _ ) = compare name1 name2
|
||||
instance Hashable ( Brush brushFields ) where
|
||||
hashWithSalt salt ( BrushData { brushName } ) =
|
||||
instance Eq ( NamedBrush brushFields ) where
|
||||
NamedBrush name1 _ == NamedBrush name2 _ = name1 == name2
|
||||
instance Ord ( NamedBrush brushFields ) where
|
||||
compare ( NamedBrush name1 _ ) ( NamedBrush name2 _ ) = compare name1 name2
|
||||
instance Hashable ( NamedBrush brushFields ) where
|
||||
hashWithSalt salt ( NamedBrush { brushName } ) =
|
||||
hashWithSalt salt brushName
|
||||
|
||||
type PointFields :: [ Symbol ] -> Constraint
|
||||
|
@ -153,6 +149,12 @@ provePointFields fieldNames k =
|
|||
, SomeSymbol @f2 _ <- someSymbolVal ( Text.unpack f2 )
|
||||
, SomeSymbol @f3 _ <- someSymbolVal ( Text.unpack f3 )
|
||||
-> k ( proxy# @'[ f1, f2, f3 ] )
|
||||
[ f1, f2, f3, f4 ]
|
||||
| SomeSymbol @f1 _ <- someSymbolVal ( Text.unpack f1 )
|
||||
, SomeSymbol @f2 _ <- someSymbolVal ( Text.unpack f2 )
|
||||
, SomeSymbol @f3 _ <- someSymbolVal ( Text.unpack f3 )
|
||||
, SomeSymbol @f4 _ <- someSymbolVal ( Text.unpack f4 )
|
||||
-> k ( proxy# @'[ f1, f2, f3, f4 ] )
|
||||
_ -> error $ "I haven't defined ℝ " ++ show ( length fieldNames )
|
||||
{-# INLINE provePointFields #-}
|
||||
|
||||
|
|
|
@ -89,7 +89,7 @@ import Math.Module
|
|||
import Math.Linear
|
||||
( ℝ(..), T(..) )
|
||||
import MetaBrush.Brush
|
||||
( Brush, PointFields )
|
||||
( NamedBrush, PointFields )
|
||||
import MetaBrush.Records
|
||||
import MetaBrush.Unique
|
||||
( UniqueSupply, Unique, freshUnique )
|
||||
|
@ -174,7 +174,7 @@ data Stroke where
|
|||
{ strokeName :: !Text
|
||||
, strokeVisible :: !Bool
|
||||
, strokeUnique :: Unique
|
||||
, strokeBrush :: !( Maybe ( Brush brushFields ) )
|
||||
, strokeBrush :: !( Maybe ( NamedBrush brushFields ) )
|
||||
, strokeSpline :: !( StrokeSpline clo pointParams )
|
||||
}
|
||||
-> Stroke
|
||||
|
|
|
@ -63,7 +63,7 @@ import Math.Linear
|
|||
import MetaBrush.Assert
|
||||
( assert )
|
||||
import MetaBrush.Brush
|
||||
( Brush(..), PointFields )
|
||||
( NamedBrush(..), PointFields )
|
||||
import MetaBrush.Document
|
||||
( Document(..), DocumentContent(..)
|
||||
, Stroke(..), StrokeHierarchy(..), StrokeSpline
|
||||
|
@ -123,7 +123,7 @@ getOrCreateDrawAnchor uniqueSupply c doc@( Document { zoomFactor } ) =
|
|||
, strokeVisible = True
|
||||
, strokeUnique = uniq
|
||||
, strokeSpline = newSpline
|
||||
, strokeBrush = Nothing :: Maybe ( Brush ( '[] :: [ Symbol ] ) )
|
||||
, strokeBrush = Nothing :: Maybe ( NamedBrush ( '[] :: [ Symbol ] ) )
|
||||
}
|
||||
newDoc' :: Document
|
||||
newDoc'
|
||||
|
@ -234,7 +234,7 @@ withAnchorBrushData
|
|||
. ( pointParams ~ Record pointFields
|
||||
, PointFields pointFields
|
||||
)
|
||||
=> Maybe ( Brush brushFields )
|
||||
=> Maybe ( NamedBrush brushFields )
|
||||
-> pointParams
|
||||
-> r
|
||||
)
|
||||
|
|
|
@ -110,7 +110,7 @@ import Math.Linear
|
|||
import MetaBrush.Asset.Brushes
|
||||
( lookupBrush )
|
||||
import MetaBrush.Brush
|
||||
( Brush(..), SomeBrush(..), provePointFields, duplicates )
|
||||
( NamedBrush(..), SomeBrush(..), provePointFields, duplicates )
|
||||
import MetaBrush.Document
|
||||
( Document(..), DocumentContent(..), Guide(..)
|
||||
, Stroke(..), StrokeHierarchy(..), StrokeSpline
|
||||
|
@ -223,9 +223,9 @@ decodeFields = do
|
|||
dups -> throwError ( JSON.ParseFailed $ "Duplicate field names in brush record type:\n" <> Text.unwords dups )
|
||||
|
||||
|
||||
encodeBrush :: Applicative f => JSON.Encoder f (Brush brushFields)
|
||||
encodeBrush :: Applicative f => JSON.Encoder f (NamedBrush brushFields)
|
||||
encodeBrush = JSON.Encoder.mapLikeObj
|
||||
\ ( BrushData { brushName } ) ->
|
||||
\ ( NamedBrush { brushName } ) ->
|
||||
JSON.Encoder.atKey' "name" JSON.Encoder.text brushName
|
||||
|
||||
decodeBrush :: MonadIO m => JSON.Decoder m SomeBrush
|
||||
|
@ -277,14 +277,14 @@ decodeStroke uniqueSupply = do
|
|||
strokeSpline <- JSON.Decoder.atKey "spline" ( decodeSpline @Closed @( PointData ( Record pointFields ) ) decodePointData )
|
||||
pure $ case mbSomeBrush of
|
||||
Nothing ->
|
||||
Stroke { strokeName, strokeVisible, strokeUnique, strokeSpline, strokeBrush = Nothing :: Maybe ( Brush '[] ) }
|
||||
Stroke { strokeName, strokeVisible, strokeUnique, strokeSpline, strokeBrush = Nothing :: Maybe ( NamedBrush '[] ) }
|
||||
Just (SomeBrush brush) ->
|
||||
Stroke { strokeName, strokeVisible, strokeUnique, strokeSpline, strokeBrush = Just brush }
|
||||
else do
|
||||
strokeSpline <- JSON.Decoder.atKey "spline" ( decodeSpline @Open @( PointData ( Record pointFields ) ) decodePointData )
|
||||
pure $ case mbSomeBrush of
|
||||
Nothing ->
|
||||
Stroke { strokeName, strokeVisible, strokeUnique, strokeSpline, strokeBrush = Nothing :: Maybe ( Brush '[] ) }
|
||||
Stroke { strokeName, strokeVisible, strokeUnique, strokeSpline, strokeBrush = Nothing :: Maybe ( NamedBrush '[] ) }
|
||||
Just (SomeBrush brush) ->
|
||||
Stroke { strokeName, strokeVisible, strokeUnique, strokeSpline, strokeBrush = Just brush }
|
||||
|
||||
|
|
|
@ -25,7 +25,7 @@ import GHC.TypeLits
|
|||
, SomeSymbol(..), someSymbolVal
|
||||
)
|
||||
import GHC.TypeNats
|
||||
( Nat, type (+) )
|
||||
( Nat, KnownNat, type (+) )
|
||||
import Unsafe.Coerce
|
||||
( unsafeCoerce )
|
||||
|
||||
|
@ -139,7 +139,8 @@ instance ( Torsor ( T ( 𝕀ℝ ( Length ks ) ) ) ( 𝕀ℝ ( Length ks ) )
|
|||
T ( 𝕀 ( MkR c_lo ) ( MkR c_hi ) )
|
||||
|
||||
type instance RepDim ( Record ks ) = Length ks
|
||||
deriving newtype instance Representable r ( ℝ ( Length ks ) )
|
||||
deriving newtype instance ( KnownNat (Length ks)
|
||||
, Representable r ( ℝ ( Length ks ) ) )
|
||||
=> Representable r ( Record ks )
|
||||
|
||||
type instance D k ( Record ks ) = D k ( ℝ ( Length ks ) )
|
||||
|
@ -238,16 +239,16 @@ doIntersection k =
|
|||
| ( _ :: Proxy# r1r2 ) <- proxy# @'[ ]
|
||||
, Refl <- ( unsafeCoerce Refl :: r1r2 :~: Intersect r1 r2 )
|
||||
-> k @r1r2 proxy#
|
||||
VZ
|
||||
VZ
|
||||
( Vec [] )
|
||||
( Vec [] )
|
||||
|
||||
[ ( f1, r1_i1, r2_i1 ) ]
|
||||
| SomeSymbol @f1 _ <- someSymbolVal ( Text.unpack f1 )
|
||||
, ( _ :: Proxy# r1r2 ) <- proxy# @'[ f1 ]
|
||||
, Refl <- ( unsafeCoerce Refl :: r1r2 :~: Intersect r1 r2 )
|
||||
-> k @r1r2 proxy#
|
||||
( VS ( Fin r1_i1 ) VZ )
|
||||
( VS ( Fin r2_i1 ) VZ )
|
||||
( Vec [ Fin r1_i1 ] )
|
||||
( Vec [ Fin r2_i1 ] )
|
||||
|
||||
[ ( f1, r1_i1, r2_i1 )
|
||||
, ( f2, r1_i2, r2_i2 ) ]
|
||||
|
@ -256,8 +257,8 @@ doIntersection k =
|
|||
, ( _ :: Proxy# r1r2 ) <- proxy# @'[ f1, f2 ]
|
||||
, Refl <- ( unsafeCoerce Refl :: r1r2 :~: Intersect r1 r2 )
|
||||
-> k @r1r2 proxy#
|
||||
( VS ( Fin r1_i1 ) $ VS ( Fin r1_i2 ) VZ )
|
||||
( VS ( Fin r2_i1 ) $ VS ( Fin r2_i2 ) VZ )
|
||||
( Vec [ Fin r1_i1, Fin r1_i2 ] )
|
||||
( Vec [ Fin r2_i1, Fin r2_i2 ] )
|
||||
|
||||
[ ( f1, r1_i1, r2_i1 )
|
||||
, ( f2, r1_i2, r2_i2 )
|
||||
|
@ -268,8 +269,8 @@ doIntersection k =
|
|||
, ( _ :: Proxy# r1r2 ) <- proxy# @'[ f1, f2, f3 ]
|
||||
, Refl <- ( unsafeCoerce Refl :: r1r2 :~: Intersect r1 r2 )
|
||||
-> k @r1r2 proxy#
|
||||
( VS ( Fin r1_i1 ) $ VS ( Fin r1_i2 ) $ VS ( Fin r1_i3 ) VZ )
|
||||
( VS ( Fin r2_i1 ) $ VS ( Fin r2_i2 ) $ VS ( Fin r2_i3 ) VZ )
|
||||
( Vec [ Fin r1_i1, Fin r1_i2, Fin r1_i3 ] )
|
||||
( Vec [ Fin r2_i1, Fin r2_i2, Fin r2_i3 ] )
|
||||
|
||||
[ ( f1, r1_i1, r2_i1 )
|
||||
, ( f2, r1_i2, r2_i2 )
|
||||
|
@ -282,8 +283,8 @@ doIntersection k =
|
|||
, ( _ :: Proxy# r1r2 ) <- proxy# @'[ f1, f2, f3, f4 ]
|
||||
, Refl <- ( unsafeCoerce Refl :: r1r2 :~: Intersect r1 r2 )
|
||||
-> k @r1r2 proxy#
|
||||
( VS ( Fin r1_i1 ) $ VS ( Fin r1_i2 ) $ VS ( Fin r1_i3 ) $ VS ( Fin r1_i4 ) VZ )
|
||||
( VS ( Fin r2_i1 ) $ VS ( Fin r2_i2 ) $ VS ( Fin r2_i3 ) $ VS ( Fin r2_i4 ) VZ )
|
||||
( Vec [ Fin r1_i1, Fin r1_i2, Fin r1_i3, Fin r1_i4 ] )
|
||||
( Vec [ Fin r2_i1, Fin r2_i2, Fin r2_i3, Fin r2_i4 ] )
|
||||
|
||||
other -> error $ "Intersection not defined in dimension " ++ show ( length other )
|
||||
|
||||
|
|
Loading…
Reference in a new issue