mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-27 17:34:08 +00:00
fix incorrect deflation code
This commit is contained in:
parent
d604d4120e
commit
4182b78c7e
|
@ -182,7 +182,7 @@ closestPoint
|
||||||
closestPoint pts c = pickClosest ( 0 :| 1 : roots ) -- todo: also include the self-intersection point if one exists
|
closestPoint pts c = pickClosest ( 0 :| 1 : roots ) -- todo: also include the self-intersection point if one exists
|
||||||
where
|
where
|
||||||
roots :: [ r ]
|
roots :: [ r ]
|
||||||
roots = filter ( \ r -> r > 0 && r < 1 ) ( realRoots 2000 $ ddist @v pts c )
|
roots = filter ( \ r -> r > 0 && r < 1 ) ( realRoots 500 $ ddist @v pts c )
|
||||||
|
|
||||||
pickClosest :: NonEmpty r -> ArgMin r ( r, p )
|
pickClosest :: NonEmpty r -> ArgMin r ( r, p )
|
||||||
pickClosest ( s :| ss ) = go s q nm0 ss
|
pickClosest ( s :| ss ) = go s q nm0 ss
|
||||||
|
|
|
@ -262,7 +262,7 @@ fitPiece dist_tol t_tol maxIters p tp qs r tr =
|
||||||
let
|
let
|
||||||
laguerreStepResult :: Complex Double
|
laguerreStepResult :: Complex Double
|
||||||
laguerreStepResult = runST do
|
laguerreStepResult = runST do
|
||||||
coeffs <- unsafeThawPrimArray . primArrayFromListN 6 . map (:+ 0)
|
coeffs <- unsafeThawPrimArray . primArrayFromListN 6
|
||||||
$ Cubic.ddist @( Vector2D Double ) bez q
|
$ Cubic.ddist @( Vector2D Double ) bez q
|
||||||
laguerre epsilon 1 coeffs ( ti :+ 0 )
|
laguerre epsilon 1 coeffs ( ti :+ 0 )
|
||||||
ti' <- case laguerreStepResult of
|
ti' <- case laguerreStepResult of
|
||||||
|
|
|
@ -10,11 +10,11 @@ module Math.Roots where
|
||||||
|
|
||||||
-- base
|
-- base
|
||||||
import Control.Monad
|
import Control.Monad
|
||||||
( unless )
|
( unless, when )
|
||||||
import Control.Monad.ST
|
import Control.Monad.ST
|
||||||
( ST, runST )
|
( ST, runST )
|
||||||
import Data.Complex
|
import Data.Complex
|
||||||
( Complex(..), magnitude )
|
( Complex(..), conjugate, magnitude, realPart, imagPart )
|
||||||
import Data.Maybe
|
import Data.Maybe
|
||||||
( mapMaybe )
|
( mapMaybe )
|
||||||
|
|
||||||
|
@ -68,70 +68,138 @@ solveQuadratic a0 a1 a2
|
||||||
disc :: a
|
disc :: a
|
||||||
disc = a1 * a1 - 4 * a0 * a2
|
disc = a1 * a1 - 4 * a0 * a2
|
||||||
|
|
||||||
-- | Find real roots of a polynomial.
|
-- | Find real roots of a polynomial with real coefficients.
|
||||||
--
|
--
|
||||||
-- Coefficients are given in order of decreasing degree, e.g.:
|
-- Coefficients are given in order of decreasing degree, e.g.:
|
||||||
-- x² + 7 is given by [ 1, 0, 7 ].
|
-- x² + 7 is given by [ 1, 0, 7 ].
|
||||||
realRoots :: forall a. ( RealFloat a, Prim a, NFData a ) => Int -> [ a ] -> [ a ]
|
realRoots :: forall a. ( RealFloat a, Prim a, NFData a ) => Int -> [ a ] -> [ a ]
|
||||||
realRoots maxIters coeffs = mapMaybe isReal ( roots epsilon maxIters ( map (:+ 0) coeffs ) )
|
realRoots maxIters coeffs = mapMaybe isReal ( roots epsilon maxIters coeffs )
|
||||||
where
|
where
|
||||||
isReal :: Complex a -> Maybe a
|
isReal :: Complex a -> Maybe a
|
||||||
isReal ( a :+ b )
|
isReal ( a :+ b )
|
||||||
| abs b < epsilon = Just a
|
| abs b < epsilon = Just a
|
||||||
| otherwise = Nothing
|
| otherwise = Nothing
|
||||||
|
|
||||||
-- | Compute all roots of a polynomial using Laguerre's method and (forward) deflation.
|
-- | Compute all roots of a polynomial with real coefficients using Laguerre's method and (forward) deflation.
|
||||||
--
|
--
|
||||||
-- Polynomial coefficients are given in order of descending degree (e.g. constant coefficient last).
|
-- Polynomial coefficients are given in order of descending degree (e.g. constant coefficient last).
|
||||||
--
|
--
|
||||||
-- N.B. The forward deflation process is only guaranteed to be numerically stable
|
-- N.B. The forward deflation process is only guaranteed to be numerically stable
|
||||||
-- if Laguerre's method finds roots in increasing order of magnitude.
|
-- if Laguerre's method finds roots in increasing order of magnitude.
|
||||||
roots :: forall a. ( RealFloat a, Prim a, NFData a ) => a -> Int -> [ Complex a ] -> [ Complex a ]
|
roots :: forall a. ( RealFloat a, Prim a, NFData a ) => a -> Int -> [ a ] -> [ Complex a ]
|
||||||
roots eps maxIters coeffs = runST do
|
roots eps maxIters coeffs = runST do
|
||||||
let
|
let
|
||||||
coeffPrimArray :: PrimArray ( Complex a )
|
coeffPrimArray :: PrimArray a
|
||||||
coeffPrimArray = primArrayFromList coeffs
|
coeffPrimArray = primArrayFromList coeffs
|
||||||
sz :: Int
|
sz :: Int
|
||||||
sz = sizeofPrimArray coeffPrimArray
|
sz = sizeofPrimArray coeffPrimArray
|
||||||
( p :: MutablePrimArray s ( Complex a ) ) <- unsafeThawPrimArray coeffPrimArray
|
( p :: MutablePrimArray s a ) <- unsafeThawPrimArray coeffPrimArray
|
||||||
let
|
let
|
||||||
go :: Int -> [ Complex a ] -> ST s [ Complex a ]
|
go :: Int -> [ Complex a ] -> ST s [ Complex a ]
|
||||||
go !i rs = do
|
go !i rs = do
|
||||||
!r <- force <$> laguerre eps maxIters p 0 -- Start Laguerre's method at 0 for best chance of numerical stability.
|
-- Estimate the root with minimum absolute value in order to
|
||||||
|
-- improve numerical stability of Laguerre's method with forward deflation.
|
||||||
|
!z0 <- minAbsStartPoint p
|
||||||
|
!r <- force <$> laguerre eps maxIters p z0
|
||||||
if i <= 2
|
if i <= 2
|
||||||
then pure ( r : rs )
|
then pure ( r : rs )
|
||||||
else do
|
else
|
||||||
deflate r p
|
-- real root
|
||||||
|
if abs ( imagPart r ) < epsilon
|
||||||
|
then do
|
||||||
|
deflate ( realPart r ) p
|
||||||
go ( i - 1 ) ( r : rs )
|
go ( i - 1 ) ( r : rs )
|
||||||
|
else do
|
||||||
|
deflateConjugatePair r p
|
||||||
|
go ( i - 2 ) ( r : conjugate r : rs )
|
||||||
go sz []
|
go sz []
|
||||||
|
|
||||||
-- | Deflate a polynomial: factor out a root of the polynomial.
|
-- | Estimate the root with smallest absolute value.
|
||||||
--
|
--
|
||||||
-- The polynomial must have degree at least 2.
|
-- Polynomial coefficients are given in order of descending degree (e.g. constant coefficient last).
|
||||||
|
minAbsStartPoint :: forall a m s. ( RealFloat a, Prim a, PrimMonad m, s ~ PrimState m ) => MutablePrimArray s a -> m ( Complex a )
|
||||||
|
minAbsStartPoint p = do
|
||||||
|
n <- subtract 1 <$> getSizeofMutablePrimArray p
|
||||||
|
an <- readPrimArray p n
|
||||||
|
if abs an < epsilon
|
||||||
|
then pure 0
|
||||||
|
else do
|
||||||
|
a0 <- readPrimArray p 0
|
||||||
|
let
|
||||||
|
r, m0 :: Complex a
|
||||||
|
r = log ( abs an :+ 0 )
|
||||||
|
m0 = exp $ ( r - log ( abs a0 :+ 0 ) ) / fromIntegral n
|
||||||
|
go :: Int -> Complex a -> m ( Complex a )
|
||||||
|
go i m
|
||||||
|
| i >= n
|
||||||
|
= pure m
|
||||||
|
| otherwise
|
||||||
|
= do
|
||||||
|
ai <- readPrimArray p i
|
||||||
|
if abs ai < epsilon
|
||||||
|
then go ( i + 1 ) m
|
||||||
|
else do
|
||||||
|
let
|
||||||
|
mi :: Complex a
|
||||||
|
mi = exp $ ( r - log ( abs ai :+ 0 ) ) / fromIntegral ( n - i )
|
||||||
|
if magnitude mi < magnitude m
|
||||||
|
then go ( i + 1 ) mi
|
||||||
|
else go ( i + 1 ) m
|
||||||
|
m <- go 1 m0
|
||||||
|
pure ( 0.5 * m )
|
||||||
|
|
||||||
|
-- | Forward deflation of a polynomial by a root: factors out the root.
|
||||||
deflate :: forall a m s. ( Num a, Prim a, PrimMonad m, s ~ PrimState m ) => a -> MutablePrimArray s a -> m ()
|
deflate :: forall a m s. ( Num a, Prim a, PrimMonad m, s ~ PrimState m ) => a -> MutablePrimArray s a -> m ()
|
||||||
deflate r p = do
|
deflate r p = do
|
||||||
deg <- subtract 1 <$> getSizeofMutablePrimArray p
|
deg <- subtract 1 <$> getSizeofMutablePrimArray p
|
||||||
case compare deg 2 of
|
when ( deg >= 2 ) do
|
||||||
LT -> pure ()
|
|
||||||
EQ -> shrinkMutablePrimArray p deg
|
|
||||||
GT -> do
|
|
||||||
shrinkMutablePrimArray p deg
|
shrinkMutablePrimArray p deg
|
||||||
let
|
let
|
||||||
go :: a -> Int -> m ()
|
go :: a -> Int -> m ()
|
||||||
go !b !i = unless ( i >= deg ) do
|
go !b !i = unless ( i >= deg ) do
|
||||||
ai <- readPrimArray p i
|
ai <- readPrimArray p i
|
||||||
writePrimArray p i ( ai + r * b )
|
let
|
||||||
go ai ( i + 1 )
|
bi :: a
|
||||||
|
!bi = ai + r * b
|
||||||
|
writePrimArray p i bi
|
||||||
|
go bi ( i + 1 )
|
||||||
a0 <- readPrimArray p 0
|
a0 <- readPrimArray p 0
|
||||||
go a0 1
|
go a0 1
|
||||||
|
|
||||||
|
-- | Forward deflation of a polynomial with real coefficients by a pair of complex-conjugate roots.
|
||||||
|
deflateConjugatePair :: forall a m s. ( Num a, Prim a, PrimMonad m, s ~ PrimState m ) => Complex a -> MutablePrimArray s a -> m ()
|
||||||
|
deflateConjugatePair ( x :+ y ) p = do
|
||||||
|
deg <- subtract 1 <$> getSizeofMutablePrimArray p
|
||||||
|
when ( deg >= 3 ) do
|
||||||
|
shrinkMutablePrimArray p ( deg - 1 )
|
||||||
|
let
|
||||||
|
c1, c2 :: a
|
||||||
|
!c1 = 2 * x
|
||||||
|
!c2 = x * x + y * y
|
||||||
|
a0 <- readPrimArray p 0
|
||||||
|
a1 <- readPrimArray p 1
|
||||||
|
let
|
||||||
|
b1 :: a
|
||||||
|
!b1 = a1 + c1 * a0
|
||||||
|
writePrimArray p 1 b1
|
||||||
|
let
|
||||||
|
go :: a -> a -> Int -> m ()
|
||||||
|
go !b !b' !i = unless ( i >= deg - 1 ) do
|
||||||
|
ai <- readPrimArray p i
|
||||||
|
let
|
||||||
|
bi :: a
|
||||||
|
!bi = ai + c1 * b - c2 * b'
|
||||||
|
writePrimArray p i bi
|
||||||
|
go bi b ( i + 1 )
|
||||||
|
go b1 a0 2
|
||||||
|
|
||||||
-- | Laguerre's method.
|
-- | Laguerre's method.
|
||||||
laguerre
|
laguerre
|
||||||
:: forall a m s
|
:: forall a m s
|
||||||
. ( RealFloat a, Prim a, PrimMonad m, s ~ PrimState m )
|
. ( RealFloat a, Prim a, PrimMonad m, s ~ PrimState m )
|
||||||
=> a -- ^ error tolerance
|
=> a -- ^ error tolerance
|
||||||
-> Int -- ^ max number of iterations
|
-> Int -- ^ max number of iterations
|
||||||
-> MutablePrimArray s ( Complex a ) -- ^ polynomial
|
-> MutablePrimArray s a -- ^ polynomial
|
||||||
-> Complex a -- ^ initial point
|
-> Complex a -- ^ initial point
|
||||||
-> m ( Complex a )
|
-> m ( Complex a )
|
||||||
laguerre eps maxIters p x0 = do
|
laguerre eps maxIters p x0 = do
|
||||||
|
@ -151,9 +219,9 @@ laguerreStep
|
||||||
:: forall a m s
|
:: forall a m s
|
||||||
. ( RealFloat a, Prim a, PrimMonad m, s ~ PrimState m )
|
. ( RealFloat a, Prim a, PrimMonad m, s ~ PrimState m )
|
||||||
=> a -- ^ error tolerance
|
=> a -- ^ error tolerance
|
||||||
-> MutablePrimArray s ( Complex a ) -- ^ polynomial
|
-> MutablePrimArray s a -- ^ polynomial
|
||||||
-> MutablePrimArray s ( Complex a ) -- ^ first derivative of polynomial
|
-> MutablePrimArray s a -- ^ first derivative of polynomial
|
||||||
-> MutablePrimArray s ( Complex a ) -- ^ second derivative of polynomial
|
-> MutablePrimArray s a -- ^ second derivative of polynomial
|
||||||
-> Complex a -- ^ initial point
|
-> Complex a -- ^ initial point
|
||||||
-> m ( Complex a )
|
-> m ( Complex a )
|
||||||
laguerreStep eps p p' p'' x = do
|
laguerreStep eps p p' p'' x = do
|
||||||
|
@ -168,7 +236,8 @@ laguerreStep eps p p' p'' x = do
|
||||||
g = p'x / px
|
g = p'x / px
|
||||||
g² = g * g
|
g² = g * g
|
||||||
h = g² - p''x / px
|
h = g² - p''x / px
|
||||||
delta = sqrt $ ( n - 1 ) *: ( n *: h - g² )
|
mult = 1 --max 1 . min n . fromIntegral . round @_ @Integer . realPart $ log p'x / log ( px / p'x )
|
||||||
|
delta = sqrt $ ( n - 1 ) *: ( ( n / mult ) *: h - g² )
|
||||||
gp = g + delta
|
gp = g + delta
|
||||||
gm = g - delta
|
gm = g - delta
|
||||||
denom
|
denom
|
||||||
|
@ -182,24 +251,24 @@ laguerreStep eps p p' p'' x = do
|
||||||
(*:) :: a -> Complex a -> Complex a
|
(*:) :: a -> Complex a -> Complex a
|
||||||
r *: (u :+ v) = ( r * u ) :+ ( r * v )
|
r *: (u :+ v) = ( r * u ) :+ ( r * v )
|
||||||
|
|
||||||
-- | Evaluate a polynomial.
|
-- | Evaluate a polynomial with real coefficients at a complex number.
|
||||||
eval
|
eval
|
||||||
:: forall a m s
|
:: forall a m s
|
||||||
. ( Num a, Prim a, PrimMonad m, s ~ PrimState m )
|
. ( RealFloat a, Prim a, PrimMonad m, s ~ PrimState m )
|
||||||
=> MutablePrimArray s a -> a -> m a
|
=> MutablePrimArray s a -> Complex a -> m ( Complex a )
|
||||||
eval p x = do
|
eval p x = do
|
||||||
n <- getSizeofMutablePrimArray p
|
n <- getSizeofMutablePrimArray p
|
||||||
let
|
let
|
||||||
go :: a -> Int -> m a
|
go :: Complex a -> Int -> m ( Complex a )
|
||||||
go !a !i
|
go !a !i
|
||||||
| i >= n
|
| i >= n
|
||||||
= pure a
|
= pure a
|
||||||
| otherwise
|
| otherwise
|
||||||
= do
|
= do
|
||||||
b <- readPrimArray p i
|
b <- readPrimArray p i
|
||||||
go ( b + x * a ) ( i + 1 )
|
go ( ( b :+ 0 ) + x * a ) ( i + 1 )
|
||||||
an <- readPrimArray p 0
|
an <- readPrimArray p 0
|
||||||
go an 1
|
go ( an :+ 0 ) 1
|
||||||
|
|
||||||
-- | Derivative of a polynomial.
|
-- | Derivative of a polynomial.
|
||||||
derivative
|
derivative
|
||||||
|
|
Loading…
Reference in a new issue