mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-27 09:24:08 +00:00
Fix issues in withTangent & strictlyParallel function
This commit is contained in:
parent
63b9703faf
commit
2a21980ffc
|
@ -230,7 +230,8 @@ executable MetaBrush
|
|||
, MetaBrush.Time
|
||||
|
||||
ghc-options:
|
||||
-threaded -rtsopts
|
||||
-threaded
|
||||
-rtsopts
|
||||
|
||||
build-depends:
|
||||
metabrushes
|
||||
|
|
|
@ -283,3 +283,7 @@ benchmark cusps
|
|||
|
||||
default-language:
|
||||
Haskell2010
|
||||
|
||||
ghc-options:
|
||||
-threaded
|
||||
-rtsopts
|
||||
|
|
|
@ -56,8 +56,7 @@ import Data.Proxy
|
|||
import Data.Semigroup
|
||||
( sconcat )
|
||||
import GHC.Exts
|
||||
( newMutVar#, runRW#, inline
|
||||
)
|
||||
( newMutVar#, runRW# )
|
||||
import GHC.STRef
|
||||
( STRef(..), readSTRef, writeSTRef )
|
||||
import GHC.Generics
|
||||
|
@ -145,8 +144,6 @@ import Math.Orientation
|
|||
import Math.Roots
|
||||
import Math.Root.Isolation
|
||||
|
||||
--import Debug.Utils
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
data Offset
|
||||
|
@ -278,8 +275,8 @@ computeStrokeOutline rootAlgo mbCuspOptions fitParams ptParams toBrushParams bru
|
|||
endPt :: ptData
|
||||
endPt = openCurveEnd lastCurve
|
||||
startTgtFwd, startTgtBwd, endTgtFwd, endTgtBwd :: T ( ℝ 2 )
|
||||
( ( _, startTgtFwd), ( _, startTgtBwd ) ) = outlineFn firstOutlineFn $ ℝ1 0
|
||||
( ( _, endTgtFwd ), ( _, endTgtBwd ) ) = outlineFn lastOutlineFn $ ℝ1 1
|
||||
( ( _, startTgtFwd), ( _, startTgtBwd ) ) = outlineFn firstOutlineFn $ ℝ1 1e-4
|
||||
( ( _, endTgtFwd ), ( _, endTgtBwd ) ) = outlineFn lastOutlineFn $ ℝ1 (1 - 1e-4)
|
||||
startBrush, endBrush :: SplinePts Closed
|
||||
startBrush = brushShape spt0
|
||||
endBrush = brushShape endPt
|
||||
|
@ -342,8 +339,8 @@ computeStrokeOutline rootAlgo mbCuspOptions fitParams ptParams toBrushParams bru
|
|||
endTgt = case prevCurves of
|
||||
Empty -> endTangent spt0 spt0 lastCurve
|
||||
_ :|> lastPrev -> endTangent spt0 ( openCurveEnd lastPrev ) lastCurve
|
||||
( ( _, startTgtFwd), ( _, startTgtBwd ) ) = outlineFn firstOutlineFn $ ℝ1 0
|
||||
( ( _, endTgtFwd ), ( _, endTgtBwd ) ) = outlineFn lastOutlineFn $ ℝ1 1
|
||||
( ( _, startTgtFwd), ( _, startTgtBwd ) ) = outlineFn firstOutlineFn $ ℝ1 1e-9
|
||||
( ( _, endTgtFwd ), ( _, endTgtBwd ) ) = outlineFn lastOutlineFn $ ℝ1 (1 - 1e-9)
|
||||
fwdStartCap, bwdStartCap :: SplinePts Open
|
||||
OutlineData ( fmap fst -> TwoSided fwdStartCap bwdStartCap ) _
|
||||
= snd . runWriter
|
||||
|
@ -368,7 +365,7 @@ computeStrokeOutline rootAlgo mbCuspOptions fitParams ptParams toBrushParams bru
|
|||
where
|
||||
|
||||
outlineInfo :: ptData -> Curve Open crvData ptData -> OutlineInfo
|
||||
outlineInfo = inline ( outlineFunction rootAlgo mbCuspOptions ptParams toBrushParams brush )
|
||||
outlineInfo = outlineFunction rootAlgo mbCuspOptions ptParams toBrushParams brush
|
||||
|
||||
outlineFns :: Seq OutlineInfo
|
||||
outlineFns = go spt0 ( openCurves $ splineCurves ( adjustSplineType @Open spline ) )
|
||||
|
@ -407,8 +404,8 @@ computeStrokeOutline rootAlgo mbCuspOptions fitParams ptParams toBrushParams bru
|
|||
tgt, next_tgt, tgtFwd, next_tgtFwd, tgtBwd, next_tgtBwd :: T ( ℝ 2 )
|
||||
tgt = startTangent spt0 ptData curve
|
||||
next_tgt = endTangent spt0 ptData curve
|
||||
( ( _, tgtFwd ), ( _, tgtBwd ) ) = outlineFn fwdBwd $ ℝ1 0
|
||||
( ( _, next_tgtFwd ), ( _, next_tgtBwd ) ) = outlineFn fwdBwd $ ℝ1 1
|
||||
( ( _, tgtFwd ), ( _, tgtBwd ) ) = outlineFn fwdBwd $ ℝ1 1e-9
|
||||
( ( _, next_tgtFwd ), ( _, next_tgtBwd ) ) = outlineFn fwdBwd $ ℝ1 (1 - 1e-9)
|
||||
lift $ tellBrushJoin ( prevTgt, prev_tgtFwd, tgtBwd ) ptData ( tgt, tgtFwd, prev_tgtBwd )
|
||||
lift $ updateCurveData ( curveData curve ) fwdBwd
|
||||
put ( next_tgt, next_tgtFwd, next_tgtBwd )
|
||||
|
@ -857,7 +854,8 @@ withTangent tgt_wanted spline@( Spline { splineStart } )
|
|||
-- only allow well-defined query tangent vectors
|
||||
, not (badTangent tgt_wanted)
|
||||
= case runExcept . ( `runStateT` tgt_last ) $ ibifoldSpline go ( \ _ -> pure () ) $ adjustSplineType @Open spline of
|
||||
Left off -> off
|
||||
Left off ->
|
||||
off
|
||||
Right _ ->
|
||||
error $
|
||||
"withTangent: could not find any point with given tangent vector\n\
|
||||
|
@ -910,12 +908,12 @@ withTangent tgt_wanted spline@( Spline { splineStart } )
|
|||
let
|
||||
tgt1 :: T ( ℝ 2 )
|
||||
tgt1 = p1 --> p2
|
||||
in for_ ( convexCombination tgt0 tgt1 tgt_wanted ) \ t ->
|
||||
in for_ ( convexCombination tgt0 tgt1 tgt_wanted ) \ s ->
|
||||
throwE $
|
||||
Offset
|
||||
{ offsetIndex = i
|
||||
, offsetParameter = Just t
|
||||
, offset = T $ Quadratic.bezier @( T ( ℝ 2 ) ) ( Quadratic.Bezier {..} ) t
|
||||
, offsetParameter = Just s
|
||||
, offset = T $ Quadratic.bezier @( T ( ℝ 2 ) ) ( Quadratic.Bezier {..} ) s
|
||||
}
|
||||
handleSegment i p0 ( Bezier3To p1 p2 ( NextPoint p3 ) _ ) tgt0 =
|
||||
let
|
||||
|
@ -929,10 +927,10 @@ withTangent tgt_wanted spline@( Spline { splineStart } )
|
|||
c12 = tgt_wanted × tgt1
|
||||
c23 = tgt_wanted × tgt2
|
||||
correctTangentParam :: Double -> Maybe Double
|
||||
correctTangentParam t
|
||||
| t > -epsilon && t < 1 + epsilon
|
||||
, tgt_wanted ^.^ Cubic.bezier' bez t > epsilon
|
||||
= Just ( max 0 ( min 1 t ) )
|
||||
correctTangentParam s
|
||||
| s > -epsilon && s < 1 + epsilon
|
||||
, tgt_wanted ^.^ Cubic.bezier' bez s > epsilon
|
||||
= Just ( max 0 ( min 1 s ) )
|
||||
| otherwise
|
||||
= Nothing
|
||||
in
|
||||
|
@ -941,12 +939,12 @@ withTangent tgt_wanted spline@( Spline { splineStart } )
|
|||
mbParam = listToMaybe
|
||||
. mapMaybe correctTangentParam
|
||||
$ solveQuadratic c01 ( 2 * ( c12 - c01 ) ) ( c01 + c23 - 2 * c12 )
|
||||
in for_ mbParam \ t ->
|
||||
in for_ mbParam \ s ->
|
||||
throwE $
|
||||
Offset
|
||||
{ offsetIndex = i
|
||||
, offsetParameter = Just t
|
||||
, offset = T $ Cubic.bezier @( T ( ℝ 2 ) ) bez t
|
||||
, offsetParameter = Just s
|
||||
, offset = T $ Cubic.bezier @( T ( ℝ 2 ) ) bez s
|
||||
}
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
@ -1101,7 +1099,7 @@ solveEnvelopeEquations :: RootSolvingAlgorithm
|
|||
-> ( Offset, Offset )
|
||||
-> Seq ( ℝ 1 -> StrokeDatum 2 () )
|
||||
-> ( ( ℝ 2, T ( ℝ 2 ) ), ( ℝ 2, T ( ℝ 2 ) ) )
|
||||
solveEnvelopeEquations rootAlgo _t path_t path'_t ( fwdOffset, bwdOffset ) strokeData
|
||||
solveEnvelopeEquations rootAlgo ( ℝ1 _t ) path_t path'_t ( fwdOffset, bwdOffset ) strokeData
|
||||
= ( fwdSol, ( bwdPt, -1 *^ bwdTgt ) )
|
||||
|
||||
where
|
||||
|
@ -1118,23 +1116,23 @@ solveEnvelopeEquations rootAlgo _t path_t path'_t ( fwdOffset, bwdOffset ) strok
|
|||
go is0 =
|
||||
case sol desc strokeData is0 of
|
||||
( goodSoln, pt, tgt )
|
||||
| goodSoln && plausibleTangent tgt
|
||||
| goodSoln
|
||||
-> ( pt, tgt )
|
||||
| otherwise
|
||||
-> ( off • path_t, path'_t )
|
||||
|
||||
plausibleTangent :: T ( ℝ 2 ) -> Bool
|
||||
plausibleTangent tgt = path'_t ^.^ tgt > 0
|
||||
|
||||
sol :: String -> Seq ( ℝ 1 -> StrokeDatum 2 () ) -> Double -> ( Bool, ℝ 2, T ( ℝ 2 ) )
|
||||
sol _desc f is0 =
|
||||
sol desc f is0 =
|
||||
let ( solRes, _solSteps ) = runSolveMethod ( eqn f ) is0
|
||||
( good, is ) =
|
||||
case solRes of
|
||||
Nothing -> ( False, is0 )
|
||||
Just is1 -> ( True , is1 )
|
||||
( ds, dcdt ) = finish f is
|
||||
|
||||
Just is1 -> ( if desc == "fwd"
|
||||
then sgn >= 0
|
||||
else sgn <= 0
|
||||
, is1
|
||||
)
|
||||
( sgn, ds, dcdt ) = finish f is
|
||||
in ( good, ds, dcdt )
|
||||
|
||||
runSolveMethod = case rootAlgo of
|
||||
|
@ -1143,18 +1141,21 @@ solveEnvelopeEquations rootAlgo _t path_t path'_t ( fwdOffset, bwdOffset ) strok
|
|||
NewtonRaphson { maxIters, precision } ->
|
||||
newtonRaphson maxIters precision domain
|
||||
|
||||
finish :: Seq ( ℝ 1 -> StrokeDatum 2 () ) -> Double -> ( ℝ 2, T ( ℝ 2 ) )
|
||||
finish :: Seq ( ℝ 1 -> StrokeDatum 2 () ) -> Double -> ( Double, ℝ 2, T ( ℝ 2 ) )
|
||||
finish fs is =
|
||||
let (i, s) = fromDomain is in
|
||||
case evalStrokeDatum fs is of -- TODO: a bit redundant to have to compute this again...
|
||||
StrokeDatum
|
||||
{ stroke
|
||||
, mbRotation
|
||||
, ee = D12 ( ℝ1 _ee ) _ ( T ( ℝ1 𝛿E𝛿s ) )
|
||||
, du = D12 u _ _
|
||||
, dv = D12 v _ _
|
||||
, 𝛿E𝛿sdcdt = D0 𝛿E𝛿sdcdt
|
||||
} ->
|
||||
-- The total derivative dc/dt is computed by dividing by ∂E/∂s,
|
||||
-- so check it isn't zero first. This corresponds to cusps in the envelope.
|
||||
let dcdt
|
||||
let unrot_dcdt
|
||||
| abs 𝛿E𝛿s < epsilon
|
||||
, let s' = if s >= 0.5 then s - 1e-6 else s + 1e-6
|
||||
= case ( fs `Seq.index` i ) ( ℝ1 s' ) of
|
||||
|
@ -1162,7 +1163,16 @@ solveEnvelopeEquations rootAlgo _t path_t path'_t ( fwdOffset, bwdOffset ) strok
|
|||
-> recip 𝛿E𝛿s' *^ 𝛿E𝛿sdcdt'
|
||||
| otherwise
|
||||
= recip 𝛿E𝛿s *^ 𝛿E𝛿sdcdt
|
||||
in ( stroke, dcdt )
|
||||
dcdt = case mbRotation of
|
||||
Nothing -> unrot_dcdt
|
||||
Just ( D21 θ _ _ ) ->
|
||||
let cosθ = cos θ
|
||||
sinθ = sin θ
|
||||
in rotate cosθ sinθ $ unrot_dcdt
|
||||
in ( T u ^.^ T v, stroke, dcdt )
|
||||
-- Compute the dot product of u and v (which are rotated versions of ∂c/∂t and ∂c/∂s).
|
||||
-- The sign of this quantity determines which side of the envelope
|
||||
-- we are on.
|
||||
|
||||
evalStrokeDatum :: Seq ( ℝ 1 -> StrokeDatum 2 () ) -> ( Double -> StrokeDatum 2 () )
|
||||
evalStrokeDatum fs is =
|
||||
|
|
|
@ -129,11 +129,13 @@ instance Cross Double ( T ( ℝ 2 ) ) where
|
|||
-- | Compute whether two vectors point in the same direction,
|
||||
-- that is, whether each vector is a (strictly) positive multiple of the other.
|
||||
--
|
||||
-- Returns @False@ if either of the vectors is zero.
|
||||
-- Returns @False@ if either of the vectors is zero (or very close to zero).
|
||||
strictlyParallel :: T ( ℝ 2 ) -> T ( ℝ 2 ) -> Bool
|
||||
strictlyParallel u v
|
||||
= abs ( u × v ) < epsilon -- vectors are collinear
|
||||
&& u ^.^ v > epsilon -- vectors point in the same direction (parallel and not anti-parallel)
|
||||
= abs ( u × v ) < tol -- vectors are collinear
|
||||
&& u ^.^ v > tol -- vectors point in the same direction (parallel and not anti-parallel)
|
||||
where
|
||||
tol = norm u * norm v * epsilon
|
||||
|
||||
-- | Finds whether the query vector @ u @ is a convex combination of the two provided vectors @ v0 @, @ v1 @.
|
||||
--
|
||||
|
|
Loading…
Reference in a new issue